

Dreamcast (VMU)
Visual Memory Unit

Tutorial Manual
Specifications

Hardware Manual
Programing Manual

VMU-BIOS Specifications
Sound Development Specifications

Simulator Manual

Table of Contents

Visual Memory Unit (VMU) Tutorial Manual VMT–i

Table of Contents . VMT–iii

Application Development Procedure . VMT–1

Writing Source Code ...VMT–1
Correcting GHEAD.ASM ...VMT–2
Assembly Without Using MAKE ..VMT–2

Assembly ..VMT–3
Linking ...VMT–3
Converting an EVA File Into a HEX File ...VMT–4
Converting a HEX File to a Binary File ..VMT–5
Creating a MAKE File ..VMT–5

Creating the Information Fork ..VMT–7
Transferring the Program to Visual Memory ...VMT–7

Interfacing between Visual Memory and Dreamcast . VMT–9

Names of Elements in the Startup Screen ..VMT–10
Memory Selection Screen ...VMT–10
File Management Screen ..VMT–11

Creating a Volume Icon ..VMT–13
Creating an Animated Icon ..VMT–15

Three File Structures ...VMT–15
Information Fork ...VMT–16
Visual Comment Data Structure ...VMT–20
Game Name Sorting Rules ..VMT–21

Memory Card Utility. VMT–23

Memory Card Utility Preparation and Startup .. VMT–23
Requirements for Transfer ..VMT–23
Software Preparation ...VMT–24
Memory Card Utility Startup ...VMT–26

Memory Card Utility Operation ... VMT–27
Main Menu ..VMT–27
Memory Selection Menu ...VMT–27
Command Selection Menu ..VMT–28
File Operations Menu ..VMT–31

Initializing Visual Memory ... VMT–33
Transferring Files from a PC to Visual Memory .. VMT–34
LCD Pattern Display .. VMT–40
LCD Character Pattern Display .. VMT–44
Counter That Uses Base Timer Interrupts ... VMT–50
Button Press Detection ... VMT–58
Using the PWM Sound Source .. VMT–64
Interrupt Using Timer 0 ... VMT–66
Serial Communications (Sending Side) ... VMT–72
Serial Communications (Receiving Side) .. VMT–80
General-purpose Serial Driver .. VMT–88
Reading and Writing Flash Memory ... VMT–102
Low Battery Detection and Saving Data ... VMT–111

Dreamcast VMU Specifications .VMU–i

Table of Contents . VMU–iii

VMU Specifications. VMU–1

Overview ..VMU–1
VMU Overview .. VMU–1
VMU Configuration .. VMU–2
VMU Functions .. VMU–4

Mode Settings ..VMU–7
File Management ..VMU–9

Management Area ... VMU–10
Data Area .. VMU–10
Reserved Area .. VMU–10

LCD Display ..VMU–11
XRAM .. VMU–11
Screen Mode ... VMU–11
Icons ... VMU–12
Screen Configuration .. VMU–12
LCD Characteristics .. VMU–12
Miscellaneous ... VMU–12

Executable File Initiation ...VMU–13

Downloading an Executable File .. VMU–13
File Size ... VMU–13
Subroutine .. VMU–13
Interrupts .. VMU–14
RAM .. VMU–14
Save Processing During Executable File Operations ... VMU–14
Auto Power Off ... VMU–14

Communications Function ..VMU–15
Maple Bus Protocol ... VMU–15
Synchronous Serial Communications .. VMU–15

Clock Function ..VMU–16
Settings .. VMU–16

Alarm Function ...VMU–17
SLEEP Function ...VMU–18

SLEEP Operation ... VMU–18
Buttons ...VMU–19
Batteries ..VMU–20

Battery Life ... VMU–20
Processing When Battery Power Is Exhausted ... VMU–20
Battery Replacement ... VMU–20

Postscript ..VMU–20

Visual Memory Unit (VMU) Hardware Manual VMD–i

Table of Contents . VMD–iii

Visual Memory Unit Overview . VMD–1

VMU Specifications ..VMD–2
VMU Functions ...VMD–6

File management ..VMD–7
Liquid-Crystal Display ..VMD–7
Starting VMU applications ...VMD–7
Data transfer ..VMD–7
Clock ...VMD–7
Buzzer ..VMD–8
Operation mode switching ...VMD–8
Integrated character font ...VMD–8

Mode Setting ...VMD–9
System mode ...VMD–9
Game mode ...VMD–9
File mode ...VMD–10
Clock mode ...VMD–10

File Management ..VMD–11
Flash memory management area ...VMD–11
Data area ..VMD–13
Reserved area ..VMD–13

LCD Display ..VMD–14

XRAM .. VMD–14
Image mode .. VMD–14
Icon .. VMD–14
Image configuration .. VMD–14
LCD characteristics ... VMD–15
Other important points ... VMD–15

Starting an Executable File ..VMD–16
Writing applications for the VMU .. VMD–16
Transferring an executable file .. VMD–16
Executable file size .. VMD–16
OS programs usable by applications .. VMD–16
RAM .. VMD–17
Saving application data .. VMD–17
Auto power-off .. VMD–18

Communication Functions ..VMD–19
Maple bus protocol .. VMD–19
Synchronous serial transfer ... VMD–19

Clock Function ..VMD–20
Alarm Function ...VMD–21
Sleep Function ...VMD–22
Buttons ..VMD–23
Batteries ..VMD–24

Battery life ... VMD–25
Battery status monitoring ... VMD–25
Battery replacement .. VMD–25

CPU Features. VMD–27

Differences to Conventional CPUs ...VMD–28
Specifications ...VMD–29
System block diagram ..VMD–33

Internal System Configuration . VMD–35

Memory Space ...VMD–35
Program Counter (PC) ...VMD–36
ROM Space ..VMD–38
RAM Space ...VMD–38
Indirect Address Registers ..VMD–39

Special function registers (SFR) ... VMD–40
Flash Memory ..VMD–43
Accumulator ..VMD–43

B Register, C Register .. VMD–43
Program Status Word (PSW) ...VMD–44
Stack Pointer ..VMD–46
Table Reference Register (TRR) ..VMD–47
CHANGE Instruction ...VMD–48

Format ... VMD–48
Operation .. VMD–48
Sample program .. VMD–48

Peripheral System Configuration . VMD–49

I/O Ports ..VMD–49
Port 1 ..VMD–50
Port 3 ..VMD–54
Port 7 ..VMD–56

Timer/Counter 0 (T0) ..VMD–58
Functions ...VMD–58
Circuit Configuration ..VMD–59
Related Registers ..VMD–60
Circuit Configuration and Operation Principles ...VMD–69

Timer 1 (T1) ...VMD–76
Functions ...VMD–76
Circuit Configuration ..VMD–77
Related Registers ..VMD–78
Circuit Configuration and Operation Principles ...VMD–82

Base Timer ...VMD–94
Functions ...VMD–94
Circuit Configuration ..VMD–95
Related Registers ..VMD–96
Using the Base Timer ...VMD–99

Serial Interface ...VMD–100
Functions and Features ..VMD–100
Circuit Configuration ..VMD–102
Related Registers ..VMD–103
Serial Interface Operation ...VMD–109
Operation Mode Settings ..VMD–109
Serial transfer clock ..VMD–111
Serial Transfer Timing ...VMD–113
LSB/MSB Switchable Start Sequence ..VMD–114
Overrun Detection ..VMD–116
Transfer Bit Length Control ..VMD–117
Sample Program ...VMD–117

Dot Matrix LCD Controller ...VMD–120
Functions ...VMD–120
Display RAM (XRAM) ...VMD–120
Display Control Registers ...VMD–121

External Interrupt Function ..VMD–128
Circuit Configuration ..VMD–129
Related Registers ..VMD–129

Port Interrupt Functions ..VMD–135
Function ...VMD–135
Circuit Configuration ..VMD–135
Related Registers ..VMD–136
Operation Description ...VMD–137
State Transition ...VMD–137

VMU Work RAM ..VMD–139
Work RAM Control Registers ..VMD–139
Accessing Work RAM ...VMD–140
Precautions for Using Work RAM Address Register ...VMD–140

Flash Memory ..VMD–142
Features and Functions ..VMD–142
Accessing Program/Data Area of Flash Memory ...VMD–142

Control Functions . VMD–143

Interrupt Functions ...VMD–143
Interrupt Types .. VMD–144
Interrupt Function Operation .. VMD–145
Circuit Configuration .. VMD–146
Related Registers ... VMD–147
Interrupt Priority Ranking ... VMD–150

System Clock Generation ...VMD–151
Features and Functions ... VMD–153
Circuit Configuration .. VMD–154
Related Registers ... VMD–156
System Clock Operation Mode .. VMD–159

Sleep Function ...VMD–161
Related Registers ... VMD–162
Standby Operation Status .. VMD–163
HALT Mode ... VMD–164

Hardware Reset Function ..VMD–165
External Reset Pin Function ... VMD–166
Hardware Status During a Reset ... VMD–167

Programs in ROM . VMD–171

System Programs ..VMD–172
OS Programs ..VMD–173
Headers ..VMD–174

Memory Space . VMD–175

System BIOS Functions. VMD–177

Subroutine Call Procedure. VMD–179

Processing Contents of Labels ..VMD–180
Interaction Between System BIOS and Application ..VMD–181

Application Shutdown Procedure When MODE Button is Pressed. VMD–183

Processing Contents of Labels ..VMD–184
Interaction Between System BIOS and Application ..VMD–185

VMU Initialization . VMD–187

Subroutine Reference . VMD–189

Flash Memory Access Functions ..VMD–189
Subroutine Use Precautions ..VMD–190
Flash memory routines ..VMD–192

fm_prd_ex(ORG 0120H) Flash memory page data read ..VMD–192
fm_wrt_ex(ORG 0100H) Flash memory data write ..VMD–194
fm_vrf_ex(ORG 0110H) Flash memory page data verify ...VMD–195

Clock Function ..VMD–198
timer_ex Clock count-up timer ..VMD–198

Low Battery Voltage Auto Detection . VMD–199

List of Defined Variables . VMD–201

Sound Output Method . VMD–203

Timer 1 Outline ...VMD–203
Timer 1 Block Configuration ..VMD–203
Related Registers ..VMD–204
Mode Setting ...VMD–205

8 Bit Counter Mode ..VMD–206
Output Waveform and Parameter Setting ..VMD–206
8 Bit Counter Mode Setting ...VMD–207
Frequency Characteristics ...VMD–208
Output Frequency Table ...VMD–208

Sample Program. VMD–211

Variable Bit Length Pulse Generator . VMD–213

Symbol Table . VMD–217

VMU Mode Selection . VMD–221

Calculation of Battery Life . VMD–223

Methods for Enhancing Battery Life ..VMD–223
Oscillator Circuit and Current Consumption ...VMD–224
Oscillation Control Register ..VMD–224

System Clock Division Ratio Setting ...VMD–224
Oscillator Circuit Selection ...VMD–224
Oscillator Circuit Start/Stop ...VMD–225

Calculating Battery Life ...VMD–225
Calculating Continuous Operating Time ...VMD–225
Calculating Battery Life in Days ..VMD–226

Serial Communication Precautions . VMD–229

Serial Communication Timing Chart ...VMD–229
Measures to Ensure Problem-Free Serial Transfer ...VMD–230

Mask All Interrupts ..VMD–230
Set Maximum Send Wait Time ...VMD–231

Visual Memory Unit (VMU) Programing ManualVMC–i

Table of Contents . VMC–iii

Setup. VMC–1

Executing the Setup Program ...VMC–1
Post-Installation Overview ..VMC–7

Setting Environment Variables . VMC–9

Environment Variables for the Development Tools ..VMC–9
Environment Variable Settings ...VMC–10

Specifying Files for Assembly . VMC–11

Specifying File Names ..VMC–11
Specifying Parameters on the Command Line ...VMC–12
Specifying Parameters at the Prompts ...VMC–13

Option Switches. VMC–15

Environment Variables and Reserved Word File . VMC–17

Environment Variables ..VMC–18
Reserved Word File ..VMC–19

Errors . VMC–21

Warnings ..VMC–22
Non-Fatal Errors ...VMC–25
Fatal Errors ...VMC–31

Listing Format . VMC–35

Specifying Files for Linking . VMC–39

Specifying File Names ..VMC–40
Specifying Parameters on the Command Line ...VMC–41
Specifying Parameters at the Prompts ...VMC–42
Files Referenced During Linking ..VMC–44

Option Switches. VMC–45

Object Alignment . VMC–49

-A option .. VMC–50
-A -F options .. VMC–51
-A -O options ... VMC–52
-A -R options ... VMC–53

Errors . VMC–55

Fatal Errors .. VMC–55
Non-Fatal Errors ... VMC–56

Starting the Program . VMC–57

Specifying File Names .. VMC–57
Specifying Parameters on the Command Line ... VMC–58

Option ..VMC–59
Examples of Command Line Execution ..VMC–59

Operation with the Prompts ... VMC–60
Prompt Line Extension ..VMC–60
Default Responses ..VMC–60

Error Messages . VMC–61

Cross-Reference . VMC–63

Starting the Program . VMC–65

Specifying File Names .. VMC–66
Specifying Parameters .. VMC–67
Option Specification ... VMC–68

Error Messages . VMC–69

Fatal Errors .. VMC–69

Starting the Program . VMC–71

Specifying File Names .. VMC–71
Specifying Parameters .. VMC–72

Error Messages . VMC–73

Fatal Errors .. VMC–73

Overview of MAKE. VMC–75

Running MAKE ...VMC–76
Build Priority Sequence ...VMC–76
Command Line Options ..VMC–76

Makefile Syntax ...VMC–78
Generation Rules ..VMC–78
Macros ..VMC–80
Directives ...VMC–81

Implicit Rules ...VMC–82
Makerule file ...VMC–82

Assembler Syntax . VMC–85

Statements ..VMC–85
Label and Symbol Names ..VMC–86
Comments ..VMC–86
Operators ...VMC–86
Numeric Constants ...VMC–87
Character Constants ...VMC–88
Character String Constants ..VMC–89
Special Symbols ...VMC–89

Assembler Pseudoinstructions . VMC–91

LC86K Instruction Summary . VMC–147

Instruction Summary ...VMC–147
Arithmetic Instructions ..VMC–147
Logical Instructions ..VMC–148
Data Transfer Instructions ..VMC–148
Jump Instruction ...VMC–148
Conditional Branch Instructions ..VMC–149
Subroutine Instruction ...VMC–149
Bit Manipulation Instructions ...VMC–149
Other Instructions ..VMC–149
Macro Instruction ...VMC–149
Addressing ..VMC–149
Program Memory Addressing ..VMC–150
RAM and Special Function Register (SFR) Addressing ..VMC–152

Instruction Set Reference . VMC–155

Arithmetic Instructions ..VMC–156
Logical Instructions ..VMC–173
Data Transfer Instructions ..VMC–186

Jump Instructions ...VMC–197
Conditional Branch Instructions ...VMC–201
Subroutine Instructions ..VMC–214
Bit Manipulation Instructions ...VMC–219
Miscellaneous Instruction ..VMC–222
Macro Instruction ..VMC–223

LC86K Instruction Set Summary . VMC–225

Assembler Pseudoinstructions . VMC–227

Visual Memory Unit (VMU) VMU-BIOS SpecificationsVME–i

VMU-BIOS Specifications . VME–1

Outline ...VME–1
VMU Outline ..VME–2

System-BIOS Outline ... VME–2
Memory Space ..VME–3
System BIOS Functions ...VME–5
System BIOS Data and Memory Allocation ...VME–6

Program Layout .. VME–6
Subroutine Call Flow ... VME–7
Returning From User Program to Mode Selection Screen ... VME–9
VMU Initialization ... VME–10

Subroutine Description ...VME–12
Flash Memory Access Functions .. VME–12
Clock Function .. VME–19

Automatic low battery detection function ...VME–20
Automatic low battery detection flag .. VME–20

Visual Memory Unit (VMU)
Sound Development Specifications. VMA–i

Table of Contents . VMA–iii

VMU Sound Development Specifications . VMA–1

VMU Sound Output Hardware Outline ...VMA–1
Sound Output Principle ...VMA–2

Timer 1 Outline .. VMA–2
8-Bit Counter Mode ... VMA–5
Table of Available Output Frequencies ... VMA–8

Sample Program ..VMA–13

Visual Memory Unit (VMU) Simulator Manual VMB–i

Table of Contents . VMB–iii

Overview . VMB–1

Features ...VMB–1
Visual Memory Simulator Operating Environment ...VMB–2
Checking Operation on Actual Visual Memory Hardware ..VMB–3
Notes Concerning Startup for the First Time ..VMB–4

Implemented Devices . VMB–5

Virtual CPU ... VMB–5
Memory .. VMB–6

LCD Controller (LCDC) ..VMB–6
Serial Interface (SIO) ..VMB–7
Timer ..VMB–7
Interrupt Controller ...VMB–7
I/O Ports ..VMB–7

External Input Devices ... VMB–8

Basic Operation . VMB–9

Starting Up the Visual Memory Simulator ... VMB–9
Loading the System BIOS .. VMB–10
Loading and Executing Applications .. VMB–11
MAP File .. VMB–12
Drag & Drop .. VMB–12

Descriptions of Windows and Panels . VMB–13

Main Window .. VMB–14
Menus ...VMB–14
Toolbar ...VMB–17
CPU Register Display Function ..VMB–18
Execution Control ...VMB–19
Disassembly Function ..VMB–20
Visual Memory Image ...VMB–21
Status Lamp ...VMB–21
Changing the Size of the Main Window ...VMB–22
System Console ...VMB–22

Memory Control Window ... VMB–23
RAM#0, RAM#1 ..VMB–24
FLASH#0 ..VMB–25
XRAM ...VMB–26
SFR ..VMB–27
VTRBF ..VMB–28

Break Control Window .. VMB–29
Break by Breakpoint Address Comparison ..VMB–29
Display When an Interrupt Is Received ..VMB–32
Access Reference Monitor ...VMB–33

Special Function Register Control Window .. VMB–34
CPU Control ..VMB–35
LCD ..VMB–35
INT Control ...VMB–36
Timer 0 ...VMB–36
Timer 1 ...VMB–37
SIO ..VMB–37
PORT1 ..VMB–38
PORT3/7 ..VMB–38
External INT ..VMB–39
VMU Special ..VMB–40
Base Timer ...VMB–40

LCD Snapshot Window ..VMB–41

Description of Tool Bar Buttons ... VMB–41
Display by STAD Checkbox ... VMB–42
Menus ... VMB–42

Network Monitor Window ..VMB–43
Trace Panel ..VMB–45
Hexadecimal Input Pad ..VMB–47
Environment Settings Window ...VMB–49

Settings ... VMB–49
Work Settings .. VMB–51

Networking . VMB–55

Related Files . VMB–57

System Files ..VMB–58
Application Files ..VMB–59

Warning Messages . VMB–61

Visual Memory Unit (VMU)
Tutorial Manual

Table of Contents
Application Development Procedure . VMT–1
Writing Source Code ... VMT–1
Correcting GHEAD.ASM ... VMT–2
Assembly Without Using MAKE .. VMT–2

Assembly .. VMT–3
Linking ... VMT–3
Converting an EVA File Into a HEX File ... VMT–4
Converting a HEX File to a Binary File .. VMT–5
Creating a MAKE File .. VMT–5

Creating the Information Fork .. VMT–7
Transferring the Program to Visual Memory ... VMT–7

Interfacing between Visual Memory and Dreamcast . VMT–9
Names of Elements in the Startup Screen .. VMT–10

Memory Selection Screen ... VMT–10
File Management Screen .. VMT–11

Creating a Volume Icon .. VMT–13
Creating an Animated Icon .. VMT–15

Three File Structures ... VMT–15
Information Fork ... VMT–16
Visual Comment Data Structure ... VMT–20
Game Name Sorting Rules .. VMT–21

Memory Card Utility. VMT–23

Memory Card Utility Preparation and Startup ...VMT–23
Requirements for Transfer ...VMT–23
Software Preparation ..VMT–24
Memory Card Utility Startup ..VMT–26

Memory Card Utility Operation ..VMT–27
Main Menu ...VMT–27
Memory Selection Menu ..VMT–27
Command Selection Menu ...VMT–28
File Operations Menu ...VMT–31

Initializing Visual Memory ..VMT–33
Transferring Files from a PC to Visual Memory ...VMT–34
LCD Pattern Display ...VMT–40
LCD Character Pattern Display ...VMT–44
Counter That Uses Base Timer Interrupts ..VMT–50
Button Press Detection ..VMT–58
Using the PWM Sound Source ...VMT–64
Interrupt Using Timer 0 ..VMT–66
Serial Communications (Sending Side) ..VMT–72
Serial Communications (Receiving Side) ...VMT–80
General-purpose Serial Driver ...VMT–88
Reading and Writing Flash Memory ..VMT–102
Low Battery Detection and Saving Data ..VMT–111

Application
Development Procedure
This chapter explains the application development procedure, from coding the program to checking the program
on an actual machine. This section assumes that the application specifications have already been established.

Writing Source Code

The following declarations must be made at the start of the program:

chip LC868700

World external

Public main

Extern _game_end

Because all Visual Memory applications will be stored in flash memory, "external" must be declared in the
"world" statement.

When an application is called from system BIOS, address 0000H in flash memory is called. Because "jump

main" is written in 0000H by GHEAD.ASM, the application provides the label "main" for entry into game

mode. Because "main" is referenced from GHEAD.ASM, the "public" declaration is used.

Conversely, when an application ends, it jumps to "_game_end" in GHEAD.ASM, so the "extern"

declaration is used to indicate that this label is external to the application.

When an application calls a flash memory-related BIOS or a clock-related BIOS, the "extern" declaration is

used to indicate that "fm_wrt_ex ", "fm_vrf_ex ", "fm_prd_ex ", etc., are external programs.

Next, the structure of the indirect address register for the data segment (DSEG) is defined. The entire data

segment is expanded in RAM. Because addresses 0000 to 000FH in RAM are indirect address registers, 16

bytes of RAM should be allocated for these registers, whether or not the application will use the indirect

address registers. The area in RAM that can be used by an application starts from address 0010H.

Reference: For details on indirect address registers, refer to the “Visual Memory Hardware Manual.”
VMT-1

 Application Development Procedure

Start the code segment (CSEG) from an address higher than 0280H (org 280H). GHEAD.ASM uses 0000H to 01FFH,
and the information fork uses 0200H to 027FH (minimum).

GHEAD.ASM contains interrupt vector definitions, and BIOS cal and return destinations. The information fork data
such as the application name and icon. The size of the information fork is variable because of choices that the
designer can make: the icon may or may not be animated, or one application's icon may be larger than another's.

If the information fork image is pre-determined, add the size of the information fork image to 0200H and start the
program from that address.

Reference: For details on the information fork, refer to Chapter 2, “Interfacing between Visual Memory
and Dreamcast.”

Correcting GHEAD.ASM

Once you have written the application source code, it is necessary to correct GHEAD.ASM.

If the application uses interrupts, describe the vector table for the interrupts that are to be used in GHEAD.ASM.

Even if interrupts are not to be used, it is still necessary to define an interrupt vector table. Also write the interrupt
handler so that it does nothing except execute "RETI".

Because the program jumps to the start (0000H) of GHEAD.ASM if the user selects game mode, a jump instruction to
the main routine of the game should be written at the start of GHEAD.ASM.

The processing that is to be performed for BIOS calls is described starting from address 100H. Do not change this
processing. Because the BIOS in ROM specifies addresses directly and then returns control to flash memory, BIOS
calls will not be made correctly if addresses change by even one byte.

When writing to flash memory in particular, it is necessary to use 1/6 RC for the system clock. Make this change
within the application program by calling fm_wrt_ex , fm_vrf_ex , fm_prd_ex , and then changing over to
crystal oscillation when control returns to the main program.

Note: When loading from flash memory, it does not matter if 1/6 or 1/12 RC is used.

Also be careful not to change the "org" instruction that specifies each BIOS start address.

Assembly Without Using MAKE

This section explains how to assemble and link the source code, and then build a file in a format that can be actually
executed in Visual Memory.

Caution: The Assembler and Linker use EMS. Before starting, display the MS-DOS prompt properties and enable
EMS memory usage in the "EMS Memory" group under the "Memory" tab.
EMS memory cannot be used when EMM386.EXE is embedded in CONFIG.SYS and the NOEMS
option is specified, so the NOEMS option must be removed.
VMT-2

 Application Development Procedure
Assembly

Execute the "M86K" command from the MS-DOS command prompt to assemble the source code.

For example, if the source code file name is "TEST.ASM", set the current drive and the current directory to the
directory where "TEST.ASM" resides, and then perform the assembly process by executing the following command:

C>M86K TEST.ASM

SANYO (R) LC86K series Macro Assembler Version 4.0K

Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.

Pass 1

Source file: TEST

Chip name: LC868700

ROM size: 60K bytes

RAM size: 512 bytes

XRAM size: 196 bytes

Pass 2

When assembly is completed, an object file with the extension ".OBJ" is created.

Assembling GHEAD.ASM in the same manner creates GHEAD.OBJ.

If an error message similar to the following appears during the assembly process, a problem exists in the line
indicated by the line number in the message.

Pass 1

TEST.ASM(93): move #080h,b

** Error, syntax error near #

0 warning(s) and 1 error(s) were detected. Further execution aborted.

Correct the source code so that no warnings or errors are generated.

Reference: For details on the M86K assembler's warning messages and error messages, refer to “Visual Memory
Programmer's Manual.”

Caution: Except when incorporating source code equivalent to GHEAD.ASM into your own source code,
GHEAD.OBJ and the user program object file are both required. Note that interrupt vectors, interrupt
service routines, BIOS call programs, etc., are described in GHEAD.ASM, and are placed in addresses
below the user program by the Linker that is executed next.

Linking

After preparing an object file (created by the Assembler) and a GDUMMY.OBJ file that indicates the addresses in
internal ROM where BIOS is written, use the Linker to create an EVA-format file.

Note: An EVA-format file is a file that uses special debugging hardware. Because the Visual Memory Simulator
is used in the development of applications for Visual Memory, think of the EVA file as a temporary file.
VMT-3

Visual Memory Unit (VMU) Tutorial Revision
Before executing the linker, make a note of the GDUMMY.OBJ path. Then input the following command line to link
each of the object files.

D>L86K GHEAD.OBJ IFORK.OBJ TEST.OBJ -C=200 C:\VM_SDK\LC86K\OBJ\GDUMMY.OBJ,

TEST.EVA,,,

SANYO (R) LC86K series Linkage Loader Version 6.00c

Copyright (c) SANYO Electric Co., Ltd. 1989-1997. All right reserved.

Pass 1 ...

 Pass 2 ...

 Pass 3 ...

Link process complete !!

 TEST.EVA created

The option "-C=200" specifies the address in flash memory where the user program that is specified immediately
afterwards is to be placed.

If an error message is displayed, review GHEAD.ASM and the user program. Check the labels that are used for BIOS
calls in particular.

Converting an EVA File Into a HEX File

The Linker combines all of the object files into a single file with the ".EVA" extension. The next step is to convert this
file into a file that can be loaded into Visual Memory or the Visual Memory Simulator. Input the following
command line.

D>E2H86K TEST.EVA

SANYO LC86000 Series EVA-file to HEX-file generator V1.21A

Copyright (C) SANYO Electric Co.,Ltd. 1992-1997

EVA file name: TEST.EVA

ROM data packed: FF(hex)

Chip name: LC868716

All ROM(64KB) block records: 03875

All ROM(64KB) block records: 04096
Module name: GHEAD External CSEG(In) 0000 – 0002 records: 00001
Module name: External CSEG(In) 0003 – 0004 records: 00001
Module name: External CSEG(In) 000B - 000C records: 00001
Module name: External CSEG(In) 0013 – 0014 records: 00001
Module name: External CSEG(In) 001B - 001C records: 00001
Module name: External CSEG(In) 0023 – 0024 records: 00001
Module name: External CSEG(In) 002B - 002C records: 00001
Module name: External CSEG(In) 0033 – 0034 records: 00001
Module name: External CSEG(In) 003B - 003C records: 00001
Module name: External CSEG(In) 0043 – 0044 records: 00001
Module name: External CSEG(In) 004B – 0057 records: 00002
Module name: External CSEG(In) 0100 – 0105 records: 00001
Module name: External CSEG(In) 0110 – 0115 records: 00001
Module name: External CSEG(In) 0120 – 0125 records: 00001
Module name: External CSEG(In) 0130 - 013B records: 00001
Module name: External CSEG(In) 01F0 - 01F4 records: 00001
Module name: IFORK External CSEG(In) 01F5 – 0474 records: 00041
Module name: TEST External CSEG(In) 0475 - 051C records: 00011

There are no option switches.
VMT-4

 Application Development Procedure
Executing this command results in the creation of a file with the ".H00" extension and a file with the
".HEX" extension.

Caution: Normally, only the H00 file is used.

Once the H00 file has been created, an operation check is performed in the Visual Memory Simulator. However,
because the Visual Memory Simulator does not have the same clock as the actual machine, a timing check is
not appropriate.

Divide the debugging phase so that the program logic is checked in the simulator and the timing and speed are
checked on the actual machine.

Reference: For details on the Visual Memory Simulator, refer to the “Visual Memory Simulator Guide.”

Converting a HEX File to a Binary File

This procedure uses H2BIN.EXE to convert an H00 file that was created by the E2H86K into a binary file
(extension ".BIN").

Input the following command line.
H2BIN TEST.H00 TEST.BIN

There are no option switches. The second parameter "TEST.BIN " may be omitted. If it is omitted, the extension
".BIN" is automatically used.

This procedure creates a file that can be loaded into Visual Memory on the actual machine.

Creating a MAKE File

If a MAKE file is created for the MAKE command, it is possible to perform the assembly, linking, and file format
conversion processes through batch processing.

If the dependence information, such as which files to insert in which commands and which files are output, is
described in the MAKE file and the MAKE command is executed, the command compares the time stamps of the
files that are to be inserted and are to be output, and then assembles and links only those files that have
been updated.

For details on the MAKE command, refer to the “Visual Memory Programmer’s Manual.”

Caution: Because the MAKE command is provided for a variety of development environments, when the
computer that you are using has multiple development environments installed, either change the
command retrieval path (the environment variable "PATH") or change the file name of the
MAKE command.

Extension Description

H00 This file can be loaded into the Visual Memory Simulator. The loading time is
reduced because only the code itself is saved.

HEX The 64K-byte image of bank 0 in flash memory is stored in this file. No matter
how small the program is, a 64K file is created. Whatever portion that is not
filled by the program is filled with "00H". This file can be loaded into the Visual
Memory Simulator, but it will not function properly.
VMT-5

Visual Memory Unit (VMU) Tutorial Revision
The following file is an example of the type of MAKE file to create in order to MAKE the series of procedures
described up to this point. For this example, we will assume that file name is "TEST.MAK".

TARGET = test

OBJECTS = ifork.obj test.obj

HEADOBJ = ghead.obj

SYSOBJ = $(TOOL86)\obj\gdummy.obj

.asm.obj:

 m86k $*

$(TARGET).eva: $(HEADOBJ) $(OBJECTS)

 l86k $(HEADOBJ) $(SYSOBJ) $(OBJECTS),$(TARGET).eva,,,

$(TARGET).h00: $(TARGET).eva

 e2h86k $(TARGET)

$(TARGET).hex: $(TARGET).h00

 h2bin $(TARGET).h00

This MAKE file is built by specifying MAKE as shown below. This assembles and builds the source files that have
been updated.

Caution: Specify the "/F" option when executing the MAKE file. Input the command line in this format: "MAKE
/F <MAKE file name>".

D>MAKE /F TEST.MAK

SANYO LC86000 Series MAKE Utility Version 1.00A

Copyright (C) SANYO Electric Co.,Ltd. 1993-1994 All rights reserved.

m86k GHEAD

SANYO (R) LC86K series Macro Assembler Version 4.0K

Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.

Pass 1

Source file: GHEAD

Chip name: LC868700

ROM size: 60K bytes

RAM size: 512 bytes

XRAM size: 196 bytes

Pass 2

m86k IFORK

SANYO (R) LC86K series Macro Assembler Version 4.0K

Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.

(Subsequently, the Linker, E2H86K, and then H2BIN are executed and a binary file is created.)
VMT-6

 Application Development Procedure
Creating the Information Fork

In the sample in the Visual Memory SDK, IFORK.ASM is created and then a binary file is created. It is also possible
to use a binary editor, etc., to fill the information fork of the binary file that was produced.

The information fork is filled with the icons and application names that are displayed on the Dreamcast file
management screen, the comments that are displayed in Visual Memory file mode, the game names (sort keys), and
comments that use larger icons.

Of these, the required items are VM comment data, GUI comment data, game names, the number of icons, visual
types, and icon information (for a minimum of one icon).

Refer to chapter on, “Interfacing between Visual Memory and Dreamcast,” while editing the information fork.

Transferring the Program to Visual Memory

Once editing of the information fork is complete, transfer the file to Visual Memory. The “Memory Card Utility”
that is provided in the Visual Memory SDK is used to transfer the program.

Caution: The Memory Card Utility is provided in ELF file format as a Dev.Box application. It is not a program
for general-purpose personal computers.

The following hardware and software is needed in order to transfer a program to Visual Memory:

1) An RS-232C cross cable

2) A communications program that runs under Windows

3) A debugger, such as CodeScape

4) GD Workshop

5) Dev.Box (Set 5.2X or later)

Note that items 1) and 2) are not provided in our SDK, and must be obtained separately.

Reference: For details on the transfer method, refer to chapter on, “Memory Card Utility.”
VMT-7

Visual Memory Unit (VMU) Tutorial Revision
VMT-8

Interfacing between Visual
Memory and Dreamcast
This chapter describes the interface between the Dreamcast startup screen with Visual Memory. This interface is
installed in boot ROM, and is deeply inter-related with the menu screen that is displayed when Dreamcast is
started up.

Following the explanation of the menu screen is a description of the data structure of the file that implements that
menu screen.

Caution: The descriptions in this manual are based on boot ROM version 1.001. Some functions or names may be
different in future upgrades.

Note that the version number is not displayed in the upper right corner on the actual machine.
VMT-9

 Interfacing between Visual Memory and Dreamcast
Names of Elements in the Startup Screen

After the opening animation that is displayed when the Dreamcast power is turned on, the screen shown on the
previous page is displayed. This screen is called the "Main Menu." The Main Menu is controlled and administered
by the boot ROM in Dreamcast.

Memory Selection Screen

If a file for which Visual Memory is displayed is selected from the Main Menu, the following screen appears.

This screen is called the "Memory Selection Screen." As of November 30, 1998, the term "memory" refers to "Visual
Memory," but other storage media may be available in the future.

When there is more than one controller or memory module connected to Dreamcast or a controller, a list of these
devices is displayed.

Caution: Devices other than storage media, such as a voice recognition device, are not displayed.

When you look at the list, you will notice some icons that have an image of a monster in them, some that have an
image of an animal, and others that are empty. Unique icons can be assigned to each memory module. (One icon
per module.)

There are two types of icons: those that the end user uniquely assigns, and those that are displayed by writing a
special file in Visual Memory. The icon in the lower center indicates memory that has not been initialized.

Label Icons

Those icons that the end user uniquely assigns are called "label icons." when memory has been initialized,
the user can freely assign any of the 124 icons stored in boot ROM. In the case of Visual Memory, the same
icon that is displayed on the screen is also displayed on the LCD on the Visual Memory unit.

Note that when both a label icon and a volume icon (explained later) are assigned to one memory module,
the volume icon takes precedence and is displayed.

Reference: The pattern data for the icons in boot ROM can be read by using the boot ROM font function. For details
on the boot ROM font function, refer to the “Sega Library Manual Vol. 2.” For a list of labels, refer to the
Appendix, “List of Label Icons.”

Volume Icons

The monster icons are called "volume icons." Volume icons can be implemented by storing a file called
"ICONDATA_VMS" in Visual Memory. Accordingly, the end user cannot assign volume icons.

These icons are 32 x 32 graphic images that use 16 colors out of a possible 65,536 (ARGB4444). In the case
of Visual Memory, when the unit is connected to a Dreamcast controller, the same graphic as the volume
icon that is displayed on the screen is displayed on the LCD of the Visual Memory unit in monochrome. In
order to display volume icons, the file "ICONDATA_VMU" must be prepared and the Memory Card Utility
must be used to transfer that file into memory.

Reference: For details on how to transfer the volume icon file, refer to the Chapter on, “Memory Card Utility.”
VMT-10

 Interfacing between Visual Memory and Dreamcast
File Management Screen

Once a memory module is selected from the Memory Selection screen, the following screen is displayed. This screen
is called the “File Management Screen.”

This screen displays a list of the applications that are stored in the memory module that was selected, and a list of
the Dreamcast game save data.

When a file is selected, detailed information on that file is displayed on the bottom portion of the screen.

� Body Color

A single color can be assigned to a single memory module. This color can be specified when initializing the
memory. The end user can also change the color. Note that because the color information is stored within
Visual Memory, it cannot be changed through Dreamcast in real time.

� Animated Icon

The 32 x 32 icons can be displayed with a graphic that uses 16 colors out of a possible 65,536. Data for up
to three patterns can be used to display animation.

One icon represents one file. When an icon is selected, the border flashes yellow and detailed information
on the selected file is displayed on the bottom portion of the screen. Application files are displayed with
green borders and data files are displayed with black borders.

Note: When multiple files are selected by using the X button and the Y button, the GUI comments and the total
number of blocks for all of the selected files are displayed.

� GUI Comments

GUI comments can be displayed using normal-width letters numbers, symbols, and kana, and double-
width characters. The character string length is 32 bytes. The normal-width characters that can be displayed
are ASCII codes 20H to 7EH and 0A1H to 0DFH. The double-width characters are the Shift JIS codes.

Note: IS Level 2 characters are also supported. JIS X 0208-1983 is supported, so musical notes and other symbols
can also be displayed.
VMT-11

Visual Memory Unit (VMU) Tutorial Revision
� File Names

A list of the files that are stored in that memory module is displayed. The characters that are not shaded in
the following table can be used in file names.

Characters That Can Be Used in File Names

Note: Lower-case letters may not be used.
Although a "-" can be input in the Memory Card Utility, do not use this character in file names. Such an
application will not be in conformance with the software creation standards.

� VM Comments

These are comments that are displayed in Visual Memory file mode. In addition to the characters that can
be used in file names, lower-case letters can also be used in VM commands.

� Save Time

The date and time at which a file was saved are displayed. This data cannot be changed from within
an application.

� Number of Blocks Used

The file size is shown in blocks. Since one block is 512 bytes, in the case of Visual Memory (HKT-7000) a
maximum of 200 blocks can be used for data storage, and a maximum of 128 blocks can be used for the
game. This data cannot be changed from within an application.
VMT-12

 Interfacing between Visual Memory and Dreamcast
� Data Type

This indicates whether the file in question is an application or Dreamcast save data. This data cannot be
changed from within an application.

Caution: Changes are possible only when the Memory Card Utility was used.

� Visual Comments

A 72 x 56 graphic that uses up to 65,536 colors (ARGB4444) can be displayed. It is also possible to not
display visual comments.

Creating a Volume Icon

In order to display a volume icon on the Memory Selection Screen, create a file named ICONDATA.VMU with the file
specifications described below.

Reference: In the Visual Memory SDK, samples are contained in the "Volumeicon" folder. The assembly source
code is also provided for reference.

VM Comment Data

This is filled with a 16-byte comment. This is displayed when ICONDATA.VMU is selected on the Visual
Memory File Management Screen or the Dreamcast File Management Screen.

Comments are displayed in Visual Memory file mode. See “File Management Screen” on page 11.for the
characters that can be used in a VMU comment. Fill any unused bytes with the space character (20H).
VMT-13

Visual Memory Unit (VMU) Tutorial Revision
Monochrome Icon Data Start Address

This specifies the starting address of pattern data for a monochrome icon as an offset address from the start
of the file.

Normally, this data is 00000020H. ("20 00 00 00" in a memory dump.)

Caution: Specify the data in Little Endian format. For details, see appendix.

Color Icon Data Start Address

This specifies the starting address of palette data for a color icon as an offset address from the start of the file.

Normally, this data is 000000A0H. ("A0 00 00 00" in a memory dump.)

Caution: Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix,
"Little Endian Format."
Note that this offset address points to the starting address of the palette data for color icons, not the
pattern data.

Reserved Area

This area is reserved for future expansion. Fill this eight-byte area with "00".

Monochrome Icon Pattern Data

This data specifies the 32 x 32-dot monochrome volume icon that is displayed on the LCD of the Visual
Memory unit while the Memory Selection Screen or the File Management Screen is displayed.

This data is pattern data, starting from the upper right of the LCD and heading towards the lower left. One
byte contains the pattern data for eight dots. The MSB of the data is the left-hand bit, and the LSB is the
right-hand bit. Setting a bit to "1" causes the corresponding dot to be displayed as black (blue) on the LCD.

One line (32 dots) requires four bytes of data, so the 32-dot x 32-line pattern requires 128 bytes of
pattern data.

Color Icon Palette Data

Color icons can be displayed with a 16-color graphic. Write the 16-color palette in this area with ARGB4444
palette data. Each palette data entry consists of two bytes.

A value from "0" to "0FH" can be specified for each of A, R, G, and B. Note that a value of "0" for A makes
the color transparent, and a value of "0FH" makes the color opaque.
VMT-14

 Interfacing between Visual Memory and Dreamcast
Color Icon Pattern Data

This is the pattern data for the icon that is displayed on the Memory Selection Screen or the File
Management Screen.

This data is specified with palette numbers, starting from the upper right and heading towards the lower
left. Four bits of data specify the palette number for one dot. The upper four bits are the palette number for
the right-hand dot, and the lower four bits are the palette number for the left-hand dot.

One line consists of 32 dots, which requires 16 bytes of data, so the 32-dot x 32-line pattern requires 512
bytes of pattern data.

Creating an Animated Icon

The data for animated icons and GUI comments that are displayed on the File Management Screen must be
included in the files themselves. Because there are three different file structures, this section explains the file types
and the file structures.

Three File Structures

There are three files stored in memory, and each has its own file structure.

ICONDATA_VMS Format

This is the structure that was described in the previous section. This file does not have an information fork.

Note: For details, refer to ”Section , ”Creating a Volume Icon”

Visual Memory Application Format

Files that can be executed in Visual Memory game mode must have the following file structure:

Address Contents

0000 Visual Memory header (equivalent to GHEAD.ASM)

0200 Information fork

xxxx Application code
VMT-15

Visual Memory Unit (VMU) Tutorial Revision
Data File Format

A file that stores game data for a Dreamcast application must have the following file structure:

Information Fork

Files other than the "ICONDATA_VMU" file have a section called an "information fork." This information is the colored
portion of a file dump displayed by the Memory Card Utility. All detailed file information is contained in this
information fork.

Caution: The data area for an animated icon is not displayed in color.

Note: Refer to the Visual Memory SDK sample “total”, since it includes an information fork for an animated icon
and visual comments.

The structure of the information fork is described below. Note that the addresses in the table are given as offset
addresses from the start of the information fork.

VM Comment Data

This contains a 16-byte comment. This comment is displayed when the file is selected on the Visual Memory
File Management Screen or the Dreamcast File Management Screen.

The comment is displayed in Visual Memory File Mode. The characters that are not shaded in the following
table can be used in VM comments. Note that any bytes that are not used should be filled with space
characters (20H).

Address Contents

0000 Information fork

0200 Game data
VMT-16

 Interfacing between Visual Memory and Dreamcast
Characters That Can Be Used in VM Comments

GUI Comment Data

This contains a 32-byte comment that is displayed on the File Management Screen. The comment is
displayed when the file is selected on the Dreamcast File Management Screen.

The normal-width characters that can be used are those that are not shaded in the following table. The
double-width characters are the Shift JIS codes; JIS Level 2 characters are also supported. JIS X 0208-1983 is
supported, so musical notes and other symbols can also be displayed.

Note that any bytes that are not used should be filled with space characters (20H).

Normal-width Characters That Can Be Used in GUI Comments
VMT-17

Visual Memory Unit (VMU) Tutorial Revision
Game Name (Sort Key)

File names are sorted when they are listed on the Dreamcast File Management Screen. This area is used for
the sort key. 16 bytes of data are specified for this area; fill this area with unique character code display data.

Reference: For details on assigning game names and the unique code table, refer to
Section , ”Game Name Sorting Rules”.

Number of Icons

For an animated icon, specify either "2" or "3" in this field. Specify "1" for a still-image (normal) icon.

The range of values that can be specified in this field is "1" to "3," so an animation pattern can consist of a
maximum of three patterns.

Caution: Do not specify a value outside the range of "1" to "3". Operation is not guaranteed if "0" or a value of "4"
or more is specified.

Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix, "Little
Endian Format."

Animation Speed

This specifies the speed at which the icons are switched when using an animated icon. The range of values
that can be specified is from "1" to "65,535." If the specified value is "n," the animation patterns are switched
every n/30 seconds.

For example, if "1" is specified, the animation patterns are switched every 1/30 of a second. If "30" is
specified, the animation patterns are switched every second. If "65,535" is specified, the animation patterns
are switched roughly every 36 minutes.

When there are three animation patterns, they are displayed in the sequence 1 → 2 → 3 → 1 →... If there are
two animation patterns, they are displayed alternately. If there is only one icon, this value is meaningless.

Caution: Do not specify a value of "0." Operation is not guaranteed if "0" is specified.

Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix, "Little
Endian Format."

Visual Type

This specifies the type of the visual comment that is displayed in the lower right corner of the Dreamcast
File Management Screen. A 72 x 56-dot graphic can be displayed for a visual comment.

Caution: Animation cannot be used for the visual comment. Also note that using a graphic with a lot of colors
will consume more memory.

Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix, "Little
Endian Format."
VMT-18

 Interfacing between Visual Memory and Dreamcast
The specifiable values and the corresponding visual comment types, number of bytes required, and number of
blocks used are listed in the following table.

Reference: For details on visual comments, refer to section 2.3.3, “Visual Comment Data Structure.”

CRC

Write the CRC (error checking/correction code) in this field.

When a file is saved by using the backup utility function "buMakeBackupFileImage ()" from the Sega
Library, the CRC is calculated automatically, and that value is written in this field. Note that the CRC
applies only to the data portion, and not to the information fork.

Caution: When a Visual Memory application is transferred by using the Memory Card Utility, there is no need
to write the CRC value or to perform a CRC check. In this case, fill this field with "00 00."
Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix,
"Little Endian Format."

Save Data Size

Specify the size of the data area (not including the information fork) in bytes.

Caution: When a Visual Memory application is transferred by using the Memory Card Utility, there is no need
to write the data size. In this case, fill this field with "00 00."

Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix, "Little
Endian Format."

Reserved Area

This area is reserved for future expansion. Fill this 20-byte area with "00."

Icon Palette Data

This specifies the 16 colors of the palette that is used for the icon pattern that follows.

Specify the palette data in ARGB4444 format. Specify two bytes for each color.

A value from "0" to "0FH" can be specified for each of A, R, G, and B. Note that a value of "0" for A makes
the color transparent, and a value of "0FH" makes the color opaque.

This palette also is used for icons #2 and #3. Note that it is not possible to change the palette for each icon.

Specified value Visual comment type Number of bytes required For data For palette Number of blocks used

0 None 0 0 0 0

1 Direct color (type A) 8064 8064 0 16

2 256-color graphic (type B) 4544 4032 512 9

3 16-color graphic (type C) 2048 2016 32 4
VMT-19

Visual Memory Unit (VMU) Tutorial Revision
Icon #n Pattern Data

This is the pattern data for a 32 x 32-dot, 16-color icon.

This data is specified with palette numbers, starting from the upper right and heading towards the lower
left. Four bits of data specify the palette number for one dot. The upper four bits are the palette number for
the right-hand dot, and the lower four bits are the palette number for the left-hand dot.

One line consists of 32 dots, which requires 16 bytes of data, so the 32-dot x 32-line pattern requires 512 bytes
of pattern data.

If animation is not to be used, create pattern data for one pattern. If animation is to be used, provide pattern
data for up to three patterns.

Visual Comment Data

When using a visual comment (when a value other than "0" was specified for the visual type), specify the
data in this field. The visual comment data is the data for a 72 x 56-dot graphic.

Visual Comment Data Structure

The visual types and the visual comment data structures are described below.

Direct Color (Type A)

This type has no palette data. Specify the palette data using ARGB4444 values. Two bytes of data are used
for one dot.

256-color Graphic (Type B)

This has palette data for 256 colors. The palette colors are specified in ARGB4444. The pattern data is
specified by specifying a palette number (one byte) for each dot.

16-color Graphic (Type C)

This has palette data for 16 colors. The palette colors are specified in ARGB4444.

The pattern data is specified with four bits for each dot. One byte contains data for two dots; the upper four
bits specify the palette number for the left-hand dot, and the lower four bits specify the palette number for
the right-hand dot.
VMT-20

 Interfacing between Visual Memory and Dreamcast
Game Name Sorting Rules

The game name (sort key) in the information fork is used to determine the order in which icons are displayed on
the Dreamcast File Management Screen. Therefore, it is necessary to create a game naming scheme that will cause
titles of games that are a series of sequels to be displayed in order.

Example:
“DreamPassport01” DreamPassport02”
VMT-21

Visual Memory Unit (VMU) Tutorial Revision
VMT-22

Memory Card Utility
This chapter explains how to use the Memory Card Utility program, which is used to transfer files between a PC
and the Dev.Box, and between the Dev.Box and Visual Memory.

Memory Card Utility Preparation and Startup

The Memory Card Utility is a Dreamcast program. A file called "mem_util.elf " is provided in the "utility" folder
in the folder where the Visual Memory SDK was installed. Executing this program requires a program that is
included in the Dreamcast SDK, such as CodeScape or GD Workshop.

Requirements for Transfer

The Memory Card Utility exchanges files with a PC through an RS-232C serial interface. Therefore, the following
items are required in addition to the SDK provided by Sega:

1) An RS-232C reverse cable

2) A communications program that runs under Windows

Item 1) can be purchased at most computer stores. The cable should be connected between the RS-232C interface on
the PC and the connector labeled "SERIAL" on the back of the Dev.Box.

RS-232C Serial Interface Connector on the Computer

SERIAL Connector on the Dev.Box

Caution: Be certain to use a reverse cable. A straight cable will not work.
VMT-23

 Memory Card Utility
“HyperTerminal,” which is provided with Windows, suffices for item 2). If you use other communications software,
it must support file transfers using the Xmodem protocol.

If you do not have HyperTerminal in your Windows environment, you can install it by following this procedure:

1) In the "Control Panel" window, double-click on the "Add/Remove Programs" icon.

2) Click the "Windows Setup" tab.

3) Double click "Communications".

4) Check the box next to "HyperTerminal."

HyperTerminal will now be installed in your system.

Note: The version of HyperTerminal that is provided with Windows 98 may not be able to recognize path and file
names correctly if they contain Kanji characters, or a file with corrupted characters may be stored in the next
higher folder. In this case, we recommend either not using file names that contain Kanji characters, or else
using another communications program.

Also prepare the following items, which are included in Sega's SDK:

1) Dev.Box (Set 5.2X or higher)

2) CodeScape

3) GD Workshop

4) Visual Memory

5) Dreamcast controller

For details on connections and setup, refer to the "Setup Guide." The explanations in this manual will assume that
setup has been completed properly.

Caution: The Memory Card Utility will not run on a Set 5.1X or earlier Dev.Box.

Software Preparation

Once the PC has been connected to the Dev.Box through the RS-232C interface and software setup has been
completed, it is necessary to set the properties, etc.

Communications Protocol Setup

This setting specifies which communications profile is to be used for transferring data between the PC and
the Dev.Box.

Make this setting in the application that you will be using. Refer to the manual for that application for
details on making that setting.

Caution: When the Memory Card Utility is started up, a startup message is displayed on the communications
screen. If this message is not displayed correctly, recheck the communications protocol and make sure
that the interface to which the cross cable is connected is selected.
VMT-24

 Memory Card Utility
When using HyperTerminal, set the dialog boxes as shown below.

Caution: Flow control must be set to "None." Do not specify "Xon/off" or hardware control.

If there are multiple RS-232C interfaces, select the interface to which the cross cable is connected.

GD Workshop Setup

At startup, the Memory Card Utility detects the door on the GD-ROM drive being closed (i.e., that a
GD-ROM is mounted). Therefore, it is necessary to create a dummy GD-ROM to emulate the door
being closed.

Reference: For details on the operation of GD Workshop, refer to the "GD Workshop Manual."

Create a dummy GD-ROM according to the procedure described below.

1) Start up GD Workshop.

2) Create a new project. For this example, we will create a project named "DoorClose."

3) Drag files suitable for three tracks.
Since emulation is not possible if the file is too small, copy an execution file for a large application, etc.
For example, drag the warning sound file that is supplied with the Dreamcast SDK to an audio track.

4) Save the project.

Confirm that the dummy GD-ROM was created properly.

5) Start up DA Checker and restart the Dev.Box in OS mode.

6) Start up GD Workshop, and load the project named "DoorClose."

7) Select "Sound" from the Dreamcast main menu.

8) In GD Workshop, change the GD-ROM to emulation mode.

9) Press the "Door Close/Open" button to close the GD-ROM door and mount the GD-ROM.
If the dummy GD-ROM has been created properly, the CD-ROM graphic will appear in the Sound
menu. If the "CD-ROM" is played back, the warning sound should be heard.

In the future, dummy GD-ROM emulation can be initiated simply by loading the project.

Setting Item Setting

Communications speed 38,400bps

Data length 8 bits

Stop bit length 1 bit

Parity checking None

Flow control None

Kanji codes Shift JIS codes
VMT-25

Visual Memory Unit (VMU) Tutorial Revision
Memory Card Utility Startup

This section describes how to execute the Memory Card Utility using CodeScape.

1) Before starting up the Memory Card Utility, start up GD Workshop.
Once GD Workshop has been started up, load the "DoorClose" project and start initialization. Press the
"Door Close/Open" button to mount the GD-ROM.

2) Start up the communications software. Confirm the settings for the communications protocol, the
interface number, etc.

3) Start up CodeScape.

4) Select "Load Program File..." from the "File" menu.

5) Click the [Browse] button and select "mem.util.elf".
The file "mem.util.elf" in the "utility" folder in the folder where the Visual Memory SDK was installed.

6) Select the "Load Binary Only" option.

7) Check the "Enable Reset Options" box and select the "Perform Hard Reset of Target" option.

8) Check the "Enable Run Options" box and select the "Run" option.

9) Once the dialog box settings have been made, click the [OK] button.

10) A graph bar is displayed; when it reaches 100%, the Memory Card Utility starts up. At this point, the
following startup message is displayed in the communications software window:

If the message does not appear or if it is corrupted, recheck the communications protocol settings.

The main menu of the Memory Card Utility appears on the Dev.Box display (an NTSC or VGA monitor).

Note: If "Session Save" is selected from the "File" menu at this point, the Memory Card utility can be started up
next time simply by opening the session.

11) Except for file transfers between a PC and the Dev.Box, subsequent Memory Card Utilities are
performed by the Dreamcast controller.
VMT-26

 Memory Card Utility
Memory Card Utility Operation

This section explains how to operate the Memory Card Utility. Note that the manual is based on version 0.64.1.

Operations are performed by using the direction button to select a menu item and then pressing the A button to
enter that selection. Pressing the B button cancels the operation and returns you to the previous menu. On some
menus, the functions of the buttons sometimes differ, or other buttons are used. In those cases, the functions of the
buttons will explained for each menu.

Main Menu

The following screen appears when the Memory Card Utility is started up. This is called the "Main Menu."

Menu items that are grayed out are items that have not been implemented and cannot be selected.

BACKUP UTILITY

If this menu item is selected, the Memory Selection Menu is displayed.

This menu is normally selected when transferring a file to Visual Memory, or to work with a file that has
already been saved.

SYSTEM CONFIG

This menu item is used to set Visual Memory's internal clock according to the Dev.Box's internal clock.

If this menu item is selected, the System Configuration Menu appears. If "MEMORY CARD TIME" is
selected, a confirmation message appears and the clocks in all of the Visual Memory units that are
connected are set according to the Dev.Box clock.

Note: Only "MEMORY CARD TIME" can be selected in the System Configuration Menu.

EXIT

This menu item terminates the Memory Card Utility and passes control to boot ROM. The Dreamcast
startup menu is displayed.

Memory Selection Menu

If "BACKUP UTILITY" is selected from the Main Menu, the Memory Selection Menu is displayed.

Caution: Visual Memory can be inserted or removed until this screen.
When inserting or removing Visual Memory, set the operation mode to a mode other than game mode.
If Visual Memory is connected while it is in game mode, the connection status will not be
recognized correctly.

This menu is used to select the memory unit that is to be the object of subsequent operations.

All of the memory units that are currently connected are displayed on this screen. "A," "B," "C," and "D" represent
the controller ports. Upper and lower tiers are displayed when multiple memory units are connected to
one controller.
VMT-27

Visual Memory Unit (VMU) Tutorial Revision
Note that in the case of a Visual Memory unit, a number that corresponds to the screen is displayed on the LCD.

After selecting the desired memory unit, press the A button. The Command Selection Screen now appears.

USED

Displays only the number of blocks already in use in the data storage area.

FREE

Displays the number of free blocks in the data storage area.

GAME

Indicates the usage status of the Visual Memory application area, in the format:

«number of blocks in use»/«maximum number of blocks that can be used by an application»

For example, a display of "128/128" indicates that an application has already been written in the Visual
Memory unit. A display of "0/128" indicates that no application has been written in the Visual
Memory unit.

Command Selection Menu

This menu is used to transfer data to Visual Memory and to manipulate files that have been written in memory.

The right side of the screen shows a list of files written in Visual Memory. If the entire list cannot be displayed on
one screen, make the file list active (move the s mark to the file list) and then press the right-hand direction button
to display the rest of the list.

INFO

If this menu item is selected, the following screen appears:

This screen displays information concerning the capacity of Visual Memory, body color information,
volume icon information, and information on the date and time of initialization.

RECV DATA

This menu item is used to transfer applications, volume icon files, and data files from a PC to a Dev.Box. If
"RECV DATA" is selected, the following screen appears:

On this screen, specify the type of file that is to be received from the PC. when receiving a Visual Memory
application, select "GAME BUFFER;" when receiving volume icon data, select "ICON BUFFER." When
receiving a data file, select "NORMAL BUFFER."

Reference: For details on data transfers from a PC to Visual Memory, refer to section, “File Transfers from a PC to
Visual Memory.”
VMT-28

 Memory Card Utility
SAVE DATA

This menu writes data that was previously received in the Dev.Box buffer into Visual Memory. If SAVE
DATA is selected, the following screen appears.

On this screen, specify which file (buffer data) to write in Visual Memory.

Caution: "GAME BUFFER" cannot be selected for Visual Memory in which an application has already been
written. Delete the application file first.

To write a Visual Memory application, select "GAME BUFFER;" to write volume icon data, select "ICON
BUFFER." To write a data file, select "NORMAL BUFFER."

DUPLICATE

This menu item makes an exact copy of the contents of the currently selected Visual Memory unit in
another Visual Memory unit. This function is equivalent to the disk copy functions in Windows and
MS-DOS.

If this menu item is selected, the following screen appears:

Once the destination Visual Memory unit has been selected, a confirmation message is displayed.

Caution: The DUPLICATE function copies the contents of flash memory exactly. All data previously saved in the
destination Visual Memory unit will be lost.

When you select "OK," the contents of memory are copied exactly.

DEFRAG

Selecting this menu item eliminates fragments (defrags) that develop when files are repeatedly saved
and deleted.

Caution: This menu item cannot be selected for a Visual Memory unit in which an application has been written.

Because the FAT system is used for file management in Visual Memory, the data storage area becomes
fragmented as files of different sizes are written and deleted over the course of time. This function
reorganizes the data so that the fragments are eliminated.

Note: Because applications have to be allocated in a continuous area in memory, execute the DEFRAG function
before transferring an application into Visual Memory.

If an application cannot be stored even though there is sufficient space, it is likely that fragmentation is the
culprit. Execute the DEFRAG function to create continuous free space.

If "DEFRAG" is selected, a confirmation message appears and then the defragmentation processing
is performed.
VMT-29

Visual Memory Unit (VMU) Tutorial Revision
FORMAT

If this menu item is selected, the following screen appears and the selected Visual Memory unit can
be initialized.

This screen is used to specify the body color and label icon, to set the date and time of initialization, etc.
After making all of the necessary settings, a confirmation message appears; selecting "OK" causes the Visual
Memory unit to be initialized. All files stored in the Visual Memory unit that is being initialized will be lost.

Reference: For details on the initialization procedure, see “Initializing Visual Memory” on page 33.

UNFORMAT

This menu item can be selected in order to create an uninitialized visual memory unit. The system BIOS
determines whether a Visual Memory unit has been initialized or not by checking a management area (an
upper address in bank 1 in flash memory), such as the FAT.

Just as data cannot be written on a floppy disk that has not been initialized, data and applications cannot
be stored in a Visual Memory unit that has not been initialized.

Caution: Visual Memory that is purchased commercially is shipped in an initialized state. Rarely, a lot might be
shipped in an uninitialized state.

If "UNFORMAT" is selected, the following screen appears:

If "COMPLETE" is executed, 00H is written to every address in the flash memory to put it into the
uninitialized state. If "QUICK" is selected, just the management area is cleared.

Caution: The "QUICK" function is not implemented in Memory Card Utility Version 0.64.1 and therefore cannot
be selected.

Whether "COMPLETE" or "QUICK" is used, all data stored in Visual Memory is deleted. Even if "QUICK"
is selected, there is no means for salvaging the data after initialization.

CHECK DISK

If this menu item is executed, the following screen appears and a check is made of FAT conformance,
missing data bits, etc. This function is equivalent to the scan disk function in Windows and the CHKDSK
function in MS-DOS.

However, this function does not have an error correction capability.

This function also conducts a CRC check of the information fork of each file, and checks for missing bits
in files.

Note: If the CRC value was omitted from an information fork, this check returns an error for that information fork,
but this error can be ignored.

The results of these checks are also displayed in the communications software window as shown below.
VMT-30

 Memory Card Utility
File Operations Menu

If the s mark is moved on the file list, a file is selected, and the A button is pressed, the File Operations Menu
is displayed.

Multiple files can be selected by pressing the X button after selecting each file. If the A button is pressed while
multiple files are selected, the menu operation that is performed is performed on all selected files.

If the Y button is pressed, all files that are currently selected are deselected, and all files that are currently not
selected are selected.

COPY

If "COPY" is selected, the following screen appears, and the selected file is copied to a different Visual
Memory unit.

DELETE

This deletes the selected file. A confirmation message is displayed when "DELETE" is selected.

RENAME

This changes a file name. This item cannot be selected when multiple files are selected. If "RENAME" is
selected, the following screen appears; the file name can now be changed.

Caution: The Memory Card Utility is designed to permit the "-" character to be used in file names, but do not use
the character.

Although it poses no problem for the debugger, do not use the "-" character in file names in final products.
Such an application will not be in conformance with the software creation standards.

Use "←" and "→" to move the cursor. Select "OK" to change the file name to the new file name that was
input. "CANCEL" is equivalent to the B button. If "RESET" is selected, the file name that was being input is
cleared and the original file name is restored.

On this screen, the R trigger and the L trigger can be used to move the cursor, and pressing the Start button
has the same effect as selecting "OK."

ATTRIBUTE

If "ATTRIBUTE" is selected, the following screen appears and the file attribute (copying prohibited/
permitted) can be changed.

If the COPY FLAG is set to "FF," copying that file is prohibited. A file for which copying is prohibited can
not be copied through the Dreamcast File Management Screen. If COPY FLAG is set to any other value (00
to FE), copying that file is permitted. Because any value other than FF can be used, a program can be created
that uses this field to determine what generation of copying a given file is.

Caution: Note that when a file for which the COPY FLAG is set to any value from 00 to FE is copied through the
Dreamcast File Management Screen, the COPY FLAG in the newly copied file is set to "00."

HEADER OFFSET cannot be changed.
VMT-31

Visual Memory Unit (VMU) Tutorial Revision
UPLOAD

This can be used to transfer a selected file to a PC.

Before selecting "UPLOAD," execute an Xmodem download using the file transfer function of the
communications software. As long as the Xmodem protocol is used, it does not matter if it is CRC or 1024.
When the file name input screen appears, enter an appropriate file name. The file name that is input does
not have to be identical to the file name that is used in Visual Memory.

When "UPLOAD" is selected, the message "NOW LOADING..." appears and the file transfer to the
PC begins.

Caution: "UPLOAD" cannot be aborted. To abort, first complete the file transfer that is in progress.
"UPLOAD" cannot be selected while multiple files are selected.

INFO

If "INFO" is selected, the message "NOW LOADING..." is displayed, and then the following screen appears.

The contents of the information fork are displayed on this screen.

Because the game name (sort key) is also displayed, this screen can be used to check the game name after it
has been input.

DUMP

If "DUMP" is selected, the message "NOW LOADING..." is displayed, and then the file dump
screen appears.

The portion that is the information fork is displayed in color. A character dump is also displayed on the
right-hand side.

Caution: DUMP cannot be selected when multiple files are selected.
Kanji cannot be displayed in the character dump.

The following buttons can be used on the file dump screen:

EDIT

This is for future expansion. This menu item cannot be selected because the editing function is not
implemented in Ver. 0.64.1.

Up button Scrolls towards the beginning of the file.

Down button Scrolls towards the end of the file.

Left button Scrolls rapidly towards the beginning of the file.

Right button Scrolls rapidly towards the end of the file.

L trigger Displays the beginning of the file.

R trigger Displays the end of the file.

X button Each time this button is pressed, the display delimiting unit switches between BYTE, WORD (2 bytes), and DWORD (4 bytes).

Start button Halts the file dump.
VMT-32

 Memory Card Utility
Initializing Visual Memory

This section describes the procedure for initializing Visual Memory.

1) Select the Visual Memory unit that is to be initialized, and then display the Command Selection Menu.

2) Select "FORMAT," and the following screen appears.

3) In the "ICON NO." field, specify the label icon number. Specifying "00" specifies the default Visual
Memory icon. Specify a value from 000 to 123. Do not set a value of 124 or higher.

Reference: For a list of the label icon designs and numbers, refer to the Appendix, "List of Label Icons."

4) Set whether the body color information (which is set next) is valid or not.
If the body color information is valid, select "ENABLE." If the body color information is invalid, select
"DISABLE." If "DISABLE" is selected, the body color is white and the color information setting
becomes unavailable.

5) Set the color information. "COLOR A" specifies the transparency. A value of "FF" is completely opaque,
and a value of "00" is completely transparent.
COLOR R, G, and B specify the intensity of the red, green, and blue components. A value of "FF" is the
maximum intensity, and a value of "00" is the minimum intensity.

Caution: Note that if a value of "00" is set for COLOR A, the other colors will be transparent.

6) "OPERATION" specifies whether to initialize just the FAT, or to initialize all of memory.
Select "QUICK" to initialize just the FAT, and select "COMPLETE" to initialize all of memory.

7) Select "NEXT" and the following screen appears.

Set the date and time of initialization. Use the left and right buttons to set the date and time, and then use
the up and down buttons to change the value.

8) Lastly, select "SET" and a confirmation message appears. Select "OK" to begin the initialization process.

Caution: If a Visual Memory unit is initialized, all files that were written in that unit are deleted. Even if "QUICK"
is selected for "OPERATION," there is no means for salvaging the data after initialization.
VMT-33

Visual Memory Unit (VMU) Tutorial Revision
Transferring Files from a PC to Visual Memory

This section explains the procedure for transferring files from a PC to Visual Memory. In this example,
HyperTerminal, which is provided with Windows, will be used as the communications software.

1) Select the Visual Memory unit to which the file is to be transferred, and then display the Command
Selection Menu.

2) Select "RECV DATA," and then select the buffer for the file that is to be transferred.
When transferring an application, select "GAME BUFFER."
When transferring a volume icon ("ICONDATA_VMU"), select "ICON BUFFER."
When transferring a data file, select "NORMAL BUFFER."

3) When the confirmation message is displayed, select "OK."

4) Select the file transfer operation in the communications software. In the "Transfer" menu, select
"Send File..."

5) Select "Xmodem" for the protocol. Then click the [Browse] button and specify the file that is to be
transferred. Finally, click the [Send] button.

6) While the file transfer is in progress, the following screens appear.
In the communications software screen
In the Dev.Box screen

7) When the file transfer is completed, the following screen appears on the Dev.Box side. Press the A button.

8) Select "SAVE DATA" and specify which buffer's contents to write in Visual Memory.
When writing an application, select "GAME BUFFER."
When writing a volume icon ("ICONDATA_VMU"), select "ICON BUFFER."
When writing a data file, select "NORMAL BUFFER."

Caution: If an application has already been written in the Visual Memory unit, "GAME BUFFER" cannot be
selected. Delete the old file and then select "SAVE DATA" again.

9) If a buffer other than "ICON BUFFER" was selected, the following screen appears.

Input the file name and select "OK." The file name does not have to be in "8.3" format (an eight-character file
name, a period, and a three-character extension).

If a file with the same name already exists, the program asks whether or not to overwrite the old file.

The PC-to-Visual Memory file transfer process is now complete.

If an application was transferred, return to the Memory Selection Screen, disconnect the Visual Memory
unit, set the Visual Memory unit to game mode, and then execute the application.
VMT-34

A. Little Endian Format
When storing multiple bytes of data in memory, some CPUs use a format that starts from the high-order byte and
stores it in the high-order byte in memory, while other CPUs use a format that starts from the high-order byte and
stores it in the low-order byte in memory.

For example, when storing the data "00 FE 2E EF" in memory as an "unsigned long int" value (an unsigned 32-bit
integer), the following two methods could be used:

Table A.1 Big Endian Format

Table A.2 Little Endian Format

This format, in which the upper and lower bytes of data are stored in reverse order is called "Little Endian Format."
The format in which data is stored in its normal order is called "Big Endian Format."

Because the SH4 CPU that is inside the Dreamcast uses Little Endian format, all data other than byte data must be
stored in memory in Little Endian format.

For example, because the value "00 00 00 20" must be specified for the "monochrome icon data starting address" in
ICONDATA_VMU", the value is stored in memory in the order "20 00 00 00". In addition, when storing unsigned 16-bit
data ("00 FF") in memory, it should be stored in the order "FF 00"

+00 +01 +02 +03

0000 00 FE 2E EF

+00 +01 +02 +03

0000 EF 2E FE 00
VMT-35

A. Little Endian Format
VMT-36

B. List of Label Icons
The label icons that are built into the Dreamcast boot ROM are listed on the following page.
VMT-37

B. List of Label Icons
VMT-38

C. Sample Program Listings
This section includes listings of the sample programs that are included with the Visual Memory SDK.

Explanations of the information fork source file "IFORK.ASM" and details of "GHEAD.ASM" are not included.

Caution: When viewing the sample programs, set the tab (09H) to "4" (byte).
VMT-39

C. Sample Program Listings
LCD Pattern Display

This sample program displays a simple pattern on the LCD (XRAM).

Lines 51, 55, 59, 63, and 67 specify the pattern, and the "matrix" routine draws this pattern on the LCD.

001 ; Tab width = 4

002

003 ;--

004 ; ** LCD display processing sample 1 **

005 ;

006 ; Transfers data to display RAM and displays a simple pattern on the display

007 ;--

008 ; 1.00 981208 SEGA Enterprises,LTD.

009 ;--

010

011 chip Lc868700 ; Specifies the chip type for the assembler

012 worldexternal ; External memory program

013

014 publicmain ; Symbol referenced from ghead.asm

015

016 extern_game_end ; Application end

017

018

019 ; **** Definition of System Constants ***************************************

020

021 ; OCR (Oscillation Control Register) settings

022 osc_rcequ 081h ; Specifies internal RC oscillation for the System clock

023 osc_xtequ 082h; Specifies crystal oscillation for the system Clock

024

025

026 ; *** Data Segment **

027

028 dseg ; Data segment start

029

030 r0: ds 1 ; Indirect addressing register r0

031 r1: ds 1 ; Indirect addressing register r1

032 r2: ds 1 ; Indirect addressing register r2

033 r3: ds 1 ; Indirect addressing register r3

034 ds 12 ; Other registers reserved for the system

035

036
VMT-40

C. Sample Program Listings
037 ; *** Code Segment **

038

039 cseg ; Code segment start

040

041 ; *---*

042 ; * User program *

043 ; *---*

044 main:

045 mov #0f0h,c ; Display data

046 call matrix ; Display pattern on the LCD

047 set1 PCON,0 ; Enters HALT mode and waits for an interrupt.

048 ; HALT mode is cancelled and processing continues

049 ; when a base timer interrupt is generated.

050

051 mov #00fh,c ; The following lines display different patterns in the same manner

052 call matrix

053 set1 PCON,0

054

055 mov #0cch,c

056 call matrix

057 set1 PCON,0

058

059 mov #033h,c

060 call matrix

061 set1 PCON,0

062

063 mov #055h,c

064 call matrix

065 set1 PCON,0

066

067 mov #0aah,c

068 call matrix

069 set1 PCON,0

070

071 ; ** [M] (mode) Button Check **

072 ld P3

073 bn acc,6,finish ; If the [M] button is pressed, the application ends

074

075 jmp main ; Repeat

076

077 finish: ; ** Application End Processing **

078 jmp _game_end ; Application end

079

080
VMT-41

Visual Memory Unit (VMU) Tutorial Revision
081 ; *---*

082 ; * Displays pattern on entire LCD *

083 ; * Input c: Basic display pattern *

084 ; *---*

085 matrix: ; **** Draws one LCD screen ****

086

087 push acc ; Pushes each register onto the stack

088 push b

089 push c

090 push XBNK

091

092 xb0_a: mov #000h,XBNK ; Specifies the display RAM bank address (BANK0)

093 mov #080h,b

094

095 la1: ld c ; c: Display data

096 call line2 ; 2-line display

097 ld b ; Advances address two lines ahead

098 add #010h ;

099 st b ;

100 bnz la1 ; Repeats until end of bank is reached

101

102 xb1_a: mov #001h,XBNK ; Specifies the display RAM bank address (BANK1)

103 mov #080h,b

104

105 la2: ld c ; c: Display data

106 call line2 ; 2-line display

107 ld b ; Advances address two lines ahead

108 add #010h ;

109 st b ;

110 bnz la2 ; Repeats until end of bank is reached

111

112 pop XBNK ; Pops the registers from the stack

113 pop c

114 pop b

115 pop acc

116

117 ret ; Matrix end

118

119

120 line2: ; **** LCD 2-line display ****

121

122 push acc ; Pushes each register onto the stack

123 push b ;

124 push c ;

125 push PSW ;

126 push OCR ;

127 mov #osc_rc,OCR ; Specifies the system clock

128 set1 PSW,1 ; Selects data RAM bank 1

129 st c ; Stores display data in c

130 ld b ; Sets the display RAM address in r2
VMT-42

C. Sample Program Listings
131 st r2 ;

132

133 lp1: ; **** First line display processing ****

134 ld c ; Transfers the display data to display RAM

135 st @r2 ;

136 inc r2 ; Advances the address to the next display position

137 ld r2

138 and #00fh ; If the display position is not at the right end of the first line...

139 xor #006h ;

140 bnz lp1 ; ...repeat

141

142 ld c ; Inverts the bit pattern in the c register

143 xor #0ffh ;

144 st c ;

145

146 lp2: ; **** Second line display processing

147 ld c ; Transfers the display data to display RAM

148 st @r2 ;

149 inc r2 ; Advances the address to the next display position

150 ld r2 ;

151 and #00fh ; If the display position is not at the right end of the second
line...

152 xor #00ch ;

153 bnz lp2 ; ...repeat

154

155 pop OCR ; Pops registers off of the stack

156 pop PSW ;

157 pop c ;

158 pop b ;

159 pop acc ;

160

161 ret ; line2 end

162

163 end
VMT-43

Visual Memory Unit (VMU) Tutorial Revision
LCD Character Pattern Display

This sample program displays the text “SEGA 1998" on the LCD (XRAM).

Because the built-in fonts cannot be used from an application, the font pattern data must be prepared beforehand.

This program calls "putch", which writes the specified font pattern at the coordinates specified by registers B and C
in the main routine. The font information (8 x 8 dot data) starts in line 222.

001; Tab width = 4

002

003 ;--

004 ; ** LCD display processing sample 2 **

005 ;

006 ; ·Clears the display image by filling display RAM with zeroes

007 ; ·Displays character pattern in a specified position

008 ;--

009 ; 1.00 981208 SEGA Enterprises,LTD.

010 ;--

011

012 chip Lc868700 ; Specifies the chip type for the assembler

013 world external ; External memory program

014

015 public main ; Symbol referenced from ghead.asm

016

017 extern _game_end ; Application end

018

019

020 ; **** Definition of System Constants ***************************************

021

022 ; OCR (Oscillation Control Register) settings

023 osc_rc equ 081h ; Specifies internal RC oscillation for the system clock

024 osc_xt equ 082h ; Specifies crystal oscillation for the system clock

025

026

027 ; *** Data Segment **

028

029 dseg ; Data segment start

030

031 r0: ds 1 ; Indirect addressing register r0

032 r1: ds 1 ; Indirect addressing register r1

033 r2: ds 1 ; Indirect addressing register r2

034 r3: ds 1 ; Indirect addressing register r3

035 ds 12 ; Other registers reserved for the system

036

037
VMT-44

C. Sample Program Listings
038 ; *** Code Segment **

039

040 cseg ; Code segment start

041

042 ; *---*

043 ; * User program *

044 ; *---*

045 main:

046 call cls ; Clears the LCD display image

047

048 mov #1,c ; Horizontal coordinate

049 mov #1,b ; Vertical coordinate

050 mov #0ah,acc ; Character code 'S'

051 call putch ; Single character display

052

053 mov #2,c

054 mov #1,b

055 mov #0bh,acc ; 'E'

056 call putch

057

058 mov #3,c

059 mov #1,b

060 mov #0ch,acc ; 'G'

061 call putch

062

063 mov #4,c

064 mov #1,b

065 mov #0dh,acc ; 'A'

066 call putch

067

068 mov #1,c

069 mov #2,b

070 mov #1,acc ; '1'

071 call putch

072

073 mov #2,c

074 mov #2,b

075 mov #9,acc ; '9'

076 call putch

077

078 mov #3,c

079 mov #2,b

080 mov #9,acc ; '9'

081 call putch

082

083 mov #4,c

084 mov #2,b

085 mov #8,acc ; '8'

086 call putch

087
VMT-45

Visual Memory Unit (VMU) Tutorial Revision
088 loop0: ; ** [M] (mode) Button Check **

089 ld P3

090 bn acc,6,finish ; If the [M] button is pressed, the application ends

091

092 jmp loop0 ; Repeat

093

094 finish: ; ** Application End Processing **

095 jmp _game_end; Application end

096

097

098 ; *---*

099 ; * Clearing the LCD Display Image *

100 ; *---*

101 cls:

102 push OCR ; Pushes the OCR value onto the stack

103 mov #osc_rc,OCR ; Specifies the system clock

104

105 mov #0,XBNK ; Specifies the display RAM bank address (BANK0)

106 call cls_s ; Clears the data in that bank

107

108 mov #1,XBNK ; Specifies the display RAM bank address (BANK1)

109 call cls_s ; Clears the data in that bank

110 pop OCR ; Pops the OCR value off of the stack

111

112 ret ; cls end

113

114 cls_s: ; *** Clearing One Bank of Display RAM ***

115 mov #80h,r2 ; Points the indirect addressing register at the start
 of display RAM

116 mov #80h,b ; Sets the number of loops in loop counter b

117 loop3:

118 mov #0,@r2 ; Writes "0" while incrementing the address

119 inc r2 ;

120 dbnz b,loop3 ; Repeats until b is "0"

121

122 ret ; cls_s end

123

124
VMT-46

C. Sample Program Listings
125 ; *---*

126 ; * Displaying One Character in a Specified Position *

127 ; * Inputs: acc: Character code *

128 ; * c: Horizontal position of character *

129 ; * b: Vertical position of character *

130 ; *---*

131 putch:

132 push XBNK

133 push acc

134 call locate ; Calculates display RAM address according to coordinates

135 pop acc

136 call put_chara ; Displays one character

137 pop XBNK

138

139 ret ; putch end

140

141

142 locate: ; **** Calculating the Display RAM Address According to the Display
 Position Specification ****

143 ; ** Inputs: c: Horizontal position (0 to 5) b: Vertical position (0 to 3)

144 ; ** Outputs: r2: RAM address XBNK: Display RAM bank

145

146 ; *** Determining the Display RAM Bank Address ***

147 ld b ; Jump to next1 when b >= 2

148 sub #2 ;

149 bn PSW,7,next1 ;

150

151 mov #00h,XBNK ; Specifies the display RAM bank address (BANK0)

152 br next2

153 next1:

154 st b

155 mov #01h,XBNK ; Specifies the display RAM bank address (BANK1)

156 next2:

157

158 ; *** Calculating the RAM Address for a Specified Position on the Display ***

159 ld b ; b * 40h + c + 80h

160 rol ;

161 rol ;

162 rol ;

163 rol ;

164 rol ;

165 rol ;

166 add c ;

167 add #80h ;

168 st r2 ; Stores the RAM address in r2

169

170 ret ; locate end

171

172
VMT-47

Visual Memory Unit (VMU) Tutorial Revision
173 put_chara:

174 push PSW ; Pushes the PSW value onto the stack

175 set1 PSW,1 ; Selects data RAM bank 1

176

177 ; *** Calculating the Character Data Address ***

178 rol ; (TRH,TRL) = acc*8 + fontdata

179 rol ;

180 rol ;

181 add #low(fontdata) ;

182 st TRL ;

183 mov #0,acc ;

184 addc #high(fontdata) ;

185 st TRH ;

186

187 push OCR ; Pushes the OCR value onto the stack

188 mov #osc_rc,OCR ; Specifies the system clock

189

190 mov #0,b ; Offset value for loading the character data

191 mov #4,c ; Loop counter

192 loop1:

193 ld b ; Loads the display data for the first line

194 ldc ;

195 inc b ; Increments the load data offset by 1

196 st @r2 ; Transfers the display data to display RAM

197 ld r2 ; Adds 6 to the display RAM address

198 add #6 ;

199 st r2 ;

200

201 ld b ; Loads the display data for the second line

202 ldc ;

203 inc b ; Increments the load data offset by 1

204 st @r2 ; Transfers the display data to display RAM

205 ld r2 ; Adds 10 to the display RAM address

206 add #10 ;

207 st r2 ;

208

209 dec c ; Decrements the loop counter

210 ld c ;

211 bnz loop1 ; Repeats for 8 lines (four times)

212

213 pop OCR ; Pops the OCR value off of the stack

214 pop PSW ; Pops the PSW value off of the stack

215

216 ret ; put_chara end

217

218
VMT-48

C. Sample Program Listings
219 ; *---*

220 ; * Character Bit Image Data *

221 ; *---*

222 fontdata:

223 db 07ch, 0e6h, 0c6h, 0c6h, 0c6h, 0ceh, 07ch, 000h ; '0' 00

224 db 018h, 038h, 018h, 018h, 018h, 018h, 03ch, 000h ; '1' 01

225 db 07ch, 0c6h, 0c6h, 00ch, 038h, 060h, 0feh, 000h ; '2' 02

226 db 07ch, 0e6h, 006h, 01ch, 006h, 0e6h, 07ch, 000h ; '3' 03

227 db 00ch, 01ch, 03ch, 06ch, 0cch, 0feh, 00ch, 000h ; '4' 04

228 db 0feh, 0c0h, 0fch, 006h, 006h, 0c6h, 07ch, 000h ; '5' 05

229 db 01ch, 030h, 060h, 0fch, 0c6h, 0c6h, 07ch, 000h ; '6' 06

230 db 0feh, 0c6h, 004h, 00ch, 018h, 018h, 038h, 000h ; '7' 07

231 db 07ch, 0c6h, 0c6h, 07ch, 0c6h, 0c6h, 07ch, 000h ; '8' 08

232 db 07ch, 0c6h, 0c6h, 07eh, 006h, 00ch, 078h, 000h ; '9' 09

233

234 db 07ch, 0e6h, 076h, 038h, 0dch, 0ceh, 07ch, 000h ; 'S' 0a

235 db 0feh, 0c0h, 0c0h, 0f8h, 0c0h, 0c0h, 0feh, 000h ; 'E' 0b

236 db 07ch, 0e6h, 0c0h, 0dch, 0c6h, 0e6h, 07ch, 000h ; 'G' 0c

237 db 01eh, 036h, 066h, 0c6h, 0c6h, 0feh, 0c6h, 000h ; 'A' 0d
VMT-49

Visual Memory Unit (VMU) Tutorial Revision
Counter That Uses Base Timer Interrupts

This sample program detects and counts interrupts that are generated by the base timer every 0.5 seconds.

When an interrupt is generated, the program jumps to line 35 of "GHEAD.ASM", and then jumps from there to the
label "INT_1B ". Base timer interrupt processing starts in line 108, but here internal clock processing is performed.
After performing the clock processing in ROM once up to line 112, control jumps to the label "int_BaseTimer " in
"B_TIMER1.ASM".

In "B_TIMER1.ASM", the label "int_BaseTimer ", which is referenced by an external program, is declared with a
PUBLIC declaration (line 16). The user's base timer interrupt handler starts from line 242. The counter is
incremented within this interrupt handler.

Control returns to "GHEAD.ASM", the contents of the IE register are returned to the value that it had when "int_1b"
was called, and then control returns from the interrupt (IRET).

The counter value is always displayed on the LCD by the main routine.

GHEAD.ASM
001 chip Lc868700

002 world external

003 ; *---*

004 ; * External header program Ver 1.00*

005 ; * 05/20-'98*

006 ; *---*

007

008 public fm_wrt_ex_exit,fm_vrf_ex_exit

009 public fm_prd_ex_exit,timer_ex_exit,_game_start,_game_end

010 other_side_symbol fm_wrt_in,fm_vrf_in

011 other_side_symbol fm_prd_in,timer_in,game_end

012

013 extern main ; Symbol in the user program

014 extern int_BaseTimer ; Symbol in the user program

015

016 ; *---*

017 ; * Vector table(?)*

018 ; *---*

019 cseg

020 org 0000h

021 _game_start:

022 ;reset:

023 jmpfmain ; main program jump

024 org 0003h

025 ;int_03:

026 jmp int_03

027 org 000bh

028 ;int_0b:

029 jmp int_0b

030 org 0013h

031 ;int_13:

032 jmp int_13

033 org 001bh
VMT-50

C. Sample Program Listings
034 ;int_1b:

035 jmp int_1b

036 org 0023h

037 ;int_23:

038 jmp int_23

039 org 002bh

040 ;int_2b:

041 jmp int_2b

042 org 0033h

043 ;int_33:

044 jmp int_33

045 org 003bh

046 ;int_3b:

047 jmp int_3b

048 org 0043h

049 ;int_43:

050 jmp int_43

051 org 004bh

052 ;int_4b:

053 jmp int_4b

054 ; *---*

055 ; * interrupt programs*

056 ; *---*

057 int_03:

058 reti

059 int_0b:

060 reti

061 int_13:

062 reti

063 int_23:

064 reti

065 int_2b:

066 reti

067 int_33:

068 reti

069 int_3b:

070 reti

071 ; *---*

072 int_43:

073 reti

074 int_4b:

075 clr1p3int,1; interrupt flag clear

076 reti

077
VMT-51

Visual Memory Unit (VMU) Tutorial Revision
078 org 0100h

079 ; *---*

080 ; * flash memory write external program*

081 ; *---*

082 fm_wrt_ex:

083 change fm_wrt_in

084 fm_wrt_ex_exit:

085 ret

086 org 0110h

087 ; *---*

088 ; * flash memory verify external program*

089 ; *---*

090 fm_vrf_ex:

091 change fm_vrf_in

092 fm_vrf_ex_exit:

093 ret

094

095 org 0120h

096 ; *---*

097 ; * flash memory page read external program*

098 ; *---*

099 fm_prd_ex:

100 change fm_prd_in

101 fm_prd_ex_exit:

102 ret

103

104 org 0130h

105 ; *---*

106 ; * flash memory => timer call external program *

107 ; *---*

108 int_1b:

109 timer_ex:

110 pushie

111 clr1ie,7 ; interrupt prohibition

112 changetimer_in

113 timer_ex_exit:

114 callint_BaseTimer; (User base timer interrupt processing)

115 pop ie

116 reti

117

118 org 01f0h

119 _game_end:

120 change game_end

121 end
VMT-52

C. Sample Program Listings
B_TIMER1.ASM
001 ; Tab width = 4

002
003 ;--
004 ; ** Base Timer Interrupt Usage Sample 1 **
005 ;
006 ; ·Counts base timer interrupts (every 0.5 seconds)
007 ; ·Displays the counter value as a two digit decimal number on the LCD
008 ;--
009 ; 1.00 981208 SEGA Enterprises,LTD.
010 ;--
011

012 chip LC868700 ; Specifies the chip type for the assembler

013 world external ; External memory program

014

015 public main ; Symbol referenced from ghead.asm

016 public int_BaseTimer ; Symbol referenced from ghead.asm

017

018 extern_game_end ; Symbol reference to ghead.asm
019
020
021 ; **** Definition of System Constants ***************************************
022
023 ; OCR (Oscillation Control Register) settings

024 osc_rcequ 081h ; Specifies internal RC oscillation for the system clock

025 osc_xtequ 082h ; Specifies crystal oscillation for the system clock

026

027

028 ; *** Data Segment **

029

030 dsezz ; Data segment start
031
032 r0: ds 1 ; Indirect addressing register r0
033 r1: ds 1 ; Indirect addressing register r1
034 r2: ds 1 ; Indirect addressing register r2
035 r3: ds 1 ; Indirect addressing register r3
036 ds 12 ; Other registers reserved for the system
037
038 counter:ds 1 ; Base timer interrupt counter
039 work1: ds 1 ; For work (put2digit)
040
041
042 ; *** Code Segment **
043
044 cseg ; Code segment start
045
046 ; *---*
047 ; * User program *
048 ; *---*
049 main:
050 mov #0,counter ; Resets the counter value

051
VMT-53

Visual Memory Unit (VMU) Tutorial Revision
052 call cls ; Clears the LCD display image

053

054 loop0:

055 mov #2,c ; Display position (horizontal)

056 mov #1,b ; Display position (vertical)

057 ld counter ; Moves the counter value to acc

058 call put2digit ; Displays the acc value (two digits)

059

060 set1 pcon,0 ; Waits in HALT mode until the next interrupt

061

062 ; ** [M] (mode) Button Check **

063 ld P3

064 bn acc,6,finish ; If the [M] button is pressed, the application ends

065

066 br loop0 ; Repeat

067

068 finish: ; ** Application End Processing **

069 jmp _game_end ; Application end

070

071

072 ; *---*

073 ; * Displaying a Two-digit Value *

074 ; * Inputs: acc: Numeric value *

075 ; * c: Horizontal position of character *

076 ; * b: Vertical position of character *

077 ; *---*

078 put2digit:

079 push b ; Pushes the coordinate data onto the stack

080 push c ;

081 st c ; Calculates the tens digit and the ones digit

082 xor a ; (acc = acc/10, work1 = acc mod 10)

083 mov #10,b ;

084 div ;

085 ld b ;

086 st work1 ; Stores the ones digit in work1

087 ld c ;

088 pop c ; Pops the coordinate values into (c, b)

089 pop b ;

090 push b ; Pushes the coordinates onto the stack again

091 push c ;

092 call putch ; Displays the tens digit

093 ld work1 ; Loads the ones digit

094 pop c ; Pops the coordinate values into (c, b)

095 pop b ;

096 inc c ; Moves the display coordinates to the right

097 call putch ; Displays the ones digit

098

099 ret ; put2digit end

100

101
VMT-54

C. Sample Program Listings
102 ; *---*

103 ; * Clearing the LCD Display Image *

104 ; *---*

105 cls:
106 push OCR ; Pushes the OCR value onto the stack
107 mov #osc_rc,OCR ; Specifies the system clock
108
109 mov #0,XBNK ; Specifies the display RAM bank address (BANK0)
110 call cls_s ; Clears the data in that bank
111
112 mov #1,XBNK ; Specifies the display RAM bank address (BANK1)
113 call cls_s ; Clears the data in that bank
114 pop OCR ; Pops the OCR value off of the stack
115
116 ret ; cls end
117
118 cls_s: ; Clearing One Bank of Display RAM
119 mov #80h,r2 ; Points the indirect addressing register at the start

 of display RAM
120 mov #80h,b ; Sets the number of loops in loop counter b
121 loop3:
122 mov #0,@r2 ; Writes "0" while incrementing the address
123 inc r2 ;
124 dbnzb,loop3 ; Repeats until b is "0"
125
126 ret ; cls_s end
127
128
129 ; *---*

130 ; * Displaying One Character in a Specified Position*

131 ; * Inputs: acc:Character code *

132 ; * c: Horizontal position of character*

133 ; * b: Vertical position of character*

134 ; *---*

135 putch:

136 push XBNK

137 push acc

138 call locate ; Calculates display RAM address according to coordinates

139 pop acc

140 call put_chara ; Displays one character

141 pop XBNK

142

143 ret ; putch end

144

145

146 locate: ;****Calculating the Display RAM Address According to the Display Positi
 on Specification****

147 ; ** Inputs: c: Horizontal position (0 to 5) b: Vertical position (0 to 3)

148 ; ** Outputs: r2: RAM address XBNK: Display RAM bank

149
VMT-55

Visual Memory Unit (VMU) Tutorial Revision
150 ; *** Determining the Display RAM Bank Address ***

151 ld b ; Jump to next1 when b >= 2

152 sub #2 ;

153 bn PSW,7,next1 ;

154

155 mov #00h,XBNK; Specifies the display RAM bank address (BANK0)

156 br next2

157 next1:

158 st b

159 mov #01h,XBNK; Specifies the display RAM bank address (BANK1)

160 next2:

161

162 ; *** Calculating the RAM Address for a Specified Position on the Display ***

163 ld b ; b * 40h + c + 80h

164 rol ;

165 rol ;

166 rol ;

167 rol ;

168 rol ;

169 rol ;

170 add c ;

171 add #80h ;

172 st r2 ; Stores the RAM address in r2

173

174 ret ; locate end

175

176

177 put_chara:

178 push PSW ; Pushes the PSW value onto the stack

179 set1 PSW,1 ; Selects data RAM bank 1

180

181 ; *** Calculating the Character Data Address ***

182 rol ; (TRH,TRL) = acc*8 + fontdata

183 rol ;

184 rol ;

185 add #low(fontdata) ;

186 st TRL ;

187 mov #0,acc ;

188 addc #high(fontdata) ;

189 st TRH ;

190

191 push OCR ; Pushes the OCR value onto the stack

192 mov #osc_rc,OCR ; Specifies the system clock

193

194 mov #0,b ; Offset value for loading the character data

195 mov #4,c ; Loop counter

196 loop1:

197 ld b ; Loads the display data for the first line

198 ldc ;

199 inc b ; Increments the load data offset by 1
VMT-56

C. Sample Program Listings
200 st @r2 ; Transfers the display data to display RAM

201 ld r2 ; Adds 6 to the display RAM address

202 add #6 ;

203 st r2 ;

204

205 ld b ; Loads the display data for the second line

206 ldc ;

207 inc b ; Increments the load data offset by 1

208 st @r2 ; Transfers the display data to display RAM

209 ld r2 ; Adds 10 to the display RAM address

210 add #10 ;

211 st r2 ;

212

213 dec c ; Decrements the loop counter

214 ld c ;

215 bnz loop1 ; Repeats for 8 lines (four times)

216

217 pop OCR ; Pops the OCR value off of the stack

218 pop PSW ; Pops the PSW value off of the stack

219

220 ret ; put_chara end

221

222
223 ; *---*
224 ; * Character Bit Image Data *
225 ; *---*
226 fontdata:
227 db 07ch, 0e6h, 0c6h, 0c6h, 0c6h, 0ceh, 07ch, 000h ; '0' 00
228 db 018h, 038h, 018h, 018h, 018h, 018h, 03ch, 000h ; '1' 01
229 db 07ch, 0c6h, 0c6h, 00ch, 038h, 060h, 0feh, 000h ; '2' 02
230 db 07ch, 0e6h, 006h, 01ch, 006h, 0e6h, 07ch, 000h ; '3' 03
231 db 00ch, 01ch, 03ch, 06ch, 0cch, 0feh, 00ch, 000h ; '4' 04
232 db 0feh, 0c0h, 0fch, 006h, 006h, 0c6h, 07ch, 000h ; '5' 05
233 db 01ch, 030h, 060h, 0fch, 0c6h, 0c6h, 07ch, 000h ; '6' 06
234 db 0feh, 0c6h, 004h, 00ch, 018h, 018h, 038h, 000h ; '7' 07
235 db 07ch, 0c6h, 0c6h, 07ch, 0c6h, 0c6h, 07ch, 000h ; '8' 08
236 db 07ch, 0c6h, 0c6h, 07eh, 006h, 00ch, 078h, 000h ; '9' 09
237
238
239 ; *---*
240 ; * Base Timer Interrupt Handler *
241 ; *---*
242 int_BaseTimer:
243 push acc ; Pushes the register that was used onto the stack
244 inc counter ; Increments the counter
245 ld counter ; If the counter reaches 100...
246 bne #100,next3 ;
247 mov #0,counter ; Resets the counter
248 next3: ;
249 pop acc ; Pops the register back off of the stack
250
251 ret ; (User) interrupt processing end
VMT-57

Visual Memory Unit (VMU) Tutorial Revision
Button Press Detection

This sample program checks the status (pressed or not pressed) of the Visual Memory buttons (except for the reset
button and the mode button), and displays on the LCD any button that was pressed.

Line 46 writes 0FFH to port 3, pulling up all bits.

The button press status is loaded in line 51 by loading the status of port 3 into the ACC. If there is a button that is
being pressed at this point, the corresponding bit is reset to "0".

In line 52, the bits are checked to see if they are set (i.e., the corresponding button is not being pressed), and then
control proceeds to the next button check processing. If a button is being pressed, the condition on line 52 becomes
false, and the processing that is indicated for that button is performed.

Note: The port 3 interrupt is enabled immediately after this program is called from the system BIOS.
Furthermore, because the port 3 interrupt is a level interrupt, the interrupt remains in effect while
a button is being pressed.
Disabling the port 3 interrupt improves the overall performance of applications.
Note that in an application that cancels HALT mode in response to a port 3 interrupt, the port 3
interrupt must be enabled beforehand.

001 ; Tab width = 4

002

003 ;--

004 ; ** Button Status Detection Sample 1 **

005 ;

006 ; ·Reads the button statuses and displays the button that is being pressed on
the LCD

007 ;--

008 ; 1.00 981208 SEGA Enterprises,LTD.

009 ;--

010

011 chip LC868700 ; Specifies the chip type for the assemble

012 world external ; External memory program

013

014 public main ; Symbol referenced from ghead.asm

015

016 extern _game_end ; Symbol reference to ghead.asm

017

018

019 ; **** Definition of System Constants ***************************************

020

021 ; OCR (Oscillation Control Register) settings

022 osc_rc equ 04dh ; Specifies internal RC oscillation for the system clock

023 osc_xt equ 0efh ; Specifies crystal oscillation for the system clock

024

025
VMT-58

C. Sample Program Listings
026 ; *** Data Segment **

027

028 dseg ; Data segment start

029

030 r0 ds 1 ; Indirect addressing register r0

031 r1 ds 1 ; Indirect addressing register r1

032 r2 ds 1 ; Indirect addressing register r2

033 r3 ds 1 ; Indirect addressing register r3

034 ds 12 ; Other registers reserved for the system

035

036 ; *** Code Segment **

037

038 cseg ; Code segment start

039

040 ; *---*

041 ; * User program *

042 ; *---*

043 main:

044 call cls ; Clears the LCD display image

045

046 mov #0ffh,P3 ; P3 initialization (pull-up setting)

047

048 loop0:

049 ; ** [A] Button Check **

050 mov #0,b

051 ld P3 ; Loads the status of P3

052 bp acc,4,next3 ; next3 if [A] button is being pressed

053 mov #1,b ; Display character code 'A'

054 next3:

055 ld b

056 mov #4,c ; Display coordinate (horizontal)

057 mov #3,b ; Display coordinate (vertical)

058 call putch ; Displays single character

059

060 ; ** [B] Button Check **

061 mov #0,b

062 ld P3

063 bp acc,5,next4 ; next4 if [B] button is being pressed

064 mov #2,b ; Display character code 'B'

065 next4:

066 ld b

067 mov #5,c

068 mov #2,b

069 call putch

070

071 ; ** [↑] Button Check **

072 mov #0,b

073 ld P3

074 bp acc,0,next5 ; next5 if [↑] button is being pressed

075 mov #3,b ; Display character code ' ↑ '
VMT-59

Visual Memory Unit (VMU) Tutorial Revision
076 next5:

077 ld b

078 mov #1,c

079 mov #1,b

080 call putch

081

082 ; ** [→] Button Check **

083 mov #0,b

084 ld P3

085 bp acc,3,next6 ; next6 if [→] button is being pressed

086 mov #4,b ; Display character code ' →'

087 next6:

088 ld b

089 mov #2,c

090 mov #2,b

091 call putch

092

093 ; ** [↓] Button Check **

094 mov #0,b

095 ld P3

096 bp acc,1,next7 ; next7 if [↓] button is being pressed

097 mov #5,b ; Display character code ' ↓ '

098 next7:

099 ld b

100 mov #1,c

101 mov #3,b

102 call putch

103

104 ; ** [←] Button Check **

105 mov #0,b

106 ld P3

107 bp acc,2,next8 ; next8 if [←] button is being pressed

108 mov #6,b ; Display character code ' ←'

109 next8:

110 ld b

111 mov #0,c

112 mov #2,b

113 call putch

114

115 ; ** [S] Button Check **

116 mov #0,b

117 ld P3

118 bp acc,7,next9 ; next9 if [S] button is being pressed

119 mov #8,b ; Display character code 'S'

120 next9:

121 ld b

122 mov #4,c

123 mov #1,b

124 call putch

125
VMT-60

C. Sample Program Listings
126 ; ** [M] Button Check **

127 ld P3

128 bn acc,6,finish ; If the [M] button is pressed, the application ends

129

130 brf loop0 ; Repeat

131

132 finish: ; ** Application End Processing **

133 jmp _game_end ; Application end

134

135

136 ; *---*

137 ; * Clearing the LCD Display Image *

138 ; *---*

139 cls:

140 push OCR ; Pushes the OCR value onto the stack

141 mov #osc_rc,OCR ; Specifies the system clock

142

143 mov #0,XBNK ; Specifies the display RAM bank address (BANK0)

144 call cls_s ; Clears the data in that bank

145

146 mov #1,XBNK ; Specifies the display RAM bank address (BANK1)

147 call cls_s ; Clears the data in that bank

148 pop OCR ; Pops the OCR value off of the stack

149

150 ret ; cls end

151

152 cls_s: ; *** Clearing One Bank of Display RAM ***

153 mov #80h,r2 ; Points the indirect addressing register at the
 start of display RAM

154 mov #80h,b ; Sets the number of loops in loop counter b

155 loop3:

156 mov #0,@r2 ; Writes "0" while incrementing the address

157 inc r2 ;

158 dbnz b,loop3 ; Repeats until b is "0"

159

160 ret ; cls_s end

161

162

163 ; *---*

164 ; * Displaying One Character in a Specified Position*

165 ; * Inputs: acc:Character code *

166 ; * c: Horizontal position of character *

167 ; * b: Vertical position of character *

168 ; *---*

169 putch:

170 push XBNK

171 push acc

172 call locate ; Calculates display RAM address according to coordinates

173 pop acc

174 call put_chara ; Displays one character
VMT-61

Visual Memory Unit (VMU) Tutorial Revision
175 pop XBNK

176

177 ret ; putch end

178

179

180 locate: ; **** Calculating the Display RAM Address According to the Display
 Position Specification ****

181 ; ** Inputs: c: Horizontal position (0 to 5) b: Vertical position (0 to 3)

182 ; ** Outputs: r2: RAM address XBNK: Display RAM bank

183

184 ; *** Determining the Display RAM Bank Address ***

185 ld b ; Jump to next1 when b >= 2

186 sub #2 ;

187 bn PSW,7,next1;

188

189 mov #00h,XBNK; Specifies the display RAM bank address (BANK0)

190 br next2

191 next1:

192 st b

193 mov #01h,XBNK; Specifies the display RAM bank address (BANK1)

194 next2:

195

196 ; *** Calculating the RAM Address for a Specified
Position on the Display ***

197 ld b ; b * 40h + c + 80h

198 rol ;

199 rol ;

200 rol ;

201 rol ;

202 rol ;

203 rol ;

204 add c ;

205 add #80h ;

206 st r2 ; Stores the RAM address in r2

207

208 ret ; locate end

209

210

211 put_chara:

212 push PSW ; Pushes the PSW value onto the stack

213 set1 PSW,1 ; Selects data RAM bank 1

214

215 ; *** Calculating the Character Data Address ***

216 rol ; (TRH,TRL) = acc*8 + fontdata

217 rol ;

218 rol ;

219 add #low(fontdata) ;

220 st TRL ;

221 mov #0,acc ;

222 addc #high(fontdata) ;
VMT-62

C. Sample Program Listings
223 st TRH ;

224

225 push OCR ; Pushes the OCR value onto the stack

226 mov #osc_rc,OCR ; Specifies the system clock

227

228 mov #0,b ; Offset value for loading the character data

229 mov #4,c ; Loop counter

230 loop1:

231 ld b ; Loads the display data for the first line

232 ldc ;

233 inc b ; Increments the load data offset by 1

234 st @r2 ; Transfers the display data to display RAM

235 ld r2 ; Adds 6 to the display RAM address

236 add #6 ;

237 st r2 ;

238

239 ld b ; Loads the display data for the second line

240 ldc ;

241 inc b ; Increments the load data offset by 1

242 st @r2 ; Transfers the display data to display RAM

243 ld r2 ; Adds 10 to the display RAM address

244 add #10 ;

245 st r2 ;

246

247 dec c ; Decrements the loop counter

248 ld c ;

249 bnz loop1 ; Repeats for 8 lines (four times)

250

251 pop OCR ; Pops the OCR value off of the stack

252 pop PSW ; Pops the PSW value off of the stack

253

254 ret ; put_chara end

255

256

257 ; *---*

258 ; * Character Bit Image Data *

259 ; *---*

260 fontdata:

261 db 000h, 000h, 038h, 038h, 038h, 000h, 000h, 000h ; ' • ' 00

262 db 01eh, 036h, 066h, 0c6h, 0c6h, 0feh, 0c6h, 000h ; 'A' 01

263 db 0fch, 066h, 066h, 07ch, 066h, 066h, 0fch, 000h ; 'B' 02

264

265 db 010h, 038h, 07ch, 0feh, 038h, 038h, 038h, 000h ; ' ↑ ' 03

266 db 010h, 018h, 0fch, 0feh, 0fch, 018h, 010h, 000h ; ' →' 04

267 db 038h, 038h, 038h, 0feh, 07ch, 038h, 010h, 000h ; ' ↓ ' 05

268 db 010h, 030h, 07eh, 0feh, 07eh, 030h, 010h, 000h ; ' ←' 06

269

270 db 0c6h, 0eeh, 0feh, 0d6h, 0c6h, 0c6h, 0c6h, 000h ; 'M' 07

271 db 07ch, 0e6h, 076h, 038h, 0dch, 0ceh, 07ch, 000h ; 'S' 08
VMT-63

Visual Memory Unit (VMU) Tutorial Revision
Using the PWM Sound Source

This sample program alternately generates a high tone (781Hz) and a low tone (342Hz).

The important portion of this sample is the subroutine that starts from line 72.

"SndInit " readies the program to use PWM. "Snd1(2)Start" sets the frequency that is generated by timer 1, and
begins the counting operation. "SndStop " stops the counting operation and stops the audio output.

001 ; Tab width = 4
002
003 ;--
004 ; ** Sound Usage Sample 1 **
005 ;
006 ; ·Intermittently outputs two tones (high/low)
007 ; (Low tone for 0.5 seconds - Silence for 0.5 seconds - High tone for 0.5

 seconds - Silence for 0.5 seconds...)
008 ;--
009 ; 1.00 981208 SEGA Enterprises,LTD.
010 ;--
011
012 chip LC868700 ; Specifies the chip type for the assembler
013 world external ; External memory program
014
015 public main ; Symbol referenced from ghead.asm
016
017 extern _game_end ; Application end
018
019
020 ; **** Definition of System Constants ***************************************
021
022 ; OCR (Oscillation Control Register) settings
023 osc_rc equ 081h ; Specifies internal RC oscillation for the system clock
024 osc_xt equ 082h ; Specifies crystal oscillation for the system clock
025
026
027 ; *** Data Segment **
028
029 dseg ; Data segment start
030
031 r0: ds 1 ; Indirect addressing register r0
032 r1: ds 1 ; Indirect addressing register r1
033 r2: ds 1 ; Indirect addressing register r2
034 r3: ds 1 ; Indirect addressing register r3
035 ds 12 ; Other registers reserved for the system
036
037
038 ; *** Code Segment **
039
040 cseg ; Code segment start
041
042 ; *---*
043 ; * User program *
044 ; *---*
VMT-64

C. Sample Program Listings
045 main:
046 call SndInit ; Sound initialization
047
048 loop0:
049 call Snd1Start ; Starts generating tone at approximately 342Hz
050 set1 PCON,0 ; HALT mode until base timer interrupt (0.5 seconds)
051
052 call SndStop ; Buzzer sound off
053 set1 PCON,0 ; HALT mode until base timer interrupt (0.5 seconds)
054
055 call Snd2Start ; Starts generating tone at approximately 781
056 set1 PCON,0 ; HALT mode until base timer interrupt (0.5 seconds)
057
058 call SndStop ; Buzzer sound off
059 set1 PCON,0 ; HALT mode until base timer interrupt (0.5 seconds)
060
061
062 ; ** [M] (mode) Button Check **
063 ld P3
064 bn acc,6,finish ; If the [M] button is pressed, the application ends
065
066 br loop0 ; Repeat
067
068 finish: ; ** Application End Processing **
069 jmp _game_end ; Application end
070
071
072 ; *---*
073 ; * Sound Output-related Routines *
074 ; *---*
075 SndInit: ; *** Sound Output Hardware Initialization ***
076 clr1 P1,7 ; Sets the sound output port
077
078 ret
079
080 Snd1Start: ; *** Start of 342Hz Tone ***
081 mov #0f0h,T1LR ; Cycles = 100h - 0f0h = 16
082 mov #0f8h,T1LC ; L level width = 100h - 0f8h = 8
083 mov #0D0h,T1CNT ; Sound output start
084
085 ret
086
087 Snd2Start: ; *** Start of 781Hz Tone ***
088 mov #0f9h,T1LR ; Cycles = 100h - 0f9h = 7
089 mov #0fch,T1LC ; L level width = 100h - 0fch = 4
090 mov #0D0h,T1CNT ; Sound output start
091
092 ret
093
094 SndStop: ; *** Sound Stop ***
095 mov #0,T1CNT ; Stops sound output
096
097 ret
VMT-65

Visual Memory Unit (VMU) Tutorial Revision
Interrupt Using Timer 0

This sample program generates an interrupt once every second. The program generates a sound when the interrupt
is generated.

The important portion of this program is the routine "T0Mode2Init " in lines 78 through 93. This program uses
Timer 0 in mode 2, as a 16-bit counter with prescaler. Because a 32kHz signal is input to the timer, the program sets
up the timer so that the signal causes an overflow in the prescaler and counter approximately every second.

Because Timer 0 generates an interrupt in response to the overflow, the program provides a handler for that
interrupt. This handler increments the count, resets the interrupt source flag to "0", and then terminates
interrupt processing.

The main routine determines whether the counter value is an even or odd number, and uses this information to
output a high tone and a low tone in alternation. In line 61, the CPU is put into HALT mode, and operation stops
until an interrupt is generated. If a timer 0 interrupt or a port 3 interrupt is generated, processing resumes from the
next line.

• GHEAD.ASM

001 chip LC868700

002 world external

003 ; *---*

004 ; * External header program Ver 1.00*

005 ; * 05/20-'98*

006 ; *---*

007

008 public fm_wrt_ex_exit,fm_vrf_ex_exit

009 public fm_prd_ex_exit,timer_ex_exit,_game_start,_game_end

010 other_side_symbolfm_wrt_in,fm_vrf_in

011 other_side_symbolfm_prd_in,timer_in,game_end

012

013 extern main ; Symbol in the user program

014 extern int_T0H ; Symbol in the user program

015

016 ; *---*

017 ; * Vector table(?) *

018 ; *---*

019 cseg

020 org 0000h

021 _game_start:

022 ;reset:

023 jmpf main ; main program jump

024 org 0003h

025 ;int_03:

026 jmp int_03

027 org 000bh

028 ;int_0b:

029 jmp int_0b

030 org 0013h

031 ;int_13:

032 jmp int_13

033 org 001bh
VMT-66

C. Sample Program Listings
034 ;int_1b:

035 jmp int_1b

036 org 0023h

037 ;int_23:

038 jmp int_23

039 org 002bh

040 ;int_2b:

041 jmp int_2b

042 org 0033h

043 ;int_33:

044 jmp int_33

045 org 003bh

046 ;int_3b:

047 jmp int_3b

048 org 0043h

049 ;int_43:

050 jmp int_43

051 org 004bh

052 ;int_4b:

053 jmp int_4b

054 ; *---*

055 ; * interrupt programs *

056 ; *---*

057 int_03:

058 reti

059 int_0b:

060 reti

061 int_13:

062 reti

063 int_23:

064 jmp int_T0H ; (To user interrupt processing)

065 int_2b:

066 reti

067 int_33:

068 reti

069 int_3b:

070 reti

071 ; *---*

072 int_43:

073 reti

074 int_4b:

075 clr1 p3int,1 ; interrupt flag clear

076 reti

077
VMT-67

Visual Memory Unit (VMU) Tutorial Revision
078 org 0100h

079 ; *---*

080 ; * flash memory write external program*

081 ; *---*

082 fm_wrt_ex:

083 change fm_wrt_in

084 fm_wrt_ex_exit:

085 ret

086 org 0110h

087 ; *---*

088 ; * flash memory verify external program*

089 ; *---*

090 fm_vrf_ex:

091 change fm_vrf_in

092 fm_vrf_ex_exit:

093 ret

094

095 org 0120h

096 ; *---*

097 ; * flash memory page read external program*

098 ; *---*

099 fm_prd_ex:

100 change fm_prd_in

101 fm_prd_ex_exit:

102 ret

103

104 org 0130h

105 ; *---*

106 ; * flash memory => timer call external program*

107 ; *---*

108 int_1b:

109 timer_ex:

110 push ie

111 clr1 ie,7 ; interrupt prohibition

112 change timer_in

113 timer_ex_exit:

114 pop ie

115 reti

116

117 org 01f0h

118 _game_end:

119 change game_end

120 end
VMT-68

C. Sample Program Listings
• TIMER1.ASM

001 ; Tab width = 4

002

003 ;--

004 ; ** Timer/Counter T0 Interrupt Usage Sample 1 **

005 ;

006 ; ·Intermittently sounds the buzzer (every two seconds)

007 ;--

008 ; 1.00 981208 SEGA Enterprises,LTD.

009 ;--

010

011 chip LC868700 ; Specifies the chip type for the assembler

012 world external ; External memory program

013

014 public main ; Symbol referenced from ghead.asm

015 public int_T0H ; Symbol referenced from ghead.asm

016

017 extern _game_end ; Application end

018

019

020 ; **** Definition of System Constants ***************************************

021

022 ; OCR (Oscillation Control Register) settings

023 osc_rc equ 04dh ; Specifies internal RC oscillation for the system clock

024 osc_xt equ 0efh ; Specifies crystal oscillation for the system clock

025

026

027 ; *** Data Segment **

028

029 dseg ; Data segment start

030

031 r0: ds 1 ; Indirect addressing register r0

032 r1: ds 1 ; Indirect addressing register r1

033 r2: ds 1 ; Indirect addressing register r2

034 r3: ds 1 ; Indirect addressing register r3

035 ds 12 ; Other registers reserved for the system

036

037 counter: ds 1 ; Timer interrupt counter

038

039

040 ; *** Code Segment **

041

042 cseg ; Code segment start

043
VMT-69

Visual Memory Unit (VMU) Tutorial Revision
044 ; *---*

045 ; * User program *

046 ; *---*

047 main:

048 call SndInit ; Sound output initialization

049 call T0Mode2Init ; Timer T0 initialization

050 mov #0,counter ; Clears counter

051

052 loop0:

053 ld counter ; Loads the counter value

054 bp acc,1,next1 ; next1 if bit 0 of the counter is "1"

055

056 call Snd2Start ; Starts sound

057 br next2

058 next1:

059 call SndStop ; Stops sound

060 next2:

061 set1 PCON,0 ; HALT mode until next interrupt

062

063

064 ; ** [M] (mode) Button Check **

065 ld P3

066 bn acc,6,finish ; If the [M] button is pressed, the application ends

067

068 br loop0 ; Repeat

069

070 finish: ; ** Application End Processing **

071 jmp _game_end ; Application end

072

073

074 ; *---*

075 ; * Timer/Counter T0 Initialization *

076 ; * Applied an interrupt about once per second in mode 2 (16-bit counter)*

077 ; *---*

078 T0Mode2Init:

079 mov #255,T0PRR ; Sets the prescaler value

080 ; Since this is an 8-bit prescaler:

081 ; Cycle = (256-255) * 0.000183 = 0.000183 (sec.)

082 mov #high(65536-5464),T0HR; Sets preset value (H)

083 mov #low(65536-5464),T0LR ; Sets preset value (L)

084 ; As a set with the prescaler:

085 ; 0.000183 * 5464 = 0.999912 (ª1sec)

086 ; An overflow occurs about once per second

087 mov #0ffh,T0L ; Sets up an immediate initial overflow

088 mov #0ffh,T0H ;

089 mov #0e4h,T0CNT ; Mode 2 (16-bit counter)

090 ; Generates an interrupt according to
 the T0H overflow

091 ; T0 operation start

092
VMT-70

C. Sample Program Listings
093 ret ; T0Mode2Init end

094

095

096 T0HStop: ; *** T0H timer stop ***

097

098 clr1 T0CNT,7 ; T0H count operation stop

099 ret

100

101

102 ; *---*

103 ; * Timer T0H Interrupt Handler *

104 ; *---*

105 int_T0H: ; *** T0H Interrupt Handler ***

106 inc counter

107

108 clr1 T0CNT,3 ; Clears the timer T0H interrupt source

109 reti

110

111

112 ; *---*

113 ; * Sound Output-related Routines *

114 ; *---*

115 SndInit: ; *** Sound Output Hardware Initialization ***

116 clr1 P1,7 ; Sets the sound output port

117

118 ret

119

120 Snd1Start: ; *** Start of 342Hz Tone ***

121 mov #0f0h,T1LR ; Cycles = 100h - 0f0h = 16

122 mov #0f8h,T1LC ; L level width = 100h - 0f8h = 8

123 mov #0D4h,T1CNT ; Sound output start

124

125 ret

126

127 Snd2Start: ; *** Start of 781Hz Tone ***

128 mov #0f9h,T1LR ; Cycles = 100h - 0f9h = 7

129 mov #0fch,T1LC ; L level width = 100h - 0fch = 4

130 mov #0D4h,T1CNT ; Sound output start

131

132 ret

133

134 SndStop: ; *** Sound Stop ***

135 mov #0,T1CNT ; Stops sound output

136

137 ret
VMT-71

Visual Memory Unit (VMU) Tutorial Revision
Serial Communications (Sending Side)

This sample program uses the serial interface to send data values from 0 to 99.

Caution: Conduct serial communications with crystal oscillation.

Perform reception with the "Serial Communications (Receiving Side)" that is described on the following page.

Line 53 disables automatic low battery detection. The actual routines are "BattChkOn " and "BattChkOff " in line
158 and beyond.

Line 56 initializes the serial interface. The actual initialization routine starts in line 95. This routine is very detailed,
so we recommend simply copying this code and using it as is.

After initialization, a counter is incremented by the base timer interrupt, which is generated every 0.5 seconds. The
value of this counter is sent through the serial interface.

If this program is halted by pressing the MODE button, the standard value is written for the serial interface again
(in the "SioEnd " routine that starts from line 126), automatic low battery detection is enabled again, and the
program ends.

• GHEAD.ASM

001 chip LC868700

002 world external

003 ; *---*

004 ; * External header program Ver 1.00*

005 ; * 05/20-'98*

006 ; *---*

007

008 public fm_wrt_ex_exit,fm_vrf_ex_exit

009 public fm_prd_ex_exit,timer_ex_exit,_game_start,_game_end

010 other_side_symbolfm_wrt_in,fm_vrf_in

011 other_side_symbolfm_prd_in,timer_in,game_end

012

013 extern main ; Symbol in the user program

014 extern int_BaseTimer ; Symbol in the user program

015

016 ; *---*

017 ; * Vector table(?) *

018 ; *---*

019 cseg

020 org 0000h

021 _game_start:

022 ;reset:

023 jmpf main ; main program jump

024 org 0003h

025 ;int_03:

026 jmp int_03

027 org 000bh

028 ;int_0b:

029 jmp int_0b
VMT-72

C. Sample Program Listings
030 org 0013h

031 ;int_13:

032 jmp int_13

033 org 001bh

034 ;int_1b:

035 jmp int_1b

036 org 0023h

037 ;int_23:

038 jmp int_23

039 org 002bh

040 ;int_2b:

041 jmp int_2b

042 org 0033h

043 ;int_33:

044 jmp int_33

045 org 003bh

046 ;int_3b:

047 jmp int_3b

048 org 0043h

049 ;int_43:

050 jmp int_43

051 org 004bh

052 ;int_4b:

053 jmp int_4b

054 ; *---*

055 ; * interrupt programs *

056 ; *---*

057 int_03:

058 reti

059 int_0b:

060 reti

061 int_13:

062 reti

063 int_23:

064 reti

065 int_2b:

066 reti

067 int_33:

068 reti

069 int_3b:

070 reti

071 ; *---*

072 int_43:

073 reti

074 int_4b:

075 clr1 p3int,1 ; interrupt flag clear

076 reti

077
VMT-73

Visual Memory Unit (VMU) Tutorial Revision
078 org 0100h

079 ; *---*

080 ; * flash memory write external program*

081 ; *---*

082 fm_wrt_ex:

083 change fm_wrt_in

084 fm_wrt_ex_exit:

085 ret

086 org 0110h

087 ; *---*

088 ; * flash memory verify external program*

089 ; *---*

090 fm_vrf_ex:

091 change fm_vrf_in

092 fm_vrf_ex_exit:

093 ret

094

095 org 0120h

096 ; *---*

097 ; * flash memory page read external program*

098 ; *---*

099 fm_prd_ex:

100 change fm_prd_in

101 fm_prd_ex_exit:

102 ret

103

104 org 0130h

105 ; *---*

106 ; * flash memory => timer call external program*

107 ; *---*

108 int_1b:

109 timer_ex:

110 push ie

111 clr1 ie,7 ; interrupt prohibition

112 change timer_in

113 timer_ex_exit:

114 call int_BaseTimer ; User interrupt processing

115 pop ie

116 reti

117

118 org 01f0h

119 _game_end:

120 change game_end

121 end
VMT-74

C. Sample Program Listings
• TIMER1.ASM

001 ; Tab width = 4

002

003 ;--

004 ; ** Serial Communications Sample 1 (Data Transmission) **

005 ;

006 ; ·Sends simple data through the serial communications port on a regular cycle

007 ;--

008 ; 1.01 990208 SEGA Enterprises,LTD.

009 ;--

010

011 chip LC868700 ; Specifies the chip type for the assembler

012 world external ; External memory program

013

014 public main ; Symbol referenced from ghead.asm

015 public int_BaseTimer ; Symbol referenced from ghead.asm

016

017 extern _game_end ; Application end

018

019

020 ; **** Definition of System Constants ***************************************

021

022 ; OCR (Oscillation Control Register) settings

023 osc_rc equ 04dh ; Specifies internal RC oscillation for the system clock

024 osc_xt equ 0efh ; Specifies crystal oscillation for the system clock

025

026 LowBattChkequ 06eh ; Low battery detection flag (RAM bank 0)

027

028

029 ; *** Data Segment **

030

031 dseg ; Data segment start

032

033 r0:ds 1 ; Indirect addressing register r0

034 r1:ds 1 ; Indirect addressing register r1

035 r2:ds 1 ; Indirect addressing register r2

036 r3:ds 1 ; Indirect addressing register r3

037 ds 12 ; Other registers

038

039 counter: ds 1 ; Counter

040

041

042 ; *** Code Segment **

043

044 cseg ; Code segment start

045
VMT-75

Visual Memory Unit (VMU) Tutorial Revision
046 ; *---*

047 ; * User program *

048 ; *---*

049 main:

050 push PSW ; Pushes the PSW value onto the stack

051 set1 PSW,1 ; Selects data RAM bank 1

052

053 call BattChkOff ; Turns off the low battery automatic detection function

054

055 cwait:

056 call SioInit ; Serial communications initialization

057 bz start ; Starts if VM is connected

058

059 ld P3 ; [M] button check

060 bn acc,6,finish ; If the [M] button is pressed, the application ends

061

062 jmp cwait ; Waits until VM is connected

063 start:

064

065 set1 pcon,0 ; Waits in HALT mode until next interrupt (0.5 seconds)

066

067 mov #0,counter ; Resets the counter value to "0"

068 loop0:

069 ld counter ; Loads the counter value

070

071 call SioSend1 ; Sends one byte

072

073 set1 pcon,0 ; Waits in HALT mode until next interrupt (0.5 seconds)

074

075 ; [M] (mode) Button Check

076 ld P3

077 bn acc,6,finish ; If the [M] button is pressed, the application ends

078

079 jmp loop0 ; Repeat

080

081 finish: ; ** Application End Processing **

082 call SioEnd ; Serial communications end processing

083 call BattChkOn ; Turns on the low battery automatic detection function

084 pop PSW ; Pops the PSW value off of the stack

085 jmp _game_end ; Application end

086
VMT-76

C. Sample Program Listings
087 ; *---*

088 ; * Serial Communications Initialization *

089 ; * Outputs:acc = 0 : Normal end *

090 ; * acc = 0ffh: VM not connected *

091 ; *---*

092 ; Serial communications initialization

093 ; This sample assumes that the system clock is in crystal mode.

094

095 SioInit:

096 ; **** VM Connection Check ****

097 ld P7 ; Checks the connection status

098 and #%00001101 ; Checks P70, P72, P73

099 sub #%00001000 ; P70 = 0, P72 = 0, P73 = 1

100 bz next2 ; To next2 if connected

101

102 mov #0ffh,acc; If not connected, abnormal end with acc = 0ffh

103 ret ; SioInit end

104 next2:

105

106 ; **** Serial Communications Initialization ****

107 mov #0,SCON0 ; Specifies output as 'LSB first'

108 mov #0,SCON1 ; Specifies input as 'LSB first'

109 mov #0ddh,SBR ; Sets the transfer rate

110 clr1 P1,0 ; Clears the P10 latch (P10/S00)

111 clr1 P1,2 ; Clears the P12 latch (P12/SCK0)

112 clr1 P1,3 ; Clears the P13 latch (P13/S01)

113

114 mov #%00000101,P1FCR ; Sets the pin functions

115 mov #%00000101,P1DDR ; Sets the pin functions

116

117 mov #0,SBUF0 ; Clears the transfer buffer

118 mov #0,SBUF1 ; Clears the transfer buffer

119

120 ret ; SioInit end

121

122

123 ; *---*

124 ; * Serial Communications End *

125 ; *---*

126 SioEnd: ; **** Serial Communications End Processing ****

127

128 mov #0,SCON0 ; SCON0 = 0

129 mov #0,SCON1 ; SCON1 = 0

130 mov #0bfh,P1FCR ; P1FCR = 0bfh

131 mov #0a4h,P1DDR ; P1DDR = 0a4h

132

133 ret ; SioEnd end

134

135
VMT-77

Visual Memory Unit (VMU) Tutorial Revision
136 ; *---*

137 ; * Sending 1 Byte from a Serial Port *

138 ; * Inputs: acc: Transmission data *

139 ; *---*

140 SioSend1: ; **** Sending 1 Byte ****

141

142 push acc ; Pushes the transmission data onto the stack

143

144 sslp1: ld SCON0 ; Waits, if the previous data is still being sent

145 bp acc,3,sslp1 ;

146

147 pop acc ; Pops the transmission data off of the stack

148

149 st SBUF0 ; Sets the data to be transferred

150 set1 SCON0,3 ; Starts sending

151

152 ret ; SioSend1 end

153

154

155 ; *---*

156 ; * Low Battery Automatic Detection Function ON*

157 ; *---*

158 BattChkOn:

159 push PSW ; Pushes the PSW value onto the stack

160

161 clr1 PSW,1 ; Selects data RAM bank 0

162 mov #0,acc ; Detects low battery (0)

163 st LowBattChk ; Low battery automatic detection flag (RAM bank 0)

164

165 pop PSW ; Pops the PSW value off of the stack

166 ret ; BattChkOn end

167

168

169 ; *---*

170 ; * Low Battery Automatic Detection Function OFF*

171 ; *---*

172 BattChkOff:

173 push PSW ; Pushes the PSW value onto the stack

174

175 clr1 PSW,1 ; Selects data RAM bank 0

176 mov #0ffh,acc ; Does not detect low battery (0ffh)

177 st LowBattChk ; Low battery automatic detection flag (RAM bank 0)

178

179 pop PSW ; Pops the PSW value off of the stack

180 ret ; BattChkOff end

181

182
VMT-78

C. Sample Program Listings
183 ; *---*

184 ; * Base Timer Interrupt Handler *

185 ; *---*

186 int_BaseTimer:

187 push PSW ; Pushes the PSW value onto the stack

188 push acc

189

190 set1 PSW,1 ; Selects data RAM bank 1

191

192 inc counter ; Increments the counter

193

194 ld counter ; If the counter value is:

195 bne #100,next1 ; not 100, then next1

196 mov #0,counter ; 100, then reset to '0'

197 next1:

198 pop acc

199 pop PSW ; Pops the PSW value off of the stack

200

201 clr1 BTCR,1 ; Clears the base timer interrupt source

202 ret ; User interrupt processing end
VMT-79

Visual Memory Unit (VMU) Tutorial Revision
Serial Communications (Receiving Side)

This sample program uses the serial interface to receive data.

Because this program is intended to primarily explain serial communications, it does not use SIO interrupts. For
details on serial communications in actual practice, refer to the "General-purpose Serial Driver," described on the
next page.

The program stops automatic low battery detection and initializes the serial interface.

Line 64 checks whether there is a byte of data in the serial interface. If there is, the received data is converted to a
decimal value by the "put2digit " routine and is displayed on the LCD.

If this program is halted by pressing the MODE button, the standard value is written for the serial interface again
(in the "SioEnd " routine that starts from line 121), automatic low battery detection is enabled again, and the
program ends.

Caution: If data is sent before reception processing is completed, a data overflow occurs. This is not a problem in
this sample program because the "Serial Communications (Sending Side)" sample program sends data
every 0.5 seconds.
When receiving data consecutively, use the SIO interrupts.

001 ; Tab width = 4

002

003 ;--

004 ; ** Serial Communications Sample 2 (Data Reception) **

005 ;

006 ; ·Displays a numeric value that was received from the serial communications

 port on the LCD

007 ;--

008 ; 1.01 990208 SEGA Enterprises,LTD.

009 ;--

010

011 chip LC868700 ; Specifies the chip type for the assembler

012 world external ; External memory program

013

014 public main ; Symbol referenced from ghead.asm

015

016 extern _game_end ; Application end

017

018

019 ; **** Definition of System Constants ***************************************

020

021 ; OCR (Oscillation Control Register) settings

022 osc_rc equ 04dh ; Specifies internal RC oscillation for the system clock

023 osc_xt equ 0efh ; Specifies crystal oscillation for the system clock

024

025 LowBattChkequ 06eh ; Low battery detection flag (RAM bank 0)

026

027

028 ; *** Data Segment **

029
VMT-80

C. Sample Program Listings
030 dseg ; Data segment start
031
032 r0: ds 1 ; Indirect addressing register r0
033 r1: ds 1 ; Indirect addressing register r1
034 r2: ds 1 ; Indirect addressing register r2
035 r3: ds 1 ; Indirect addressing register r3
036 ds 12 ; Other registers
037
038 counter:ds 1 ; Counter
039 work1: ds 1 ; Work (used in put2digit)
040
041
042 ; *** Code Segment **
043
044 cseg ; Code segment start
045
046 ; *---*
047 ; * User program *
048 ; *---*
049 main:
050 call cls ; Clears the LCD display
051 call BattChkOff ; Turns off the low battery automatic detection function
052
053 cwait:
054 call SioInit ; Serial communications initialization
055 bz start ; Starts if VM is connected
056
057 ld P3 ; [M] button check
058 bn acc,6,finish ; If the [M] button is pressed, the application ends
059
060 jmp cwait ; Waits until VM is connected
061 start:
062
063 loop0:
064 call SioRecv1 ; Receives one byte
065 bnz next4 ; If there is no received data, then goes to next4
066
067 ld b ; Loads the received data into acc
068 mov #2,c ; Display coordinates (horizontal)
069 mov #1,b ; Display coordinates (vertical)
070 call put2digit ; Displays the two-digit value on the LCD
071
072 next4: ; ** [M] (mode) Button Check **
073 ld P3
074 bn acc,6,finish ; If the [M] button is pressed, the application ends
075
076 jmp loop0 ; Repeat
077
078 finish: ; ** Application End Processing **
079 call SioEnd ; Serial communications end processing
080 call BattChkOn ; Turns on the low battery automatic detection function
081 jmp _game_end ; Application end
082
VMT-81

Visual Memory Unit (VMU) Tutorial Revision
083 ; *---*

084 ; * Serial Communications Initialization *

085 ; * Outputs:acc = 0 : Normal end *

086 ; * acc = 0ffh: VM not connected *

087 ; *---*

088 ; Serial communications initialization

089 ; This sample assumes that the system clock is in crystal mode.

090 SioInit:

091 ; **** VM Connection Check ****

092 ld P7 ; Checks the connection status

093 and #%00001101 ; Checks P70, P72, P73

094 sub #%00001000 ; P70 = 0, P72 = 0, P73 = 1

095 bz next3 ; To next3 if connected

096

097 mov #0ffh,acc ; If not connected, abnormal end with acc = 0ffh

098 ret ; SioInit end

099 next3:

100

101 ; **** Serial Communications Initialization ****

102 mov #0,SCON0 ; Specifies output as 'LSB first'

103 mov #0,SCON1 ; Specifies input as 'LSB first'

104 mov #088h,SBR ; Sets the transfer rate

105 clr1 P1,0 ; Clears the P10 latch (P10/S00)

106 clr1 P1,2 ; Clears the P12 latch (P12/SCK0)

107 clr1 P1,3 ; Clears the P13 latch (P13/S01)

108

109 mov #%00000101,P1FCR ; Sets the pin functions

110 mov #%00000101,P1DDR ; Sets the pin functions

111

112 mov #0,SBUF0 ; Clears the transfer buffer

113 mov #0,SBUF1 ; Clears the transfer buffer

114

115 ret ; SioInit end

116

117

118 ; *---*

119 ; * Serial Communications End *

120 ; *---*

121 SioEnd: ; **** Serial Communications End Processing ****

122

123 mov #0,SCON0 ; SCON0 = 0

124 mov #0, SCON1 ; SCON1 = 0

125 mov #0bfh,P1FCR ; P1FCR = 0bfh

126 mov #0a4h,P1DDR ; P1DDR = 0a4h

127

128 ret ; SioEnd end

129

130
VMT-82

C. Sample Program Listings
131 ; *---*
132 ; * Receiving 1 Byte from a Serial port *
133 ; * Outputs: b: Received data *
134 ; * acc = 0 : Received data found *
135 ; * acc = 0ffh: Received data not found*
136 ; *---*
137 SioRecv1: ; **** Receiving 1 Byte ****
138 ld SCON1
139 bp acc,1,next5 ; If received data is found, then go to next5
140 bp acc,3,next6 ; If transfer is currently in progress, then go to next6
141
142 set1 SCON1,3 ; Starts transfer
143 next6:
144 mov #0ffh,acc; Returns with acc = 0ffh (received data not found)
145 ret ; SioRecv1 end
146 next5:
147
148 ld SBUF1 ; Loads the received data
149 st b ; Copies the data into b
150
151 clr1 SCON1,1 ; Resets the transfer end flag
152
153 mov #0,acc ; Returns with acc = 0 (received data found)
154 ret ; SioRecv1 end
155
156
157 ; *---*
158 ; * Displaying a two-digit value *
159 ; * Inputs: acc: Numeric value *
160 ; * c: Horizontal position of character*
161 ; * b: Vertical position of character*
162 ; *---*
163 put2digit:
164 push b ; Pushes the coordinate data onto the stack
165 push c ;
166 st c ; Calculates the tens digit and the ones digit
167 xor a ; (acc = acc/10, work1 = acc mod 10)
168 mov #10,b ;
169 div ;
170 ld b ;
171 st work1 ; Stores the ones digit in work1
172 ld c ;
173 pop c ; Pops the coordinate values into (c, b)
174 pop b ;
175 push b ; Pushes the coordinates onto the stack again
176 push c ;
177 call putch ; Displays the tens digit
178 ld work1 ; Loads the ones digit
179 pop c ; Pops the coordinate values into (c, b)
180 pop b ;
181 inc c ; Moves the display coordinates to the right
182 call putch ; Displays the ones digit
183
184 ret ; put2digit end
185
186
VMT-83

Visual Memory Unit (VMU) Tutorial Revision
187 ; *---*

188 ; * Clearing the LCD Display Image *

189 ; *---*

190 cls:

191 push OCR ; Pushes the OCR value onto the stack

192 mov #osc_rc,OCR ; Specifies the system clock

193

194 mov #0,XBNK ; Specifies the display RAM bank address (BANK0)

195 call cls_s ; Clears the data in that bank

196

197 mov #1,XBNK ; Specifies the display RAM bank address (BANK1)

198 call cls_s ; Clears the data in that bank

199 pop OCR ; Pops the OCR value off of the stack

200

201 ret ; cls end

202

203 cls_s: ; *** Clearing One Bank of Display RAM ***

204 mov #80h,r2 ; Points the indirect addressing register at the
 start of display RAM

205 mov #80h,b ; Sets the number of loops in loop counter b

206 loop3:

207 mov #0,@r2 ; Writes "0" while incrementing the address

208 inc r2 ;

209 dbnz b,loop3 ; Repeats until b is "0"

210

211 ret ; cls_s end

212

213

214 ; *---*

215 ; * Displaying One Character in a Specified Position*

216 ; * Inputs: acc: Character code *

217 ; * c: Horizontal position of character*

218 ; * b: Vertical position of character*

219 ; *---*

220 putch:

221 push XBNK

222 push acc

223 call locate ; Calculates display RAM address according to coordinates

224 pop acc

225 call put_chara ; Displays one character

226 pop XBNK

227

228 ret ; putch end

229

230
VMT-84

C. Sample Program Listings
231 locate: ; **** Calculating the Display RAM Address According to the Display
Position Specification ****

232 ; ** Inputs: c: Horizontal position (0 to 5) b: Vertical position (0 to 3)

233 ; ** Outputs: r2: RAM address XBNK: Display RAM bank

234

235 ; *** Determining the Display RAM Bank Address ***

236 ld b ; Jump to next1 when b >= 2

237 sub #2 ;

238 bn PSW,7,next1 ;

239

240 mov #00h,XBNK ; Specifies the display RAM bank address (BANK0)

241 br next2

242 next1:

243 st b

244 mov #01h,XBNK ; Specifies the display RAM bank address (BANK1)

245 next2:

246

247 ; *** Calculating the RAM Address for a Specified Position on the Display ***

248 ld b ; b * 40h + c + 80h

249 rol ;

250 rol ;

251 rol ;

252 rol ;

253 rol ;

254 rol ;

255 add c ;

256 add #80h ;

257 st r2 ; Stores the RAM address in r2

258

259 ret ; locate end

260

261

262 put_chara:

263 push PSW ; Pushes the PSW value onto the stack

264 set1 PSW,1 ; Selects data RAM bank 1

265

266 ; *** Calculating the Character Data Address ***

267 rol ; (TRH,TRL) = acc*8 + fontdata

268 rol ;

269 rol ;

270 add #low(fontdata) ;
271 st TRL ;
272 mov #0,acc ;
273 addc #high(fontdata) ;
274 st TRH ;
275
276 push OCR ; Pushes the OCR value onto the stack
277 mov #osc_rc,OCR ; Specifies the system clock
278
279 mov #0,b ; Offset value for loading the character data
280 mov #4,c ; Loop counter
VMT-85

Visual Memory Unit (VMU) Tutorial Revision
281 loop1:

282 ld b ; Loads the display data for the first line

283 ldc ;

284 inc b ; Increments the load data offset by 1

285 st @r2 ; Transfers the display data to display RAM

286 ld r2 ; Adds 6 to the display RAM address

287 add #6 ;

288 st r2 ;

289

290 ld b ; Loads the display data for the second line

291 ldc ;

292 inc b ; Increments the load data offset by 1

293 st @r2 ; Transfers the display data to display RAM

294 ld r2 ; Adds 10 to the display RAM address

295 add #10 ;

296 st r2 ;

297

298 dec c ; Decrements the loop counter

299 ld c ;

300 bnz loop1 ; Repeats for 8 lines (four times)

301

302 pop OCR ; Pops the OCR value off of the stack

303 pop PSW ; Pops the PSW value off of the stack

304

305 ret ; put_chara end

306

307

308 ; *---*

309 ; * Character Bit Image Data *

310 ; *---*

311 fontdata:

312 db 07ch, 0e6h, 0c6h, 0c6h, 0c6h, 0ceh, 07ch, 000h ; '0' 00

313 db 018h, 038h, 018h, 018h, 018h, 018h, 03ch, 000h ; '1' 01

314 db 07ch, 0c6h, 0c6h, 00ch, 038h, 060h, 0feh, 000h ; '2' 02

315 db 07ch, 0e6h, 006h, 01ch, 006h, 0e6h, 07ch, 000h ; '3' 03

316 db 00ch, 01ch, 03ch, 06ch, 0cch, 0feh, 00ch, 000h ; '4' 04

317 db 0feh, 0c0h, 0fch, 006h, 006h, 0c6h, 07ch, 000h ; '5' 05

318 db 01ch, 030h, 060h, 0fch, 0c6h, 0c6h, 07ch, 000h ; '6' 06

319 db 0feh, 0c6h, 004h, 00ch, 018h, 018h, 038h, 000h ; '7' 07

320 db 07ch, 0c6h, 0c6h, 07ch, 0c6h, 0c6h, 07ch, 000h ; '8' 08

321 db 07ch, 0c6h, 0c6h, 07eh, 006h, 00ch, 078h, 000h ; '9' 09

322

323
VMT-86

C. Sample Program Listings
324 ; *---*

325 ; * Low Battery Automatic Detection Function ON*

326 ; *---*

327 BattChkOn:

328 push PSW ; Pushes the PSW value onto the stack

329

330 clr1 PSW,1 ; Selects data RAM bank 0

331 mov #0,acc ; Detects low battery (0)

332 st LowBattChk ; Low battery automatic detection flag (RAM bank
0)

333

334 pop PSW ; Pops the PSW value off of the stack

335 ret ; BattChkOn end

336

337

338 ; *---*

339 ; * Low Battery Automatic Detection Function OFF*

340 ; *---*

341 BattChkOff:

342 push PSW ; Pushes the PSW value onto the stack

343

344 clr1 PSW,1 ; Selects data RAM bank 0

345 mov #0ffh,acc; Does not detect low battery (0ffh)

346 st LowBattChk ; Low battery automatic detection flag (RAM bank
0)

347

348 pop PSW ; Pops the PSW value off of the stack

349 ret ; BattChkOff end
VMT-87

Visual Memory Unit (VMU) Tutorial Revision
General-purpose Serial Driver

This is a serial transmission/reception program that uses a general-purpose serial driver with a buffer that uses the
port 3 interrupt.

If this program is executed on two Visual Memory units, it can be used to send data back and forth between the
units and to display the data on their LCDs.

The main routine checks the reception buffer and, if data is found, it gives the highest priority to displaying the
received data on the LCD. If the buffer is empty, the program outputs the data to be sent ("0" to "99"). The data that
is to be sent is incremented once every 0.5 seconds in response to the base timer interrupt.

The "SioInit " routine in lines 128 to 161 confirm that Visual Memory is connected, initialize the interface, initialize
the buffer (RAM), and enable the SIO interrupts. The "SioGet1" routine in lines 203 to 245 get one byte of data that
is waiting in the reception buffer.

The SIO reception handler, which operates when an SIO interrupt is received, is the "int_SioRx " routine in lines
278 to 317. The received data is stored in the buffer.

Caution: When performing communications using this sample program on both the receiving side and the
sending side, no data overflow occurs, but when transferring data consecutively, a wait for a fixed time
period should be inserted after each send.

If this sample program is used with the previous "Serial Communications (Receiving Side)" sample program, data
overflows will occur and smooth communications will not be possible.

• GHEAD.ASM

001 chip LC868700

002 world external

003 ; *---*

004 ; * External header program Ver 1.00*

005 ; * 05/20-'98*

006 ; *---*

007

008 public fm_wrt_ex_exit,fm_vrf_ex_exit

009 public fm_prd_ex_exit,timer_ex_exit,_game_start,_game_end

010 other_side_symbolfm_wrt_in,fm_vrf_in

011 other_side_symbolfm_prd_in,timer_in,game_end

012

013 extern main ; Symbol in the user program

014 extern int_BaseTimer ; Symbol in the user program

015 extern int_SioRx ; Symbol in the user program

016
VMT-88

C. Sample Program Listings
017 ; *---*

018 ; * Vector table(?) *

019 ; *---*

020 cseg

021 org 0000h

022 _game_start:

023 ;reset:

024 jmpf main ; main program jump

025 org 0003h

026 ;int_03:

027 jmp int_03

028 org 000bh

029 ;int_0b:

030 jmp int_0b

031 org 0013h

032 ;int_13:

033 jmp int_13

034 org 001bh

035 ;int_1b:

036 jmp int_1b

037 org 0023h

038 ;int_23:

039 jmp int_23

040 org 002bh

041 ;int_2b:

042 jmp int_2b

043 org 0033h

044 ;int_33:

045 jmp int_33

046 org 003bh

047 ;int_3b:

048 jmp int_3b

049 org 0043h

050 ;int_43:

051 jmp int_43

052 org 004bh

053 ;int_4b:

054 jmp int_4b
VMT-89

Visual Memory Unit (VMU) Tutorial Revision
055 ; *---*

056 ; * interrupt programs *

057 ; *---*

058 int_03:

059 reti

060 int_0b:

061 reti

062 int_13:

063 reti

064 int_23:

065 reti

066 int_2b:

067 reti

068 int_33:

069 reti

070 int_3b:

071 jmp int_SioRx ; SIO reception interrupt handler

072

073 ; *---*

074 int_43:

075 reti

076 int_4b:

077 clr1 p3int,1 ; interrupt flag clear

078 reti

079

080 org 0100h

081 ; *---*

082 ; * flash memory write external program*

083 ; *---*

084 fm_wrt_ex:

085 change fm_wrt_in

086 fm_wrt_ex_exit:

087 ret

088 org 0110h

089 ; *---*

090 ; * flash memory verify external program*

091 ; *---*

092 fm_vrf_ex:

093 change fm_vrf_in

094 fm_vrf_ex_exit:

095 ret

096

097 org 0120h
VMT-90

C. Sample Program Listings
098 ; *---*

099 ; * flash memory page read external program*

100 ; *---*

101 fm_prd_ex:

102 change fm_prd_in

103 fm_prd_ex_exit:

104 ret

105

106 org 0130h

107 ; *---*

108 ; * flash memory => timer call external program *

109 ; *---*

110 int_1b:

111 timer_ex:

112 push ie

113 clr1 ie,7 ; interrupt prohibition

114 change timer_in

115 timer_ex_exit:

116 call int_BaseTimer ; (User interrupt processing)

117 pop ie

118 reti

119

120 org 01f0h

121 _game_end:

122 change game_end

123 end

• TIMER1.ASM

001 ; Tab width = 4

002
003 ;--
004 ; ** Serial Communications Sample 3 (Interrupt-Driven Serial Driver with

 Reception Buffer) **
005 ;
006 ; ·Demonstrates the usage of a serial communications driver with a 16-byte

 reception buffer
007 ; ·Displays the received data values
008 ; ·Sends simple data on a regular cycle
009 ;--
010 ; 1.01 990208 SEGA Enterprises,LTD.
011 ;--
012
013 chip LC868700 ; Specifies the chip type for the assembler
014 world external ; External memory program
015
016 public main ; Symbol referenced from ghead.asm
017 public int_BaseTimer ; Symbol referenced from ghead.asm
018 public int_SioRx ; Symbol referenced from ghead.asm
019
020 extern _game_end ; Application end
021

022
VMT-91

Visual Memory Unit (VMU) Tutorial Revision
023 ; **** Definition of System Constants **********************************

024

025 ; OCR (Oscillation Control Register) settings

026 osc_rc equ 04dh ; Specifies internal RC oscillation for the system clock

027 osc_xt equ 0efh ; Specifies crystal oscillation for the system clock

028

029 LowBattChk equ 06eh ; Low battery detection flag (RAM bank 0)

030

031 SioRxCueSizeequ 16 ; Serial communications buffer size

032

033

034 ; *** Data Segment ***

035

036 dseg ; Data segment start

037

038 r0:ds 1 ; Indirect addressing register r0

039 r1:ds 1 ; Indirect addressing register r1

040 r2:ds 1 ; Indirect addressing register r2

041 r3:ds 1 ; Indirect addressing register r3

042 ds 12 ; Other registers

043

044 ; ** For Serial Driver **

045 SioRxCueBehind: ds 1 ; Amount of received data waiting

046 SioRxCueRPnt: ds 1 ; Reception buffer reading point

047 SioRxCueWPnt: ds 1 ; Reception buffer writing point

048 SioRxCue: ds SioRxCueSize ; Reception buffer

049 SioOverRun: ds 1 ; Reception overrun flag

050

051 ; ** Work Areas for Usage Sample **

052 bcount: ds 1 ; Base clock counter

053 work1: ds 1 ; Work 1

054 work2: ds 1 ; Work 2

055

056 work0: ds 1 ; Work (put2digit)

057

058

059 ; *** Code Segment **

060

061 cseg ; Code segment start

062
VMT-92

C. Sample Program Listings
063 ; *---*
064 ; * Serial Communications Driver Usage Sample *
065 ; * Sends simple data at a regular interval *
066 ; * Displays the received data values on the LCD*
067 ; *---*
068 main:
069 mov #0,bcount
070 mov #0,work1 ; Initial value of transmission data
071 clr1 P3INT,0 ; Masks P3 interrupts
072 call cls ; Clears the LCD
073 call BattChkOff ; Turns off the low battery automatic detection function
074 call SioInit ; Serial communications initialization
075 bnz finish ; Ends if VM is not connected
076
077 stlp1:
078 ; *** Displaying If Data Has Been Received ***
079 call SioGet1 ; 1-byte reception
080 be #0ffh,stnx1 ; Skip if no data has been received
081 bz stnx3 ; If normal received data is found, go to stnx3
082 error: br finish ; Forcibly terminate if an error is detected
083 stnx3:
084 ld b ; Load received data from b -> acc
085 mov #0,c ; Display coordinate (horizontal)
086 mov #0,b ; Display coordinate (vertical)
087 call put2digit ; Displays numeric value on the LCD
088 br stlp1 ; Continues to repeat as long as there is received data
089 stnx1: ;
090
091 set1 pcon,0 ; Waits until next interrupt
092
093 ; *** Sending Simple Data at a Regular Interval ***
094 ld bcount ; Base timer counter value
095 be work2,stnx4 ; Does not send if unchanged
096 st work2 ; Updates work2
097
098 ld work1 ; Loads the transmission data
099 call SioPut1 ; Sends
100
101 inc work1 ; Updates the transmission data
102 ld work1 ; (Sends values form 0 to 99, in sequence)
103 bne #100,stnx2 ;
104 mov #0,work1 ;
105 stnx2: ;
106 stnx4:
107
108 ; ** [M] (mode) Button Check **
109 ld P3
110 bn acc,6,finish ; If the [M] button is pressed, the application ends
111
112 jmp stlp1 ; Repeat
113
114 finish: ; ** Application End Processing **
115 call SioEnd ; Serial communications end processing
116 call BattChkOn ; Turns on the low battery automatic detection function
117 jmp _game_end ; Application end
118
VMT-93

Visual Memory Unit (VMU) Tutorial Revision
119 ; *===*

120 ; ***** Simple Serial Communications Driver *****

121 ; *===*

122

123 ; *---*

124 ; * Serial communications initialization *

125 ; * *

126 ; * This sample assumes that the system clock is in crystal mode.*

127 ; *---*

128 SioInit:

129 ; **** VM Connection Check ****

130 ld P7 ; Checks the connection status

131 and #%00001101 ; Checks P70, P72, P73

132 be #%00001000,next3 ; P70 = 0, P72 = 0, P73 = 1

133 ; To next3 if connected

134 mov #0ffh,acc ; If not connected, abnormal end with acc = 0ffh

135 ret ; SioInit end

136 next3:

137

138 ; **** Serial Communications Initialization ****

139 mov #0,SCON0 ; Specifies output as 'LSB first'

140 mov #0,SCON1 ; Specifies input as 'LSB first'

141 mov #0ddh,SBR ; Sets the transfer rate

142 clr1 P1,0 ; Clears the P10 latch (P10/S00)

143 clr1 P1,2 ; Clears the P12 latch (P12/SCK0)

144 clr1 P1,3 ; Clears the P13 latch (P13/S01)

145

146 mov #%00000101,P1FCR ; Sets the pin functions

147 mov #%00000101,P1DDR ; Sets the pin functions

148

149 mov #0,SBUF0 ; Clears the transfer buffer

150 mov #0,SBUF1 ; Clears the transfer buffer

151
152 mov #0,acc
153 st SioRxCueBehind ; Resets amount of received data waiting
154 st SioRxCueRPnt ; Reception buffer reading point
155 st SioRxCueWPnt ; Reception buffer writing point
156 st SioOverRun ; Resets reception overrun flag
157
158 set1 SCON1,0 ; Receiving side transfer end interrupt enable
159 set1 SCON1,3 ; Receiving standby
160
161 ret ; SioInit end
162
163
VMT-94

C. Sample Program Listings
164 ; *---*

165 ; * Serial Communications End *

166 ; *---*

167 SioEnd: ; **** Serial Communications End Processing ****

168

169 mov #0,SCON0 ; SCON0 = 0

170 mov #0, SCON1 ; SCON1 = 0

171 mov #0bfh,P1FCR ; P1FCR = 0bfh

172 mov #0a4h,P1DDR ; P1DDR = 0a4h

173

174 ret ; SioEnd end

175

176

177 ; *---*

178 ; * Sending 1 Byte *

179 ; * *

180 ; * Inputs: acc: Transmission data *

181 ; *---*

182 SioPut1:

183 push acc ; Pushes the transmission data onto the stack

184 splp1: ld SCON0 ; Waits until any previous transfer is completed

185 bp acc,3,splp1 ;

186 pop acc ; Pops the transmission data off of the stack

187

188 st SBUF0 ; Sets the data to be transferred

189 set1 SCON0,3 ; Starts sending

190

191 ret ; SioPut1 end

192

193

194 ; *---*

195 ; * Reading 1 Byte from the Reception Buffer (Asynchronous Reception)*

196 ; * *

197 ; * Outputs: acc: 0 = Normal end *

198 ; * 0ffh = No received data *

199 ; * 0feh = Buffer overflow *

200 ; * 0fdh = Overrun error *

201 ; * b: Received data (Valid only in the case of normal end.)*

202 ; *---*

203 SioGet1:

204 ; ** Waiting Data Amount check**

205 ld SioRxCueBehind ; Waiting amount of data

206 bnz sgnx1 ; When waiting amount != 0

207 mov #0ffh,acc ; When waiting amount == 0

208 ret ; Returns when acc = 0ffh (no received data)

209 sgnx1:

210 ; ** Buffer Overflow Detection **

211 ; SioRxCueBehind - SioRxCueSize

212 be #SioRxCueSize,sgnx3 ; SioRxCueBehind == SioRxCueSize

213 bp PSW,7,sgnx3 ; SioRxCueBehind < SioRxCueSize
VMT-95

Visual Memory Unit (VMU) Tutorial Revision
214 ; SioRxCueBehind > SioRxCueSize

215 mov #0feh,acc ; When the buffer capacity has been exceeded

216 ret ; Return when acc = 0feh (buffer overflow)

217 sgnx3:

218 ; ** Overrun Error Detection **

219 ld SioOverRun ; Overrun flag

220 bz sgnx4 ; Not detected

221 mov #0fdh,acc ; Detected

222 ret ; Return when acc = 0fdh (overrun error)

223 sgnx4:

224

225 dec SioRxCueBehind ; dec waiting amount

226

227 ; ** Calculating the received data reading point

228 ld SioRxCueRPnt ; r0 = SioRxCue + SioRxCueRPnt

229 add #SioRxCue ;

230 st r0 ;

231

232 inc SioRxCueRPnt ; inc data reading point

233

234 ; ** If reading point = buffer size,

235 ; ** then reading point is reset to 0

236 ld SioRxCueRPnt

237 bne #SioRxCueSize,sgnx2 ; When SioRxCueRPnt != SioRxCueSize

238 mov #0,SioRxCueRPnt ; When SioRxCueRPnt == SioRxCueSize

239 sgnx2:

240

241 ld @r0 ; Loads the input data into acc

242 st b ; Stores the value in b

243 mov #0,acc ; acc = acc = 0 (normal end, data exists)

244

245 ret ; SioGet1 end

246

247

248 ; *---*

249 ; * Reading 1 Byte from the Reception Buffer *

250 ; * (If there is no received data, this routine waits until data is received)*

251 ; * *

252 ; * Outputs: acc: 0 = Normal end *

253 ; * 0feh = Buffer overflow *

254 ; * 0fdh = Overrun error *

255 ; * b: Received data (Valid only in the case of normal end.)*

256 ; *---*

257 SioGet1W:

258 call SioGet1 ; Asynchronous reception

259 be #0ffh,SioGet1W ; Waits until data is received

260

261 ret ; SioGet1W end

262

263
VMT-96

C. Sample Program Listings
264 ; *---*
265 ; * Getting the Amount of Data Waiting in the Reception Buffer*
266 ; * *
267 ; * Output: acc: Amount of data (bytes) *
268 ; *---*
269 SioGetRxLen:
270 ld SioRxCueBehind ; Amount waiting
271
272 ret ; SioGetRxLen end
273
274
275 ; *---*
276 ; * SIO Reception Interrupt Handler *
277 ; *---*
278 int_SioRx:
279 push acc ; Pushes the register to be used onto the stack
280 push PSW ;
281 set1 PSW,1 ; Selects data RAM bank 1
282 push r0 ; Pushes the register onto the stack
283
284 ; ** Calculating the Writing Point **
285 ld SioRxCueWPnt ; r0 = SioRxCue + SioRxCueWPnt
286 add #SioRxCue ;
287 st r0 ;
288
289 ld SBUF1 ; Loads the received data
290 st @r0 ; Writes the data to the buffer
291
292 inc SioRxCueWPnt ; Writing point ++
293
294 ; ** Resets the writing point once it
295 ; ** reaches the buffer size
296 ld SioRxCueWPnt ;
297 bne #SioRxCueSize,isnx1 ;
298 mov #0,SioRxCueWPnt ;
299 isnx1:
300
301 inc SioRxCueBehind ; Data Waiting Amount ++
302
303 clr1 SCON1,1 ; Resets the transfer end flag
304
305 ; ** Checking the Overrun Error **
306 bn SCON1,6,isnx2 ; If an overrun has not occurred, then isnx2
307 mov #1,SioOverRun ; If an overrun has occurred -> Sets flag
308 clr1 SCON1,6 ; Resets overrun flag
309 isnx2:
310
311 set1 SCON1,3 ; Starts the next transfer
312
313 pop r0 ; Pops the register to be used off of the stack
314 pop PSW ;
315 pop acc ;
316
317 reti ; int_SioRx end
318
319
VMT-97

Visual Memory Unit (VMU) Tutorial Revision
320 ; *---*

321 ; * Displaying a Two-digit Value *

322 ; * Inputs: acc: Numeric value *

323 ; * c: Horizontal position of character *

324 ; * b: Vertical position of character *

325 ; *---*

326 put2digit:

327 push b ; Pushes the coordinate data onto the stack

328 push c ;

329 st c ; Calculates the tens digit and the ones digit

330 xor a ; (acc = acc/10, work0 = acc mod 10)

331 mov #10,b ;

332 div ;

333 ld b ;

334 st work0 ; Stores the ones digit in work0

335 ld c ;

336 pop c ; Pops the coordinate values into (c, b)

337 pop b ;

338 push b ; Pushes the coordinates onto the stack again

339 push c ;

340 call putch ; Displays the tens digit

341 ld work0 ; Loads the ones digit

342 pop c ; Pops the coordinate values into (c, b)

343 pop b ;

344 inc c ; Moves the display coordinates to the right

345 call putch ; Displays the ones digit

346

347 ret ; put2digit end

348

349

350 ; *---*

351 ; * Clearing the LCD Display Image *

352 ; *---*

353 cls:

354 push OCR ; Pushes the OCR value onto the stack

355 mov #osc_rc,OCR ; Specifies the system clock

356

357 mov #0,XBNK ; Specifies the display RAM bank address (BANK0)

358 call cls_s ; Clears the data in that bank

359

360 mov #1,XBNK ; Specifies the display RAM bank address (BANK1)

361 call cls_s ; Clears the data in that bank

362 pop OCR ; Pops the OCR value off of the stack

363

364 ret ; cls end

365

366 cls_s: ; *** Clearing One Bank of Display RAM ***

367 mov #80h,r2 ; Points the indirect addressing register at the start
 of display RAM

368 mov #80h,b ; Sets the number of loops in loop counter b
VMT-98

C. Sample Program Listings
369 loop3:

370 mov #0,@r2 ; Writes "0" while incrementing the address

371 inc r2 ;

372 dbnz b,loop3 ; Repeats until b is "0"

373

374 ret ; cls_s end

375

376

377 ; *---*

378 ; * Displaying One Character in a Specified Position*

379 ; * Inputs: acc: Character code *

380 ; * c: Horizontal position of character*

381 ; * b: Vertical position of character*

382 ; *---*

383 putch:

384 push XBNK

385 push acc

386 call locate ; Calculates display RAM address according
 to coordinates

387 pop acc

388 call put_chara ; Displays one character

389 pop XBNK

390

391 ret ; putch end

392

393

394 locate: ; **** Calculating the Display RAM Address According to the Display
Position Specification ****

395 ; ** Inputs: c: Horizontal position (0 to 5) b: Vertical position (0 to 3)

396 ; ** Outputs: r2: RAM address XBNK: Display RAM bank

397

398 ; *** Determining the Display RAM Bank Address

399 ld b ; Jump to next1 when b >= 2

400 sub #2 ;

401 bn PSW,7,next1 ;

402

403 mov #00h,XBNK ; Specifies the display RAM bank address (BANK0)

404 br next2

405 next1:

406 st b

407 mov #01h,XBNK ; Specifies the display RAM bank address (BANK1)

408 next2:

409

410 ; *** Calculating the RAM Address for a Specified Position on the Display ***

411 ld b ; b * 40h + c + 80h

412 rol ;

413 rol ;

414 rol ;

415 rol ;
VMT-99

Visual Memory Unit (VMU) Tutorial Revision
416 rol ;

417 rol ;

418 add c ;

419 add #80h ;

420 st r2 ; Stores the RAM address in r2

421

422 ret ; locate end

423

424
425 put_chara:
426 push PSW ; Pushes the PSW value onto the stack
427 set1 PSW,1 ; Selects data RAM bank 1
428
429 ; *** Calculating the Character Data Address ***
430 rol ; (TRH,TRL) = acc*8 + fontdata
431 rol ;
432 rol ;
433 add #low(fontdata);
434 st TRL ;
435 mov #0,acc ;
436 addc #high(fontdata);
437 st TRH ;
438
439 push OCR ; Pushes the OCR value onto the stack
440 mov #osc_rc,OCR ; Specifies the system clock
441
442 mov #0,b ; Offset value for loading the character data
443 mov #4,c ; Loop counter
444 loop1:
445 ld b ; Loads the display data for the first line
446 ldc ;
447 inc b ; Increments the load data offset by 1
448 st @r2 ; Transfers the display data to display RAM
449 ld r2 ; Adds 6 to the display RAM address
450 add #6 ;
451 st r2 ;
452
453 ld b ; Loads the display data for the second line
454 ldc ;
455 inc b ; Increments the load data offset by 1
456 st @r2 ; Transfers the display data to display RAM
457 ld r2 ; Adds 10 to the display RAM address
458 add #10 ;
459 st r2 ;
460
461 dec c ; Decrements the loop counter
462 ld c ;
463 bnz loop1 ; Repeats for 8 lines (four times)
464
465 pop OCR ; Pops the OCR value off of the stack
466 pop PSW ; Pops the PSW value off of the stack
467
468 ret ; put_chara end
469
470
VMT-100

C. Sample Program Listings
471 ; *---*

472 ; * Character Bit Image Data *

473 ; *---*

474 fontdata:

475 db 07ch, 0e6h, 0c6h, 0c6h, 0c6h, 0ceh, 07ch, 000h ; 0

476 db 018h, 038h, 018h, 018h, 018h, 018h, 03ch, 000h ; 1

477 db 07ch, 0c6h, 0c6h, 00ch, 038h, 060h, 0feh, 000h ; 2

478 db 07ch, 0e6h, 006h, 01ch, 006h, 0e6h, 07ch, 000h ; 3

479 db 00ch, 01ch, 03ch, 06ch, 0cch, 0feh, 00ch, 000h ; 4

480 db 0feh, 0c0h, 0fch, 006h, 006h, 0c6h, 07ch, 000h ; 5

481 db 01ch, 030h, 060h, 0fch, 0c6h, 0c6h, 07ch, 000h ; 6

482 db 0feh, 0c6h, 004h, 00ch, 018h, 018h, 038h, 000h ; 7

483 db 07ch, 0c6h, 0c6h, 07ch, 0c6h, 0c6h, 07ch, 000h ; 8

484 db 07ch, 0c6h, 0c6h, 07eh, 006h, 00ch, 078h, 000h ; 9

485

486

487 ; *---*

488 ; * Low Battery Automatic Detection Function ON*

489 ; *---*

490 BattChkOn:

491 push PSW ; Pushes the PSW value onto the stack

492 clr1 PSW,1 ; Selects data RAM bank 0

493

494 mov #0,LowBattChk ; Detects low battery (0)

495

496 pop PSW ; Pops the PSW value off of the stack

497 ret ; BattChkOn end

498

499

500 ; *---*

501 ; * Low Battery Automatic Detection Function OFF*

502 ; *---*

503 BattChkOff:

504 push PSW ; Pushes the PSW value onto the stack

505 clr1 PSW,1 ; Selects data RAM bank 0

506

507 mov #0ffh,LowBattChk ; Does not detect low battery (0ffh)

508

509 pop PSW ; Pops the PSW value off of the stack

510 ret ; BattChkOff end

511

512

513 ; *---*

514 ; * Base Timer Interrupt Handler *

515 ; *---*

516 int_BaseTimer:

517 clr1 btcr,1 ; Clears the base timer interrupt source

518 inc bcount ; Counter ++

519 ret ; User interrupt processing end
VMT-101

Visual Memory Unit (VMU) Tutorial Revision
Reading and Writing Flash Memory

This sample program writes, reads, and verifies flash memory, and displays the characters "SEGA" one at a time
upon the completion of each phase.

Lines 60 to 78 prepare, in RAM, the data that will be written in flash memory. The data values range from 0 to 128,
and are set in addresses 10H through 8FH in bank 1 of RAM, using the indirect address register. Once the data
preparation phase is completed, the program displays an "S" on the LCD.

Lines 91 to 102 set the parameters for calling system BIOS, and disable automatic low battery detection.

Lines 104 to 115 switch the system clock to 1/6 RC before calling the system BIOS. The system clock is switched back
to the original clock (crystal oscillation) after the system BIOS has been called.

After switching the clock, the program enables automatic low battery detection and then displays an "E".

Caution: Disable all interrupts, including the base timer, while flash memory is being accessed. Because the
built-in clock function is used by the base timer, keep the length of time that interrupts are disabled as
short as possible.
When writing to flash memory, set the system clock to 1/6 RC. When loading from flash memory, 1/12
RC is also permissible.

Lines 128 to 146 uses the system BIOS' verify function to compare the data that was written into flash memory with
the data in RAM. If the data matches exactly, the program displays a "G" on the LCD. If the data does not match and
the system BIOS returned an error, the program does not display a "G" but does execute the next phase.

Lines 159 to 173 load into RAM the data that was written in flash memory. The data that is loaded is verified by the
program's own compare routine starting in line 172. If the data matches completely, the program displays an "A" on
the LCD and then terminates. If the data does not match, the program terminates without displaying an "A".

If the "G" or "A" is not displayed, it indicates that the data was corrupted by an earlier access t flash memory.

The data in line 357 and beyond is where the data is to be written (flash memory).

Caution: When writing to flash memory, be certain to provide an area within the application itself where the data
can be written. Writing to flash memory outside of the application is prohibited.

Because flash memory accesses are always conducted in units of 128 bytes, "ORG" in line 364 aligns the data with a
128-byte boundary.

Caution: The "DS" command, an assembler pseudo-instruction, cannot be used to allocate an area in flash
memory. The "DS" command can only be used for RAM areas.
VMT-102

C. Sample Program Listings
001 ; Tab width = 4

002

003 ;--

004 ; ** Flash Memory Usage Sample 1 **

005 ;

006 ; This sample writes and verifies data in flash memory, and then reads and

 verifies the data.

007 ; If all operations are performed correctly, the characters "SEGA" appear on the LCD.

008 ;--

009 ; 1.01 990208 SEGA Enterprises,LTD.

010 ;--

011

012 chip Lc868700 ; Specifies the chip type for the assembler

013 world external ; External memory program

014

015 public main ; Symbol referenced from ghead.asm

016

017 extern _game_end ; Symbol reference to ghead.asm

018 extern fm_wrt_ex, fm_vrf_ex, fm_prd_ex ; Symbol reference to ghead.asm

019

020

021 ; **** Definition of System Constants **

022

023 ; OCR (Oscillation Control Register) settings

024 osc_rc equ 04dh ; Specifies internal RC oscillation for the system clock (1/12)

025 osc_rcfw equ 0cdh ; Specifies internal RC oscillation for the system clock (1/6)

026 osc_xt equ 0efh ; Specifies crystal oscillation for the system clock

027

028 LowBattChkequ 06eh ; Low battery detection flag (RAM bank 0)

029

030 fmflag equ 07ch ; Flash memory write end detection method

031 fmbank equ 07dh ; Flash memory bank switching

032 fmadd_h equ 07eh ; Flash memory upper address

033 fmadd_l equ 07fh ; Flash memory lower address

034

035 fmbuff equ 080h ; Start of buffer for flash memory reading/writing

036

037 ; *** Data Segment **

038

039 dseg ; Data segment start

040

041 r0:ds 1 ; Indirect addressing register r0

042 r1:ds 1 ; Indirect addressing register r1

043 r2:ds 1 ; Indirect addressing register r2

044 r3:ds 1 ; Indirect addressing register r3

045 ds 12 ; Other registers reserved for the system

046
VMT-103

Visual Memory Unit (VMU) Tutorial Revision
047 ; *** Code Segment **

048

049 cseg ; Code segment start

050

051 ; *---*

052 ; * User program *

053 ; *---*

054 main:

055 call cls ; Clears the LCD display image

056

057

058 ; Preparing Data for the Test Write

059 ; Prepares 128 bytes of data from 10h to 8fh in fmbuff

060

061 push PSW ; Pushes the PSW value onto the stack

062 set1 PSW,1 ; Selects data RAM bank 1

063

064 mov #fmbuff,r0 ; Moves the read/write buffer address to r0

065 mov #128,c ; Loop counter (128 times)

066 mov #010h,b ; Initial value of data to be written

067 loop4:

068 ld b ; Places the data in the buffer

069 st @r0 ;

070

071 inc b ; Changes the writing test data

072

073 inc r0 ; Increments the buffer address

074

075 dec c ; Decrements the loop counter

076 ld c

077 bnz loop4 ; Repeats 128 times

078

079 pop PSW ; Pops the PSW value off of the stack

080

081

082 ; Displaying "S"

083

084 mov #1,c ; Horizontal coordinate

085 mov #1,b ; Vertical coordinate

086 mov #0ah,acc ; Character code 'S'

087 call putch ; Displays a single character

088

089
VMT-104

C. Sample Program Listings
090 ; **** Writing to Flash Memory ****
091
092 push PSW ; Pushes the PSW value onto the stack
093 set1 PSW,1 ; Selects data RAM bank 1
094
095 mov #0,fmbank ; Flash memory bank specification = 0
096 mov #high(fmarea),fmadd_h ; Writing destination address (upper)
097 mov #low(fmarea),fmadd_l ; Writing destination address (lower)
098
099 clr1 PSW,1 ; Selects data RAM bank 0
100 mov #0ffh,acc ; Does not detect low battery (0ffh)
101 st LowBattChk ; Low battery automatic detection flag (RAM bank 0)
102
103 pop PSW ; Pops the PSW value off of the stack
104
105 push OCR ; Pushes the OCR value onto the stack
106 mov #osc_rc,OCR ; Specifies the system clock (RC)
107 call fm_wrt_ex ; BIOS "Writing to flash memory"
108 pop OCR ; Pops the OCR value off of the stack
109
110 push PSW ; Pushes the PSW value onto the stack
111 clr1 PSW,1 ; Selects data RAM bank 0
112 mov #0,acc ; Detects low battery (0)
113 st LowBattChk ; Low battery automatic detection flag (RAM bank 0)
114 pop PSW ; Pops the PSW value off of the stack
115
116
117 ; **** Displaying "E" ****
118
119 mov #2,c ; Horizontal coordinate
120 mov #1,b ; Vertical coordinate
121 mov #0bh,acc ; Character code 'E'
122 call putch ; Displays a single character
123
124
125 ; **** Verifying Flash Memory ****
126
127 push PSW ; Pushes the PSW value onto the stack
128 set1 PSW,1 ; Selects data RAM bank 1
129
130 mov #0,fmbank ; Flash memory bank specification = 0
131 mov #high(fmarea),fmadd_h ; Address (upper)
132 mov #low(fmarea),fmadd_l ; Address (lower)
133
134
135 push OCR ; Pushes the OCR value onto the stack
136 mov #osc_rc,OCR ; Specifies the system clock (RC)
137 call fm_vrf_ex ; BIOS "Verifying flash memory"
138 pop OCR ; Pops the OCR value off of the stack
139
140 pop PSW ; Pops the PSW value off of the stack
141
142 bnz vrt_bad ; Branches when write failed
143 ; Displays "G" only when successful
144
VMT-105

Visual Memory Unit (VMU) Tutorial Revision
145 ; **** Displaying "G" ****

146

147 mov #3,c ; Horizontal coordinate

148 mov #1,b ; Vertical coordinate

149 mov #0ch,acc ; Character code 'G'

150 call putch ; Displays a single character

151 vrt_bad:

152

153

154 ; **** Reading Page Data form Flash Memory ****

155

156 push PSW ; Pushes the PSW value onto the stack

157 set1 PSW,1 ; Selects data RAM bank 1

158

159 mov #0,fmbank ; Flash memory bank specification = 0

160 mov #high(fmarea),fmadd_h ; Address (upper)

161 mov #low(fmarea),fmadd_l ; Address (lower)

162

163 push OCR ; Pushes the OCR value onto the stack

164 mov #osc_rc,OCR ; Specifies the system clock (RC)

165 call fm_prd_ex ; BIOS "Reading page data from flash memory"

166 pop OCR ; Pops the OCR value off of the stack

167

168 pop PSW ; Pops the PSW value off of the stack

169

170

171 ; **** Verifying the data that was read ****

172

173 push PSW ; Pushes the PSW value onto the stack

174 set1 PSW,1 ; Selects data RAM bank 1

175

176 mov #fmbuff,r0 ; Moves the read/write buffer address into r0

177 mov #128,c ; Loop counter (128 times)

178 mov #010h,b ; Initial value for comparison data

179 loop5:

180 ld b ; Places the data in the buffer

181 sub @r0 ; Compares the data

182 bnz read_bad ; If a compare error is found, ends without displaying 'A

183

184 inc b ; Changes the data for the write test

185

186 inc r0 ; Increments the buffer address

187

188 dec c ; Decrements the loop counter

189 ld c

190 bnz loop5 ; Repeats 128 times

191

192 pop PSW ; Pops the PSW value off of the stack

193

194
VMT-106

C. Sample Program Listings
195 ; **** Displaying "A" ****

196

197 mov #4,c ; Horizontal coordinate

198 mov #1,b ; Vertical coordinate

199 mov #0dh,acc ; Character code 'A'

200 call putch ; Displays a single character

201

202

203 read_bad:

204 loop6: ; ** [M] (mode) Button Check **

205 ld P3

206 bn acc,6,finish ; If the [M] button is pressed, the application ends

207

208 br loop6 ; Repeat

209

210 finish: ; ** Application End Processing **

211 jmp _game_end ; Application end

212

213

214 ; *---*

215 ; * Clearing the LCD Display Image *

216 ; *---*

217 cls:

218 push OCR ; Pushes the OCR value onto the stack

219 mov #osc_rc,OCR ; Specifies the system clock

220

221 mov #0,XBNK ; Specifies the display RAM bank address (BANK0)

222 call cls_s ; Clears the data in that bank

223

224 mov #1,XBNK ; Specifies the display RAM bank address (BANK1)

225 call cls_s ; Clears the data in that bank

226 pop OCR ; Pops the OCR value off of the stack

227

228 ret ; cls end

229

230 cls_s: ; *** Clearing One Bank of Display RAM ***

231 mov #80h,r2 ; Points the indirect addressing register at the start
 of display RAM

232 mov #80h,b ; Sets the number of loops in loop counter b

233 loop3:

234 mov #0,@r2 ; Writes "0" while incrementing the address

235 inc r2 ;

236 dbnz b,loop3 ; Repeats until b is "0"

237

238 ret ; cls_s end

239

240
VMT-107

Visual Memory Unit (VMU) Tutorial Revision
241 ; *---*

242 ; * Displaying One Character in a Specified Position*

243 ; * Inputs: acc: Character code *

244 ; * c: Horizontal position of character*

245 ; * b: Vertical position of character*

246 ; *---*

247 putch:

248 push XBNK

249 push acc

250 call locate ; Calculates display RAM address according to coordinates

251 pop acc

252 call put_chara ; Displays one character

253 pop XBNK

254

255 ret ; putch end

256

257

258 locate: ; **** Calculating the Display RAM Address According to the Display Position
 Specification ****

259 ; ** Inputs: c: Horizontal position (0 to 5) b: Vertical position (0 to 3)

260 ; ** Outputs: r2: RAM address XBNK: Display RAM bank

261

262 ; *** Determining the Display RAM Bank Address ***

263 ld b ; Jump to next1 when b >= 2

264 sub #2 ;

265 bn PSW,7,next1 ;

266

267 mov #00h,XBNK ; Specifies the display RAM bank address (BANK0)

268 br next2

269 next1:

270 st b

271 mov #01h,XBNK ; Specifies the display RAM bank address (BANK1)

272 next2:

273

274 ; *** Calculating the RAM Address for a Specified Position on the Display ***

275 ld b ; b * 40h + c + 80h

276 rol ;

277 rol ;

278 rol ;

279 rol ;

280 rol ;

281 rol ;

282 add c ;

283 add #80h ;

284 st r2 ; Stores the RAM address in r2

285

286 ret ; locate end

287

288
VMT-108

C. Sample Program Listings
289 put_chara:

290 push PSW ; Pushes the PSW value onto the stack

291 set1 PSW,1 ; Selects data RAM bank 1

292

293 ; *** Calculating the Character Data Address ***

294 rol ; (TRH,TRL) = acc*8 + fontdata

295 rol ;

296 rol ;

297 add #low(fontdata) ;

298 st TRL ;

299 mov #0,acc ;

300 addc #high(fontdata) ;

301 st TRH ;

302

303 push OCR ; Pushes the OCR value onto the stack

304 mov #osc_rc,OCR ; Specifies the system clock

305

306 mov #0,b ; Offset value for loading the character data

307 mov #4,c ; Loop counter

308 loop1:

309 ld b ; Loads the display data for the first line

310 ldc ;

311 inc b ; Increments the load data offset by 1

312 st @r2 ; Transfers the display data to display RAM

313 ld r2 ; Adds 6 to the display RAM address

314 add #6 ;

315 st r2 ;

316

317 ld b ; Loads the display data for the second line

318 ldc ;

319 inc b ; Increments the load data offset by 1

320 st @r2 ; Transfers the display data to display RAM

321 ld r2 ; Adds 10 to the display RAM address

322 add #10 ;

323 st r2 ;

324

325 dec c ; Decrements the loop counter

326 ld c ;

327 bnz loop1 ; Repeats for 8 lines (four times)

328

329 pop OCR ; Pops the OCR value off of the stack

330 pop PSW ; Pops the PSW value off of the stack

331

332 ret ; put_chara end

333

334
VMT-109

Visual Memory Unit (VMU) Tutorial Revision
335 ; *---*

336 ; * Character Bit Image Data *

337 ; *---*

338 fontdata:

339 db 07ch, 0e6h, 0c6h, 0c6h, 0c6h, 0ceh, 07ch, 000h ; '0' 00

340 db 018h, 038h, 018h, 018h, 018h, 018h, 03ch, 000h ; '1' 01

341 db 07ch, 0c6h, 0c6h, 00ch, 038h, 060h, 0feh, 000h ; '2' 02

342 db 07ch, 0e6h, 006h, 01ch, 006h, 0e6h, 07ch, 000h ; '3' 03

343 db 00ch, 01ch, 03ch, 06ch, 0cch, 0feh, 00ch, 000h ; '4' 04

344 db 0feh, 0c0h, 0fch, 006h, 006h, 0c6h, 07ch, 000h ; '5' 05

345 db 01ch, 030h, 060h, 0fch, 0c6h, 0c6h, 07ch, 000h ; '6' 06

346 db 0feh, 0c6h, 004h, 00ch, 018h, 018h, 038h, 000h ; '7' 07

347 db 07ch, 0c6h, 0c6h, 07ch, 0c6h, 0c6h, 07ch, 000h ; '8' 08

348 db 07ch, 0c6h, 0c6h, 07eh, 006h, 00ch, 078h, 000h ; '9' 09

349

350 db 07ch, 0e6h, 076h, 038h, 0dch, 0ceh, 07ch, 000h ; 'S' 0a

351 db 0feh, 0c0h, 0c0h, 0f8h, 0c0h, 0c0h, 0feh, 000h ; 'E' 0b

352 db 07ch, 0e6h, 0c0h, 0dch, 0c6h, 0e6h, 07ch, 000h ; 'G' 0c

353 db 01eh, 036h, 066h, 0c6h, 0c6h, 0feh, 0c6h, 000h ; 'A' 0d

354

355

356 ; *---*

357 ; * Flash Memory Area for Saving Data *

358 ; *---*

359 org ((*-1) land 0ff80h) + 80h ; Aligns with 128-byte boundary

360 fmarea:

361 ; Allocates a 128-byte flash memory area

362 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

363 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

364 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

365 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

366 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

367 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

368 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

369 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

370

371 end
VMT-110

C. Sample Program Listings
Low Battery Detection and Saving Data

Visual Memory has a built-in function that automatically detects the low battery condition, displays a message to
that effect, and then puts the unit into sleep mode. In this sample program, the application detects the low battery
condition on its own, and then saves the data in RAM to flash memory.

The important portion of this program is the low battery detection routine in lines 115 to 125. This routine checks
the port 7 low battery flag.

Although the port 7 interrupt could be used, the interrupt processing routine should be designed so that system
BIOS is not called.

001 ; Tab width = 4

002

003 ;--

004 ; ** Low Battery Detection and Data Save Sample 1 **

005 ;

006 ; Detects the low battery condition and saves essential data in flash memory

007 ;--

008 ; 1.01 990208 SEGA Enterprises,LTD.

009 ;--

010

011 chip Lc868700 ; Specifies the chip type for the assembler

012 world external ; External memory program

013

014 public main ; Symbol referenced from ghead.asm

015

016 extern _game_end ; Symbol reference to ghead.asm

017 extern fm_wrt_ex, fm_vrf_ex, fm_prd_ex ; Symbol reference to ghead.asm

018

019

020 ; **** Definition of System Constants **

021

022 ; OCR (Oscillation Control Register) settings

023 osc_rc equ 04dh ; Specifies internal RC oscillation for the system clock (1/12)

024 osc_rcfw equ 0cdh ; Specifies internal RC oscillation for the system clock (1/6)

025 osc_xt equ 0efh ; Specifies crystal oscillation for the system clock

026

027 LowBattChk equ 06eh ; Low battery detection flag (RAM bank 0)

028

029 fmflag equ 07ch ; Flash memory write end detection method

030 fmbank equ 07dh ; Flash memory bank switching

031 fmadd_h equ 07eh ; Flash memory upper address

032 fmadd_l equ 07fh ; Flash memory lower address

033

034 fmbuff equ 080h ; Start of buffer for flash memory reading/writing

035
VMT-111

Visual Memory Unit (VMU) Tutorial Revision
036 ; *** Data Segment ***

037

038 dseg ; Data segment start

039

040 r0: ds 1 ; Indirect addressing register r0

041 r1: ds 1 ; Indirect addressing register r1

042 r2: ds 1 ; Indirect addressing register r2

043 r3: ds 1 ; Indirect addressing register r3

044 ds 12 ; Other registers reserved for the system

045

046

047 ; *** Code Segment ***

048

049 cseg ; Code segment start

050

051 ; *---*

052 ; * User program *

053 ; *---*

054 main:

055 call cls ; Clears the LCD display image

056

057 loop0: ; Start of test main loop

058

059 ; Application Main Processing

060

061 ; ** [M] (mode) Button Check **

062 ld P3

063 bn acc,6,finish ; If the [M] button is pressed, the application ends

064

065 ; ** Battery Status Check **

066 call ChkBatt ; Checks the battery status

067 bz loop0 ; If acc = 0 then battery normal; loops

068

069 ; ** Low Battery Processing **

070 call prepare ; Prepares data for test save

071 ; In an actual application, this routine would gather
 the data

072 ; that is to be saved and then place the data

073 ; in the flash ROM write buffer.

074

075 call WriteData ; Writes the data that was prepared in the buffer
 (to be saved)

076 ; to flash memory

077

078 finish: ; ** Application End Processing **

079 jmp _game_end ; Application end

080

081
VMT-112

C. Sample Program Listings
082 ; *---*

083

084 prepare: ; **** Preparing Data for Test Save ****

085 ; Prepares 128 bytes of data from 10h to 8fh in fmbuff

086

087 push PSW ; Pushes the PSW value onto the stack

088 set1 PSW,1 ; Selects data RAM bank 1

089

090 mov #fmbuff,r0 ; Moves the read/write buffer address to r0

091 mov #128,c ; Loop counter (128 times)

092 mov #010h,b ; Initial value of data to be written

093 loop4:

094 ld b ; Places the data in the buffer

095 st @r0 ;

096

097 inc b ; Changes the writing test data

098

099 inc r0 ; Increments the buffer address

100

101 dec c ; Decrements the loop counter

102 ld c

103 bnz loop4 ; Repeats 128 times

104

105 pop PSW ; Pops the PSW value off of the stack

106

107 ret ; prepare end

108

109

110 ; *---*

111 ; * Detecting Low Battery Status *

112 ; * Outputs: acc = 0 : Battery status normal *

113 ; * acc = 0ffh: Low battery *

114 ; *---*

115 ChkBatt:

116 ld P7 ; Checks the status of P71

117 bn acc,1,next3 ; Branches if there is no battery

118

119 ; ** Battery Exists **

120 mov #0,acc ; acc = 0

121 ret ; ChkBatt end. acc = 0 is returned if battery exists

122

123 next3: ; ** No battery **

124 mov #0ffh,acc ; acc = 0ffh

125 ret ; ChkBatt end. acc = 0ffh is returned if battery exists

126

127
VMT-113

Visual Memory Unit (VMU) Tutorial Revision
128 ; *---*

129 ; * Writing Buffer Data to Flash Memory *

130 ; *---*

131 WriteData: ; **** Writing to Flash Memory ****

132

133 push PSW ; Pushes the PSW value onto the stack

134 set1 PSW,1 ; Selects data RAM bank 1

135

136 mov #0,fmbank; Flash memory bank specification = 0

137 mov #high(fmarea),fmadd_h ; Writing destination address (upper)

138 mov #low(fmarea),fmadd_l ; Writing destination address (lower)

139 mov #0,fmflag ; Detects end by toggle bit method

140

141 clr1 PSW,1 ; Selects data RAM bank 0

142 mov #0ffh,acc ; Does not detect low battery (0ffh)

143 st LowBattChk ; Low battery automatic detection flag (RAM bank 0)

144

145 pop PSW ; Pops the PSW value off of the stack

146

147 push OCR ; Pushes the OCR value onto the stack

148 mov #osc_rc,OCR ; Specifies the system clock (RC)

149 call fm_wrt_ex ; BIOS "Writing to flash memory"

150 pop OCR ; Pops the OCR value off of the stack

151

152 push PSW ; Pushes the PSW value onto the stack

153 clr1 PSW,1 ; Selects data RAM bank 0

154 mov #0,acc ; Detects low battery (0)

155 st LowBattChk ; Low battery automatic detection flag (RAM bank 0)

156 pop PSW ; Pops the PSW value off of the stack

157

158 ret ; WriteData end

159

160

161 ; *---*

162 ; * Clearing the LCD Display Image *

163 ; *---*

164 cls:

165 push OCR ; Pushes the OCR value onto the stack

166 mov #osc_rc,OCR ; Specifies the system clock *

167

168 mov #0,XBNK ; Specifies the display RAM bank address (BANK0)

169 call cls_s ; Clears the data in that bank

170

171 mov #1,XBNK ; Specifies the display RAM bank address (BANK1)

172 call cls_s ; Clears the data in that bank

173 pop OCR ; Pops the OCR value off of the stack

174

175 ret ; cls end

176
VMT-114

C. Sample Program Listings
177 cls_s: ; *** Clearing One Bank of Display RAM ***

178 mov #80h,r2 ; Points the indirect addressing register at the start
of

display RAM

179 mov #80h,b ; Sets the number of loops in loop counter b

180 loop3:

181 mov #0,@r2 ; Writes "0" while incrementing the address

182 inc r2 ;

183 dbnz b,loop3 ; Repeats until b is "0"

184

185 ret ; cls_s end

186

187

188 ; *---*

189 ; * Flash Memory Area for Saving Data *

190 ; *---*

191 org ((*-1) land 0ff80h) + 80h; Aligns with 128-byte boundary

192 fmarea:

193 ; Allocates a 128-byte flash memory area

194 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

195 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

196 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

197 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

198 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

199 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

200 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

201 db 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

202

203 end
VMT-115

Visual Memory Unit (VMU) Tutorial Revision
VMT-116

Dreamcast VMU Specifications

Table of Contents
VMU Specifications .VMU–1
Overview ..VMU–1

VMU Overview ...VMU–1
VMU Configuration ...VMU–2
VMU Functions ...VMU–4

Mode Settings ..VMU–7
File Management ...VMU–9

Management Area ..VMU–10
Data Area ...VMU–10
Reserved Area ...VMU–10

LCD Display ...VMU–11
XRAM ...VMU–11
Screen Mode ..VMU–11
Icons ..VMU–12
Screen Configuration ..VMU–12
LCD Characteristics ..VMU–12
Miscellaneous ..VMU–12

Executable File Initiation ..VMU–13
Downloading an Executable File ..VMU–13
File Size ...VMU–13
Subroutine ..VMU–13
Interrupts ...VMU–14
RAM ..VMU–14
Save Processing During Executable File Operations ...VMU–14
Auto Power Off ...VMU–14

Communications Function ...VMU–15
Maple Bus Protocol ...VMU–15
Synchronous Serial Communications ..VMU–15

Clock Function ...VMU–16
Settings ...VMU–16

Alarm Function ..VMU–17
SLEEP Function ...VMU–18

SLEEP Operation ..VMU–18
Buttons ..VMU–19
Batteries ..VMU–20

Battery Life ...VMU–20
Processing When Battery Power Is Exhausted ...VMU–20
Battery Replacement ...VMU–20

Postscript ..VMU–20

VMU Specifications
Overview
This document describes the VMU, a peripheral device for the next-generation game system KATANA (Dreamcast).

VMU Overview

The VMU (Visual Memory Unit) is a memory cartridge that not only stores data, but also includes an LCD display
that visually expresses that data.

The VMU connects to KATANA's (preliminary name) special controller, called “SEED” (preliminary name), and can
be used to display subscreens during a game and as a memory card that stores game data files.

The VMU can be connected or disconnected while the game machine is on.

When not connected to a controller, the data files stored in the VMU's memory can be displayed and deleted. Files
can also be copied from one VMU to another by connecting two VMUs to each other.

Furthermore, by downloading special executable files (programs) from KATANA, the VMU becomes a compact
portable game player; two-player games are also possible.

Figure 1.1 Conceptual Image of the VMU

In the top portion of Fig. 1.1, two VMUs are shown connected to each other as they exchange data.
VMU-1

VMU Specifications
VMU Configuration

This section describes the VMU configuration.

• Potato Chip (custom IC for the VMU)

Core CPU: 8 bits: Instruction cycle time:

When connected to game machine = 1[micro]s

When operating on standalone basis = 183[micro]s

Note: Operation on a standalone basis is extremely slow in order to minimize battery
power consumption.

Memory:

:

:

:

Mask-ROM:

Flash-EEPROM:

RAM

LCD RAM

16Kbyte

64K

64K

512 bytes

512bytes

Bank 1

Bank 2

Bank 3

System-BIOS IPL

Program code/data area

Data area (of which 28K are reserved for the system)

General purposes (of which 256 bytes are reserved for the system)

I/O mapping (can also be used as a Maple buffer)

96 bytes

96 bytes

6 bytes (for icons; used by the system)

Serial I/F: Uses the following interfaces exclusively:

Maple:

Synchronous SIO:

LM-Bus

Two 8-bit serial interfaces

Timer: 16bit

16bit(or 8bit x2):

For Clock

General purpose; of these, 8 bits are used exclusively for pulse generator output for
alarms

I/O Port: Input/output:

Input:

16 pins (buttons, serial interfaces)

4 pins (control pins)

LCD-Driver Controller: Common:

Segment:

 33 pins

48 pins

• LCD: LCD: 32 (V) x 48 (H) dots: Monochrome binary

Icons: 4 types (File, Game, Time, Attention: used by system)

• Buzzer: Voltage buzzer: For alarms

• Power supply: Button batteries:

External inputs:

External outputs:

CR2032 x 2

+5V +3.3V

+3.3V

• Buttons: 6 buttons: Four-direction key, A button, B button, Mode button, Suspend button, SLEEP button

• Communications connector: 14 pins: Serial interface, power supply, control

Connected to controller, another VMU, etc.
VMU-2

 VMU Specifications
Figure 1.2 External View (preliminary)

Figure 1.3 External Appearance and configuration (preliminary)

Front view Keychain hole

A button

RESET

B button

B button

Buzzer

Mode button
Four-direction key

Suspend button

Connectors
(communications)

LCD

Rear view

Cap
VMU-3

VMU Specifications
Figure 1.4 Block Diagram (preliminary)

VMU Functions

When connected to a game machine, the VMU conforms with the Maple Bus 1.0 Standard Specifications, and
supports the following function types.

1 FT1 Storage Function

2 FT2 B/W LCD Function

3 FT3 Timer Function

Accordingly, the Function Type (FT) is “00h-00h-00h-0Eh”. (FD1 = FT3, FD2 = FT2, FD3 = FT1)

DC/DC

Potato

CPU-Core
Reset

8-input

Reset

6MHz

32kHz

I/O

Buzzer

Selector

VMU

+5V

+3.5V

Low voltage

CR2032 x2

LCD DriverLCD
32x48dot

4-icon
XRAM
198B

BIOS-ROM
16KB+4KB

FLASH
64KB+64KB

RAM
512B

Serial x2

Buffer
512B

L-Maple
Logic

ID2
ID1
ID0

Output Enable
Input

3-input

I/O 3.3V2-input
4-input

2Mbps
(max)

Power

Ext.
Terminal
14pin

+5V

Output
Output Enable
Input
Output

.

.

.

VMU-4

 VMU Specifications
For details, refer to the specifications for each function. An overview of the System-BIOS functions included in the
VMU is provided below.

1) File management

This function manipulates and manages backup files and program files.
Files are managed in 1-block units (512 bytes), and reads and writes are also performed in block units.
FAT operations and file information processing use subroutines in the System-BIOS. For details on file
management methods, refer to Chapter , ”File Management,”.

2) LCD display

When the VMU is connected to a game machine, this function only draws graphics (transferring screen
image data).
This function conforms with the data format that is stipulated in the Maple Bus Function Type
specifications, and sends graphics images from the game machine to the VMU in accordance with the
VMU screen configuration, and then BIOS transfers the resulting image to the LCD display RAM
(XRAM).
The amount of data required for one screen is 32 dots (V) x 48 dots (H) = 1536 bits = 192 bytes.
When the VMU is operating on a standalone basis, this function handles the drawing of graphics. The
icons display the operation mode of the VMU.

File File management
Game Executable file initiation
Time Time display
Attention Memory access in progress

3) Executable file initiation

This function initiates execution of an executable file (program) that was downloaded from a
game machine.
This function can only be executed while the VMU is operating on a standalone basis. A program can
not be initiated while the VMU is connected to a game machine.
A number of functions that can be provided for executable files are System-BIOS subroutines and can
be used by the executable file simply by calling the subroutine.

4) Communications

When the VMU is connected to a game machine, communications are handled according to the Maple
Bus protocol.
When the VMU is operating on a standalone basis, the VMU supports 8-bit synchronous serial
communications for exchanging data with another VMU.
This function is also provided as a subroutine for executable files. (Not finalized)

5) Clock

This function uses a timer to measure time.
This function is always operating, whether the VMU is connected to a game machine or is operating on
a standalone basis.
VMU-5

VMU Specifications
6) Alarm

This function sounds a buzzer by means of a pulse generator. This function is also provided as a
subroutine for executable files. (Not finalized)
This function conforms with the data format that is stipulated in the Maple Bus Function Type
specifications, and when the VMU is connected to a game machine, this function allows the game
machine to sound the buzzer.

7) Mode switching

When the VMU is connected to a game machine, the VMU operation mode can be changed by pressing
the mode button.
The mode status is displayed by means of icons.
When the VMU is operating on a standalone basis, the Auto Power Off function can also be used.

8) Character font installation

8 dot (V) x 6 dot (H) alphabet, Katakana, and symbol fonts can be installed in the VMU. These fonts
cannot be called and displayed from an executable file for the VMU that was downloaded from a game
machine.
When the VMU is connected to a game machine and graphics are being displayed from the game
machine side, fonts cannot be used.
Instead, transfer the screen image that is to be displayed as is.
Fonts can only be used by the System-BIOS.
VMU-6

 VMU Specifications
Mode Settings
The operating mode of the VMU is determined by the connection status and the mode button.

Table 1.1 Modes

1) System mode

This mode is controlled by the System-BIOS' external control program.
This mode handles communications according to the Maple Bus protocol, memory management, LCD
display, and timer management.

2) Game mode

In this mode, the System-BIOS initiates executable files in flash memory.
All processing is controlled by the executable file, except for the Maple Bus protocol.
Transitions from this mode to another mode are also controlled by the executable file.
To execute a mode, transmission, the executable file calls a subroutine from the System-BIOS.
At that point, all of the contents of RAM and the registers are saved to flash memory.

Note: This save operation requires approximately 8 seconds.

3) File mode

This mode is controlled by the System-BIOS’ file control program.
This mode can display, copy, and delete files in flash memory through button operations.
Refer to other documents for details on the configuration and operation of the file management screen.

4) Time mode

This mode is controlled by the System-BIOS’ timer program. This mode can display a digital clock
(showing the hours, minutes, and seconds), and can be used to set the time. When the VMU returns from
system mode, it enters this mode.

Transitions among the modes occur in response to changes in the connection status and the Mode button + Enter
button being pressed.

However, Game mode can suppress changes in the connection status and the Mode button + Enter button being
pressed. The mode cannot be changed while data is being written to the flash memory.

Attention is a warning indicator that lights for Read/Write while flash memory is being accessed.

Connection Status Mode Button (Icon Display) Operating Mode

Connected to game machine Off System mode

Attention Flash access in progress

Standalone operation Game Executable file initiation

File File operations

Time Clock display

Attention Accessing flash memory
VMU-7

VMU Specifications
Figure 1.5 Mode Transitions

Game

Mode button

Memory save

Mode button Mode button ICON display

Operation mode

Time File

Memory restore

Enter button

Game mode

Yes

Mode
button

No

System mode

Switch modes

Time mode File mode

Connected ConnectedDisconnected

Mode
button

Enter button Enter
button

Mode
button
VMU-8

 VMU Specifications
File Management

• File management in the VMU conforms with FT1: Storage Function in the Maple Bus 1.0 Function Type
Specifications.

• The size of the VMU flash memory is 128K.

• The minimum read/write unit for a file is one block (512 bytes); the entire flash memory is divided into
256 blocks.

However, because 56 blocks are used as a system management area, the size of the area that can be used
to store data is 200 blocks.
One executable file can exist in one partition, with a maximum size of 0080h blocks (64K: block numbers
0000h to 007Fh).

Figure 1.6 Memory Map

Executable f i le or data area

Data area

Data area
(200block)

Reserved area
(41block)

Management area
(15block)

Reserved area

System area

Fat area

File information area

Block No.

0000h

007Fh
00C8h

00C7h
00C8h

00F1h

00FDh
00FEh

00FFh

00F0h
VMU-9

VMU Specifications
Management Area

• The 15 blocks at the top of memory (starting form block number 00FFh) are used for the
management area.

• The management area is divided into three areas: the system area, the FAT area, and the file
information area.

• The system area consists of one block, the FAT area consists of one block, and the file information consists
of 13 blocks.

• The system area is write-protected, except during formatting.

• The FAT area has a chain structure in which every two bytes (16 bits) controls one block.

• The file information area allocates 32 bytes to each file, and can therefore manage a maximum of 200 files.

• There is only a root directory; no subdirectories are supported.

• File names consist of 12 bytes (ASCII codes representing up to 12 normal-width characters).

Data Area

• The data area, where data files can be stored, consists of 200 blocks, from block number 0000h to 00C7h.

• Data files are stored starting from 00C7h towards 0000h, while an executable file starts from 0000h.

• The areas from 0000h to 007Fh and from 0080h to 00FFh are controlled through bank switching; switching
is performed by the System-BIOS automatically.

• Reading and writing flash memory must always be done by calling the System-BIOS subroutines.

Reserved Area

This area is used by the System-BIOS and in system mode.
VMU-10

 VMU Specifications
LCD Display

• The LCD display in the VMU conforms with FT[2]: B/W LCD Function in the Maple Bus 1.0 Function
Type Specifications.

• The LCD that is built into the VMU consists of a 32-dot (V) × 48-dot (H) dot matrix display, and four icons
that indicate he operating mode f the VMU.

• Drawing the LCD is accomplished by storing drawing data in the dedicated drawing RAM.

XRAM

The LCD’s dedicated drawing RAM is called “XRAM.”

XRAM consists of three banks; the first and second banks are open to executable files, while the third bank is used
by the System-BIOS.

The first bank of XRAM corresponds to the upper half of the LCD (16 × 48 dots), and the second bank of XRAM
corresponds to the lower half of the LCD (16 × 48 dots).

One dot on the LCD corresponds to one bit in XRAM. One byte of XRAM corresponds to 8 dots in a horizontal row
on the LCD, and 6 bytes consist of one entire horizontal row on the LCD.

Screen Mode

When the VMU is connected to a game machine, the System-BIOS sends drawing data from the game machine
directly to the XRAM as a graphics screen.

Therefore, when using the VMU's display as a game subscreen, etc., transfer the screen image as is to the VMU.

During standalone operation, the character font in the System-BIOS cannot be used for text display on a
graphics screen.

For a graphics screen, write the screen image data as is to XRAM.
VMU-11

VMU Specifications
Icons

The System-BIOS uses the icons; use by an executable file is prohibited.

Screen Configuration

LCD Characteristics

The screen refresh concept for the LCD display differs from that for a TV.

Once data is transferred to XRAM, it is displayed on the LCD, but only after a delay due to the response speed of
the LCD. When the LCD response is delayed, ghosting or flickering may occur, resulting in a display that is difficult
to see. In addition, during standalone operation or when connected to a game machine, differences in the operating
speeds result in different LCD display speeds. During standalone operation, the display speed is slower.

The recommended refresh rate for the VMU’ LCD is 1Hz for standalone operation and 4Hz when connected to a
game machine.

Miscellaneous

• There is no contrast adjustment or brightness adjustment for the LCD.
• There is no backlight for the LCD.

• It is not possible to incorporate a design (such as a picture, etc.) in the polarized panel (the back sheet)
with a reflective panel that reflects the light in the LCD.

File management

32dots

48dots

Dot matrix screen

Icons

Writing in progress
Clock display

Executable f i le init iation
VMU-12

 VMU Specifications
Executable File Initiation

• This function initiates an executable file that was downloaded from a game machine.

• The VMU can store and initiate only one executable file at a time.

• The System-BIOS includes subroutines that form that VMU functions. Of these subroutines, several are
provided for executable files, and an executable file can call these subroutines.

• Program development of an executable file is performed using a VMU emulator (preliminary) that runs
under Windows 95.

Downloading an Executable File

Executable files are stored in flash memory in the area consisting of block numbers 0000h to 007Fh, starting from
the 0000h block. When an executable file is downloaded from a game machine application, confirm that there is
contiguous free space starting from the 0000h block of the VMU. Even if the free space has been confirmed, it still
will not be possible to download an executable file if there is any other file in the area where the executable file is
to be stored (the area from block 0000h to the end of the executable file).

Game machine application processing is as described below:

Get free space in VMU

↓

Confirm that there is free space

↓

Defragmentation processing (optimization of fragmented file storage)

↓

Reconfirm that there is free space after defragmentation processing (Reconfirmation is necessary because it is possible that a block was damaged during
defragmentation.)

↓

Download

File Size

• The maximum size of an executable file is 0080h blocks (64K).

Subroutine

A list of the available subroutines is shown below. (not finalized)

Each subroutine uses a RAM area (in the general-purpose RAM area) as a work area.

1) Data communications :Performs synchronized serial communications.

2) Alarm :Sounds the buzzer.

3) Flash memory write :Writes flash memory.

4) Flash memory read : Reads flash memory.
VMU-13

VMU Specifications
Interrupts

A list of external and internal interrupts is provided below. (planned)

Except for the Mode Change interrupt, these interrupts cannot be masked. (planned)

1) Low voltage interrupt

2) Timer interrupt

3) Mode Change interrupt (maskable)

4) SLEEP interrupt

RAM

The RAM areas that executable files can use are shown below.

General-purpose RAM: 000h to 0FFh (bank 1)

I/O mapping RAM: 000h to 1FFh (Set the address to the specified register and read/write one
byte at a time.)

XRAM: Bank 1, bank 2

Save Processing During Executable File Operations

Data on the midpoint status of an executable file and parameters for an executable file (such as a game) are saved
by writing the data to an area within the executable file. When creating an executable file (such as a game), set aside
an area within the file for this purpose. Because FAT processing, etc., is not possible due to the hardware design,
such data cannot be saved in a separate file.

In order to link the game machine with an application and then use the saved data from an executable file (such as
a game), load the executable file from the VMU to the game machine, and then read that portion of the file that
contains the saved data.

Auto Power Off

• The Auto Power Off function puts the VMU into the SLEEP state if no buttons are pressed or no
communications are received for two minutes.

This function can be enabled/disabled by executable files.
VMU-14

 VMU Specifications
Communications Function

• The VMU is capable of conducting serial communications with other equipment.

• The VMU supports two serial communications protocols: the Maple Bus protocol and full-duplex
synchronous serial communications.

• The System-BIOS switches between the Maple Bus protocol in system mode and synchronous serial
communications in standalone operation mode.

Maple Bus Protocol

• When the VMU is connected to a game machine, the communications connector switches to the Maple
Bus protocol side.

• The entire I/O mapping RAM becomes a transmission/receive buffer, and the synchronous serial
side stops.

• The physical connection with the game machine is made through an LM-Bus connection, and the VMU
becomes an expansion device.

• All processing is performed by the System-BIOS; this function is not accessible from an executable file.

• The transfer speed is 2Mbps.

Synchronous Serial Communications

• When the VMU is operating on a standalone basis, the communications connector switches to
synchronous serial side, and the Maple Bus protocol side stops.

• There are two synchronous serial interfaces, allowing full duplex communications with other devices.

• Data is transferred one byte at a time, with a maximum transfer speed of 2.4Kbps. (not finalized)

This function is available to executable files as a subroutine.
VMU-15

VMU Specifications
Clock Function

• The clock function in the VMU conforms with FT3: Timer Function in the Maple Bus 1.0 Function Type
Specifications.

This function can measure time in 500ms units, using a 32KHz crystal resonator and a dedicated counter.

• The System-BIOS controls the clock function; an executable file can only read the clock function.

Settings

• On the setting screen, set the year, month, day, and time.

• When the VMU is connected to a game machine, the date and time can be set by the game machine
through the Maple Bus protocol.
VMU-16

 VMU Specifications
Alarm Function

• The alarm function in the VMU conforms with FT3: Timer Function in the Maple Bus 1.0 Function Type
Specifications.

This function sounds the built-in voltage buzzer.

• Only one alarm can be sounded at one time.

The sound is generated by the pulse generator method; the frequency can be set over a range from 300Hz
to 4KHz, and the duty ratio can be set as desired. (planned)
The volume cannot be adjusted. The sound can be turned on and off.

This function is made available for executable programs as a subroutine. (planned)

• When the VMU is connected to a game machine, the alarm function can be set by the game machine
through the Maple Bus protocol.
VMU-17

VMU Specifications
SLEEP Function
In order to reduce power consumption when operating on a standalone basis, the VMU is equipped with a
SLEEP function.

The VMU enters the SLEEP state either because the SLEEP button is pressed or because the Auto power Off
function was triggered. (Refer to section, “Auto Power Off”) To return from the SLEEP state, press the
SLEEP button.

SLEEP Operation

When in Timer mode (clock display) or File mode (file management software), the LCD display shuts off and the
VMU enters the idle state.

SLEEP processing in Game mode (after an executable file has been initiated is determined by the executable file.
(We plan to indicate a recommended processing method.)

The contents of RAM and the registers are retained, except in Time mode. In SLEEP mode, all buttons are disabled
except for the SLEEP button.
VMU-18

 VMU Specifications
Buttons
Four-direction key: This key is used to move the cursor up, down, left, or right, and to scroll the screen.

A button: This button is used primarily to finalize selections.

B button: This button is used primarily to cancel selections.

Mode button: This button changes the mode during standalone operation. Each time this button is
pressed, the mode changes according to the following cycle: File -> Game -> Time -> File
-> Game ->...

SLEEP button: This button changes the mode to the SLEEP state during standalone operation.

Reset button: This button initiates a “power on” reset, which initializes the entire VMU unit (including
the clock, etc.), except for the contents of flash memory.
VMU-19

VMU Specifications
Batteries

Battery Life

The VMU is equipped with two CR2032 batteries for standalone operation.

Battery life depends on the status of executable file operations.

If an executable file is continuously executed, with the LCD display on (refresh rate: 1Hz), no alarm outputs, no use
of the communications function, no executable file save processing, and no use of the SLEEP function, the batteries
should last for about one week.

The relationship between operational status and battery life is described below. Take battery life into consideration
when creating executable files.

Flash memory reads: This is the normal state of program execution.

LCD display updates: Battery power consumption increases by a factor of 5 when overwriting
XRAM as compared to when reading flash memory.
Frequent screen updates have an effect on battery life.

Alarm output: Consumes an extremely small amount of power.

Flash memory writes: Consumes 25 times more battery power than when reading flash memory.
Saving the operation status and similar processing should be performed as
infrequently and in as small amounts as possible.

Data exchanges after an executable file has been initiated:
Such operations consume a tremendous amount of battery power. Simple
parameter exchange could be used to reflect the development of game
characters, for example.

File exchanges between two VMUs: Copying an entire file consumes a tremendous amount of battery power.
Because the receiving side in particular must write the data in flash
memory, a large amount of battery power is consumed. In addition, the
larger a file is, the longer the operation will take and the greater that the
power consumption will be.

Processing When Battery Power Is Exhausted

The System-BIOS constantly monitors the battery voltage.

If the batteries are nearing the end of their life while in Game mode (while an executable file is being executed), the
System-BIOS saves the contents of RAM and the registers. (planned to be implemented through the library, perhaps)

Battery Replacement

• The clock settings are initialized when the batteries are replaced.

• Any file that is stored in flash memory is retained.

• When replacing the batteries, always install two brand new CR2032 made by the same manufacturer.

• Make sure that the polarity (+/-) of the batteries is correct when you install them.

Postscript
The functions of the VMU are subject to change in whole or in part until the release of VMU Specifications
Revision 1.0.
VMU-20

Visual Memory Unit (VMU)
Hardware Manual

Table of Contents
Visual Memory Unit Overview. .VMD–1
VMU Specifications ...VMD–2
VMU Functions ..VMD–6

File management ...VMD–7
Liquid-Crystal Display ...VMD–7
Starting VMU applications ..VMD–7
Data transfer ..VMD–7
Clock ...VMD–7
Buzzer ...VMD–8
Operation mode switching ..VMD–8
Integrated character font ..VMD–8

Mode Setting ..VMD–9
System mode ...VMD–9
Game mode ..VMD–9
File mode ..VMD–10
Clock mode ..VMD–10

File Management ...VMD–11
Flash memory management area ...VMD–11
Data area ..VMD–13
Reserved area ..VMD–13

LCD Display ...VMD–14
XRAM ...VMD–14
Image mode ...VMD–14
Icon ..VMD–14
Image configuration ...VMD–14
LCD characteristics ...VMD–15
Other important points ..VMD–15

Starting an Executable File ...VMD–16
Writing applications for the VMU ..VMD–16
Transferring an executable file ..VMD–16
Executable file size ..VMD–16
OS programs usable by applications ...VMD–16
RAM ..VMD–17
Saving application data ..VMD–17
Auto power-off ..VMD–18

Communication Functions ..VMD–19
Maple bus protocol ... VMD–19
Synchronous serial transfer .. VMD–19

Clock Function ..VMD–20
Alarm Function ...VMD–21
Sleep Function ...VMD–22
Buttons ..VMD–23
Batteries ..VMD–24

Battery life .. VMD–25
Battery status monitoring .. VMD–25
Battery replacement ... VMD–25

CPU Features. VMD–27
Differences to Conventional CPUs ...VMD–28
Specifications ...VMD–29
System block diagram ..VMD–33

Internal System Configuration . VMD–35
Memory Space ...VMD–35
Program Counter (PC) ...VMD–36
ROM Space ..VMD–38
RAM Space ...VMD–38
Indirect Address Registers ..VMD–39

Special function registers (SFR) .. VMD–40
Flash Memory ..VMD–43
Accumulator ..VMD–43

B Register, C Register ... VMD–43
Program Status Word (PSW) ...VMD–44
Stack Pointer ..VMD–46
Table Reference Register (TRR) ..VMD–47
CHANGE Instruction ...VMD–48

Format .. VMD–48
Operation ... VMD–48
Sample program ... VMD–48

Peripheral System Configuration . VMD–49
I/O Ports ..VMD–49

Port 1 ..VMD–50
Port 3 ..VMD–54
Port 7 ..VMD–56

Timer/Counter 0 (T0) ..VMD–58
Functions ...VMD–58
Circuit Configuration ..VMD–59
Related Registers ..VMD–60
Circuit Configuration and Operation Principles ...VMD–69

Timer 1 (T1) ...VMD–76
Functions ...VMD–76
Circuit Configuration ..VMD–77
Related Registers ..VMD–78
Circuit Configuration and Operation Principles ...VMD–82

Base Timer ...VMD–94
Functions ...VMD–94
Circuit Configuration ..VMD–95
Related Registers ..VMD–96
Using the Base Timer ...VMD–99

Serial Interface ...VMD–100
Functions and Features ..VMD–100
Circuit Configuration ..VMD–102
Related Registers ..VMD–103
Serial Interface Operation ...VMD–109
Operation Mode Settings ..VMD–109
Serial transfer clock ..VMD–111
Serial Transfer Timing ...VMD–113
LSB/MSB Switchable Start Sequence ..VMD–114
Overrun Detection ..VMD–116
Transfer Bit Length Control ..VMD–117
Sample Program ...VMD–117

Dot Matrix LCD Controller ...VMD–120
Functions ...VMD–120
Display RAM (XRAM) ...VMD–120
Display Control Registers ...VMD–121

External Interrupt Function ..VMD–128
Circuit Configuration ..VMD–129
Related Registers ..VMD–129

Port Interrupt Functions ..VMD–135
Function ...VMD–135
Circuit Configuration ..VMD–135
Related Registers ..VMD–136
Operation Description ...VMD–137
State Transition ...VMD–137

VMU Work RAM ..VMD–139
Work RAM Control Registers ..VMD–139
Accessing Work RAM ...VMD–140
Precautions for Using Work RAM Address Register ...VMD–140

Flash Memory ..VMD–142
Features and Functions ..VMD–142
Accessing Program/Data Area of Flash Memory ...VMD–142

Control Functions . VMD–143
Interrupt Functions ...VMD–143

Interrupt Types ... VMD–144
Interrupt Function Operation ... VMD–145
Circuit Configuration ... VMD–146
Related Registers .. VMD–147
Interrupt Priority Ranking .. VMD–150

System Clock Generation ...VMD–151
Features and Functions .. VMD–153
Circuit Configuration ... VMD–154
Related Registers .. VMD–156
System Clock Operation Mode ... VMD–159

Sleep Function ...VMD–161
Related Registers .. VMD–162
Standby Operation Status ... VMD–163
HALT Mode .. VMD–164

Hardware Reset Function ..VMD–165
External Reset Pin Function .. VMD–166
Hardware Status During a Reset .. VMD–167

Programs in ROM . VMD–171
System Programs ..VMD–172
OS Programs ..VMD–173
Headers ..VMD–174

Memory Space . VMD–175

System BIOS Functions. VMD–177

Subroutine Call Procedure. VMD–179
Processing Contents of Labels ..VMD–180
Interaction Between System BIOS and Application ..VMD–181

Application Shutdown Procedure When MODE Button is Pressed. VMD–183
Processing Contents of Labels ..VMD–184
Interaction Between System BIOS and Application ..VMD–185

VMU Initialization . VMD–187

Subroutine Reference . VMD–189
Flash Memory Access Functions ..VMD–189
Subroutine Use Precautions ..VMD–190
Flash memory routines ..VMD–192

fm_prd_ex(ORG 0120H)
Flash memory page data read .. VMD–192
fm_wrt_ex(ORG 0100H)
Flash memory data write ..VMD–194
fm_vrf_ex(ORG 0110H)
Flash memory page data verify ..VMD–195

Clock Function ..
VMD–198

timer_ex
Clock count-up timer ...VMD–198

Low Battery Voltage Auto Detection . VMD–199

List of Defined Variables . VMD–201

Sound Output Method . VMD–203
Timer 1 Outline ...VMD–203

Timer 1 Block Configuration ..VMD–203
Related Registers ..VMD–204
Mode Setting ...VMD–205

8 Bit Counter Mode ..VMD–206
Output Waveform and Parameter Setting ..VMD–206
8 Bit Counter Mode Setting ...VMD–207
Frequency Characteristics ...VMD–208
Output Frequency Table ...VMD–208

Sample Program. VMD–211

Variable Bit Length Pulse Generator . VMD–213

Symbol Table . VMD–217

VMU Mode Selection . VMD–221

Calculation of Battery Life . VMD–223
Methods for Enhancing Battery Life ..VMD–223
Oscillator Circuit and Current Consumption ...VMD–224
Oscillation Control Register ..VMD–224

System Clock Division Ratio Setting ...VMD–224
Oscillator Circuit Selection ...VMD–224
Oscillator Circuit Start/Stop ...VMD–225

Calculating Battery Life ...VMD–225
Calculating Continuous Operating Time ...VMD–225
Calculating Battery Life in Days ..VMD–226

Serial Communication Precautions . VMD–229
Serial Communication Timing Chart ...VMD–229
Measures to Ensure Problem-Free Serial Transfer ...VMD–230

Mask All Interrupts ..VMD–230
Set Maximum Send Wait Time ...VMD–231

Visual Memory Unit Overview
The Visual Memory Unit is a memory cartridge that serves not only for storing data but also for visually displaying
information on an integrated LCD. It is connected to the Dreamcast controller (hereafter referred to simply as the
“controller”) and is used as a memory card that can store game data and display secondary screens during a game.
It can be connected and removed also while the Dreamcast is turned ON.

In the standalone condition (while not connected to the controller), it is possible to display a directory of data files
and to perform housekeeping (deleting files). Two VMU units can be connected for operations such as copying files.

By downloading an application from the Dreamcast to the VMU, the VMU can be used as a miniature game
machine. Connecting two units for two-player battle-type games is also possible.

Figure 2.1 VMU allows two-player battle-type games
VMD-1

 Visual Memory Unit Overview
VMU Specifications
The VMU hardware configuration is shown below.

Table 2.1 VMU Specifications

VMU custom chip
(Sanyo LC8670)

CPU 8 bit Instruction cycle time Connected to Dreamcast: 6 MHz (1 ms)
Standalone operation: 32 kHz (183 ms)
Note: In standalone operation, operation is deliberately slowed down
to reduce power consumption.

Memory ROM 16 KB system BIOS, system programs

Flash memory
EEPROM

64 KB program/data area
64 KB data area (28 KB reserved for system)

RAM 256 bytes for applications
256 bytes reserved for system

Work RAM 512 bytes work RAM. When connected to Dreamcast, reserved by
system for use as transfer buffer. In standalone operation, read/write
in single byte units possible.

XRAM (for
LCD)

96 bytes for LCD upper half
96 bytes for LCD lower half
6 bytes for icons (reserved by system)

Serial interface Used exclusively as follows.
(1) Dedicated Dreamcast interface
(2) Synchronous 8-but serial interface with 2 transfer channels

Timer 16-bit clock timer
16-bit (or 8-bit x 2), use as PWM sound source possible

I/O ports Input/output 16 lines (buttons, serial interface)
4 lines (control connector

LCD controller 33 common lines, 48 segment lines

LCD Reflective type liquid crystal 48 (horizontal) x 32 (vertical) dots, 2-value B/W
4 mode icons (file, game, clock, alert), reserved by system

Piezoelectric buzzer Alarm (PWM sound source output)

Power supply Button type batter
External input
External output

CR2032 x 2
+5V, +3.3V input
3.3V output

Buttons 8 operation buttons + reset button Direction buttons, A button, B button, MODE button, SLEEP button (reset button)

Connector 14 pins Serial interface, power supply
VMD-2

 Visual Memory Unit Overview
Figure 2.2 External view

Figure 2.3 VMU Front View and Rear View

B button

Reset button

A button

SLEEP button

MODE
button

Direction
 buttons

Connector
cover

Piezoelectric
buzzer

Battery compartment cover
(CR2032 x 2)
VMD-3

Visual Memory Unit (VMU) Hardware Manual
Figure 2.4 System Block Diagram

DC/DC

Potato

CPU-Core
Reset

8-input

Reset

6MHz

32kHz

I/O

Buzzer

Selector

VMU

+5V

+3.5V

Low voltage

CR2032 x2

LCD DriverLCD
32x48dot

4-icon
XRAM
198B

BIOS-ROM
16KB+4KB

FLASH
64KB+64KB

RAM
512B

Serial x2

Buffer
512B

L-Maple
Logic

ID2
ID1
ID0

Output Enable
Input

3-input

I/O
3.3V

2-input
4-input

2Mbps
(max)

Power

Ext.
Terminal
14pin

+5V

Output
Output Enable
Input
Output

.

.

.

VMD-4

 Visual Memory Unit Overview
Figure 2.5 VMU Memory Map

Reserved
area

System
program

area

ROM

OS
program

area

0000H

4000H

E000H

EFFFH

FFFFH

Bank 0

Block 7FH

Block 00H

Flash memory 64 KB x 2
0000H

FFFFH FFFFH

C800H

Bank 1

For
application

use

For
save
data

Block 80H

Block 0C7H

System
management

area

Work RAM
512 bytes

0000H

01FFH

RAM 256 bytes x 2

XRAM
Bank 0

Upper half

Pointer

Bank 1
Lower half Bank 2

For icon use

SFR

SFR

Stack area

For system
use

Bank 0

For
application

use

Bank 1

0000H

01FFH
01BFH

0180H

00FFH

0080H
VMD-5

Visual Memory Unit (VMU) Hardware Manual
VMU Functions
When connected to the Dreamcast via its dedicated interface, the following functions of the VMU are controlled by
the Dreamcast.

Note: The control port of the Dreamcast accepts the standard controller and other devices such as a
steering controller etc. Devices which have an expansion device connector can accommodate the VMU
or other add-on devices. These peripherals communicate with the Dreamcast via a dedicated bus called
the Maple bus.

1. Game data storage medium

2. Controller-specific LCD display

3. VMU clock read and set

These functions are controlled using special programs stored in ROM on the VMU. These programs are collectively
referred to as the system BIOS.

The system BIOS consists of system programs, OS programs, and headers. The system programs perform functions
such as copying and deleting files, controlling the clock display, and communicating with the Dreamcast. OS
programs control basic functions such as flash memory read/write, internal clock setting, battery voltage checking,
etc. Some OS programs can be called by applications. For this purpose, a part of the program must be placed in a
dedicated location in the flash memory. These parts are called headers.

The VMU contains the following system programs.

Figure 2.6 Memory Map of Programs in ROM

Reserved area

System program area

ROM

OS program area
4 KB

16 KB

0000H

4000H

E000H

EFFFH

FFFFH

Application
OS program call

Flash memory Bank 0

CHANGE instruction

Header
0000H

01FFH
VMD-6

 Visual Memory Unit Overview
File management

File management refers to the handling of game data stored in the Dreamcast and executable files for VMU
applications.

Files are managed in units of one block (128 bytes). Reading and writing in block units is possible.

All FAT operations, file name information etc. are handled by system programs.

Liquid-Crystal Display

When connected to the Dreamcast, the display of the VMU shows only graphics transferred as image data from the
Dreamcast. System programs receive the data and handle them for display on the LCD.

In standalone mode, the CPU of the VMU directly controls graphics display. The dot matrix section of the LCD uses
a grid of 32 (vertical) x 48 (horizontal) dots. The data amount for one image is 192 bytes. In addition, the LCD also
contains four types of icons to indicate operation modes.

Because these icons show the operation mode of the VMU, their status may not be changed by applications.

Starting VMU applications

A VMU application can be transferred from the Dreamcast and started by the VMU. OS programs also comprise
various subroutines that can be used by applications. For details, refer to the “System BIOS” section.

Data transfer

When connected to the Dreamcast, control of the VMU is performed via a dedicated interface.

In standalone operation, an 8-bit synchronous serial interface is available for communication with another
VMU unit.

Clock

The VMU incorporates a clock which operates at all times, whether connected to the Dreamcast, running an
application, or in sleep mode.

Application programs can obtain date and time information using an OS program.

Icon Operation mode Function

File mode VMU file management

Game mode Executing game from flash memory

Clock mode Date and time display

Accessing Flash memory access
VMD-7

Visual Memory Unit (VMU) Hardware Manual
Buzzer

The piezoelectric buzzer incorporated in the VMU is driven by a pulse generator (PWM) allowing for variable
frequencies. In theory, the available frequency range is 21 Hz to 5.5 kHz, with 170 Hz to 2.7 kHz being
recommended.

While connected to the Dreamcast, control of the buzzer from the Dreamcast is possible.

During standalone operation, the frequency can be changed by controlling the PWM, and buzzer on/off control is
also possible.

Operation mode switching

The VMU operation mode is determined by the connection method to the Dreamcast and by the MODE button. The
current operation mode is indicated by an icon on the LCD.

In standalone operation other than game mode, if no button was pressed or no communication has occurred for
more than two minutes, the auto power-off function sets the unit to sleep mode to conserve power.

The VMU has the following operation modes:

• File mode (management of stored game data)

• Game mode (playing a VMU internal game)

• Clock mode (clock display and setting)

• System mode (flash memory access)

Table 2.2 Dreamcast Connection Status and Operation Mode

Integrated character font

VMU incorporates an ANK font using a grid of 8 (vertical) x 6 (horizontal) dots. The font comprises alphanumeric
characters, Japanese katakana, and symbols. The font is only for internal use by the system. It cannot be used by
applications, either when connected to the Dreamcast or in standalone mode.

To display characters, image data must be placed in XRAM.

Connection Status MODE button
Icon display

Status Operation mode

Connected to
Dreamcast

Game
File
Clock

Always out System mode

Alert On Flash memory access

Standalone operation Game On Application running

File On File operation

Clock On Clock display

Alert On Flash memory access
VMD-8

 Visual Memory Unit Overview
Mode Setting
The VMU operation mode is determined by the connection method to the Dreamcast and by the MODE button +
A button.

Figure 2.7 Mode Transition

Details of the various operation modes are as follows.

System mode

VMU is controlled by external control program (Dreamcast). VMU carries out Maple bus compliant
communications and memory management, LCD display, and clock management.

When leaving system mode, such as when the VMU is disconnected from the Dreamcast controller, the VMU title
screen is shown on the LCD.

Game mode

In this mode, an application read into the flash memory is executed.

Caution: Applications should be designed to always check for a MODE button press. When the button is
depressed, the application must terminate immediately and control must be handed to the system
program. This applies also when the VMU is connected to the Dreamcast controller while an
application is running.

When a work area in RAM is used, the application should move its contents to flash memory or similar
before terminating.

For information on how to terminate applications and hand control to the system program, refer to “Application
Shutdown When MODE Button Is Pressed”.

Game

Mode button

Mode button Mode button ICON display

Operation mode

Clock File

Game mode System mode

Clock mode File mode

Connect ConnectDisconnect

Mode
button

A
button

A
button

Mode
button

A
button

Mode
button
VMD-9

Visual Memory Unit (VMU) Hardware Manual
File mode

This mode serves for managing game data stored on the VMU. File management is performed by system programs.
The buttons on the VMU are used to display, copy, or delete files written to the flash memory.

Clock mode

In this mode, the time is displayed on the LCD of the VMU. Time can be displayed using hours, minutes, and
seconds, and the user can set the time as desired. When connected to the Dreamcast, time setting can also be
performed from the Dreamcast side.

Clock functions are performed using system programs and OS programs.
VMD-10

 Visual Memory Unit Overview
File Management
The total capacity of the flash memory on the VMU is 128 KB (64 KB x 2 banks). 28 KB are reserved for the system.

Flash memory is managed by the system using 128-byte blocks. The smallest read/write unit for a file therefore is
1 block (= 128 bytes), and up to 200 blocks of data can be stored.

One executable application file can be transferred to the VMU. The executable file must be placed be in contiguous
blocks starting at block 00H. The maximum size for the executable file is 64 KB (= 128 blocks).

It is not possible to transfer and execute multiple executable files or an executable file larger than 64 KB.

Figure 2.8 Flash Memory Memory Map

Flash memory management area

15 blocks starting from the top of the memory range (block 0FFH) are used as memory management area. The
management area is divided into the system area (1 block), FAT area (1 block), and file information area (13 blocks).

The system area is write-protected except for VMU formatting performed by the Dreamcast.

The FAT area manages one block using 2 bytes (16 bits), to maintain the block chain configuration.

Data/application area

Block number: 7Fh
Real address

0FFFFh

0000h

Block number: 7Fh

Block number: 01h
Block number: 00h

Data area

Block number: 0FFh System area
Block number: 0FEh
Block number: 0FDh

:
Block number: 0F1h
Block number: 0F0h

:
:
:

Block number: 0C8h
Block number: 0C7h

Block number: 81h
Block number: 80h

Bank 0 Bank 1

FAT area

File information

Management area

Reserved for system
VMD-11

Visual Memory Unit (VMU) Hardware Manual
The file information area holds 32 bytes of information per file and can manage up to 200 files. Out of the 32 bytes,
12 bytes (equivalent to 12 ASCII codes) are used for the file name. Because a hierarchical structure is not supported,
subdirectories cannot be created.
VMD-12

 Visual Memory Unit Overview
Data area

The data area which can hold files consists of 200 blocks extending from block 00H to block 0C7H. Files are placed
in this area starting from block 0C7H and going towards block 00H. The application starts from block 00H.

Blocks 00H to 7FH and 80H to 0FFH are managed by bank switching, performed automatically by an OS program.

For reading and writing to the flash memory, always call the OS program.

Reserved area

This area is used by system programs and system modes. Writing to this area is prohibited.
VMD-13

Visual Memory Unit (VMU) Hardware Manual
LCD Display
The LCD of the VMU consists of a dot matrix section with 32 (vertical) x 48 (horizontal) dots and an operation mode
icon section with 4 icons.

To display images on the LCD, the image data must be stored in the dedicated XRAM.

XRAM

The dedicated RAM used for LCD display is called XRAM. This corresponds to the video RAM in a
conventional computer.

The XRAM has 3 banks. Banks 0 and 1 can be written to by applications. Bank 2 serves for operation mode display
and cannot be used by applications.

Bank 0 of the XRAM corresponds to the upper half of the LCD (48 x 16 dots), and bank 1 to the lower half
(48 x 16 dots).

1 LCD dot corresponds to 1 bit in the XRAM. 1 byte of XRAM controls 8 horizontal dots, with 6 bytes forming one
horizontal line.

Image mode

When connected to the Dreamcast, image data received from the Dreamcast are normally written to the XRAM by
a system program. However, for display of a secondary game screen, image data are written directly to the VMU.
When transferring image data, pay attention to the top/bottom orientation of the VMU. Vertical image reversal can
be performed using the Ninja library.

The VMU also incorporates an ANK character font, but this is for exclusive use by system programs. It cannot be
used by applications.

To draw an image on the LCD, XRAM bits for black dots should be set.

Icon

Because the icons show the operation mode of the VMU, their status may not be changed by applications.

Image configuration

The LCD of the VMU is configured as follows.
VMD-14

 Visual Memory Unit Overview
Figure 2.9 LCD Screen

LCD characteristics

The screen refresh principle for an LCD differs from that for a CRT display. After data have been transferred to the
XRAM, they are displayed immediately on the LCD, but there is a certain delay due to the response characteristics
of the LCD. If this delay is not handled properly, trailing images and flicker will severely impair display quality.

The clock differs in standalone operation and when connected to the Dreamcast. In standalone mode, LCD display
speed is slower.

Recommended refresh rate for the LCD of the VMU is 200 ms or more.

Other important points

Also consider the points listed below when developing applications.

• There is no provision for contrast adjustment (only LCD on/off control)

• There is no provision for brightness adjustment.

• There is no backlight.

• The reflective polarizer plate (rear sheet) of the LCD cannot have a pattern (picture or similar).

File management

32dots

48dots

Dot matrix screen

Icons

Writing in progress
Clock display

Executable f i le init iation
VMD-15

Visual Memory Unit (VMU) Hardware Manual
Starting an Executable File
An application can be transferred from the Dreamcast or a conventional computer to the VMU, for execution in
standalone mode.

Only one executable file can be transferred to one VMU. It is not possible to use multiple
applications simultaneously.

Several OS programs are being made available for use by applications.

Writing applications for the VMU

Applications for the VMU should be written using an MS-DOS assembler and linker. The conventional executable
file created by the linker is converted into an executable file for the VMU by the program E2H86K.EXE.

A VMU application can be debugged using the VMU simulator designed to run under Windows 95 and later. This
simulator emulates all aspects of VMU hardware operation in software. For details, refer to the VMU
Simulator Guide.

Transferring an executable file

The executable file is to be stored in blocks 00H to 7fH of the flash memory, starting at block 00H.

Before sending an executable file from the Dreamcast or a conventional computer to the VMU, a contiguous area
starting at block 00H must be obtained (defragmented). If the amount of available memory is smaller than the
application or if no contiguous area can be obtained, the application cannot be transferred.

For transfer, use the Ninja library and transfer utilities. These allow automatic checking of available space and
defragmentation.

Executable file size

The maximum executable file size is 64K. Larger applications cannot be transferred to the VMU. When an area for
storing data in the flash memory is required, this area must be provided for within the application.

Caution: The executable file comprises the OS program and a program header area containing interrupt vector
information. In GHEAD.ASM supplied with the SDK, the program header area is 0000H - 01FFH.

OS programs usable by applications

The following OS programs can be used by applications. When an OS program is called, a part of RAM can be used
as work area.

1. Automatic low-battery check Allows enabling an automatic low battery warning.

2. Clock read Gets the date and time from the internal clock in the VMU.

3. Flash memory write Writes data to flash memory in block units.

4. Flash memory read Reads data from flash memory in block units.

5. Flash memory verify Checks data read from flash memory for validity.
VMD-16

 Visual Memory Unit Overview
RAM

The following RAM areas are available to applications.

RAM 00H to 0FFH (bank 1)
RAM bank 0 is reserved for the system. Except for the stack
area, it cannot be used by applications.

Work RAM 00H to 1FFH (read in 1-byte units by specifying address)

XRAM Bank 0, bank 1

Figure 2.10 RAM Memory Map

Saving application data

If a VMU application needs to save progress data or parameters, a data area must be provided within the executable
file. Because the executable file is read into flash memory, the data area also will be stored in flash memory. It is not
possible to create files of the same format as for Dreamcast save data.

When data saved in a VMU application are to be used as Dreamcast applications or links, read the entire VMU
application and perform a lookup on the data addresses in it.

Work RAM

512 bytes

XRAM
Bank 0

XRAM
Bank 1

VRMAD1,2
VTRBF 1 byte

Pointer

Bank 1
XRAM

RAM

Bank 0

For system use

256 bytes

RAM

Bank 1

For application
use

256 bytes

0000H

01FBH

0180H

00FFH

0164H

0166H
VMD-17

Visual Memory Unit (VMU) Hardware Manual
Figure 2.11 Linking of Save Data in VMU and Dreamcast

Auto power-off

The VMU incorporates an auto power-off function that automatically sets the unit to sleep mode if no button was
pressed or no communication has occurred for more than two minutes. For details on the sleep mode of the VMU,
refer to section “Sleep Mode”.

When game mode is active, auto power-off is disabled. Applications must provide their own sleep mode. For
details, refer to section “Sleep Mode”.

0000

A000

EFFF

LD_ADR+A000H

Dreamcast main memory

Maple bus transfer

All data including program are tranferred

Maple bus transfer

All data including program are tranferred

0000

LD_ADR

0000H

A000H

EFFFH

0000H

Game data read into
Dreamcast memory including offset are read

0000H

LD_ADR
VMD-18

 Visual Memory Unit Overview
Communication Functions
VMU can communicate with other devices via a serial interface. Two protocols are available. When connected to the
Dreamcast, the Maple bus protocol is used. In standalone operation, full-duplex synchronous serial transfer is used.
Protocol switching is performed automatically by a system program detecting the Dreamcast connection status.

Maple bus protocol

When connected to the Dreamcast, the communication connector of the VMU becomes a 2 Mbps Maple bus
connector. The entire work RAM is used as send/receive buffer. If an application was using the work RAM as work
area, the entire contents will be destroyed. Take this into account when designing applications.

The Maple bus cannot be used by applications.

Synchronous serial transfer

When the VMU is operating in standalone mode and data transfer is carried out between two VMU units or
between one VMU and a computer, synchronous serial transfer is used. There are two serial communication lines,
allowing full-duplex operation. Data can be transferred in 1 byte units, and the maximum transfer rate is about
2.4 kbps.
VMD-19

Visual Memory Unit (VMU) Hardware Manual
Clock Function
A 32.768 kHz quartz oscillator and dedicated counter keep time in 500-millisecond units. Date and time data are
managed by an OS program. These data can be read by an application, but not written to.

A setting screen is used to set the year, month, day, and time. When connected to the Dreamcast, the clock in the
VMU can be set from the Dreamcast.
VMD-20

 Visual Memory Unit Overview
Alarm Function
The piezoelectric buzzer incorporated in the VMU can be used for an alarm. The buzzer can emit a single tone at a
time. In theory, the available frequency range is 21 Hz to 5.5 kHz, with 170 Hz to 2.7 kHz being recommended. The
alarm function can be implemented by setting the timer (pulse generator) connected to the buzzer. The buzzer can
be switched on and off, but volume control is not possible.

When connected to the Dreamcast, the Dreamcast can control the buzzer of the VMU, including the
frequency setting.
VMD-21

Visual Memory Unit (VMU) Hardware Manual
Sleep Function
The VMU incorporates a sleep function designed to conserve power when operating in standalone mode. In the
sleep condition, the state of the I/O ports and the contents of RAM are maintained, but the CPU and LCD are
turned off.

In game mode, transition to the sleep state is controlled by the application. In clock mode and file mode, the
following conditions cause transition to sleep mode.

• SLEEP button was pressed

• Auto power-off function was activated

• No button press or communication for about 2 minutes

To cancel the sleep mode, the SLEEP button must be pressed. Other buttons are disregarded.

The RAM and register memory contents are preserved, except for the clock register.
VMD-22

 Visual Memory Unit Overview
Buttons
The VMU has the following buttons.

Applications should be designed so as to maintain the interface described below.

Button name Main function

Direction button (up) Cursor movement and display scrolling

Direction button (down) Cursor movement and display scrolling

Direction button (left) Cursor movement and display scrolling

Direction button (right) Cursor movement and display scrolling

A button Mainly “confirm”

B button Mainly “cancel”

MODE button Mode switching during standalone operation
Each push cycles through “File” ➔ “Game” ➔ ‘Clock’ ➔ “File”...

SLEEP button Activating and canceling of sleep mode in standalone operation

Reset button Reset of unit contents except flash memory and clock
VMD-23

Visual Memory Unit (VMU) Hardware Manual
Batteries
The VMU incorporates two button-size batteries (CR2032) which act as a power source in standalone operation.
While connected to the Dreamcast, power is supplied by the Dreamcast.

Battery life will depend on the usage conditions of applications. Under the conditions outlined below, the batteries
will last about two weeks.

• VMU standalone operation

• LCD display on (refresh rate 1 kHz)

• No alarm output

• Communication functions not used

• No write to flash memory

For specific information on how to calculate expected battery life for an application, refer to section
“Calculating Battery Life”.
VMD-24

 Visual Memory Unit Overview
Battery life

Battery life depends on the operation condition of the VMU. Refer to the table below to calculate battery life
for applications.

Battery status monitoring

An OS program continuously monitors the battery voltage. When the batteries near the end of their service life, the
program will trigger auto power-off, even if an application is running.

Battery replacement

When the batteries are replaced, the clock will be initialized, but the contents of flash memory are not affected.

Operation Battery power consumption Comments

Program running Standard Reference for flash memory read and CPU battery power consumption

LCD screen update Standard x5 Frequent XRAM rewriting (screen update) consumes battery power

Alarm output Slightly more than standard Slight increase in battery power consumption

Flash memory write Standard x25 Flash memory writes should be limited to minimum because of extremely high
power consumption

Data transfer Very high battery consumption, especially by applications which also write to flash
memory. When transferring large files, take battery life into consideration.
VMD-25

Visual Memory Unit (VMU) Hardware Manual
VMD-26

CPU Features
The VMU is a memory system for the Dreamcast game machine. The CPU in the custom LSI chip has a minimum
cycle time of 0.5 ms. Other functions integrated on this chip are a 128- KB flash memory, 20-KB ROM, 710-byte RAM,
LCD controller/driver, 16-bit timer/counter/pulse generator, 16-bit (or 2-channel x 8-bit) timer, 2-channel x 8-bit
synchronous serial interface, dedicated Dreamcast interface, and 13-source, 10-vector interrupt architecture.
VMD-27

 CPU Features
Differences to Conventional CPUs
Normally, a CPU will have an internal accumulator as well as general registers and flag registers. The control
registers and data registers for the serial port and other peripheral devices are mapped onto the I/O ports.

In the VMU custom chip, all CPU and peripheral device registers are mapped onto memory. These registers are
referred to as “special function registers” (SFR) and are treated separately from RAM.

Keep in mind that these “special function registers” are not internal registers of the CPU.

Figure 2.12 Differences to Conventional CPU

AX (accumulator)

BX (general register)

PC

SP

Flag register

ALU

Conventional computer
Example: 8086 type CPU

VMS custom chip

SIO

SIO

CPU registersALU

ACC
(accumulator)

B
(general register)

PC

SP

Flag register

PIO

Memory

I/O

SIO control
register

RAM

RAM

Special
function
registers

SIO data
register

PIO control
register
PIO data
register

Memory

SIO control
register

SIO data
register

Bus

* ALU = Arithmetic
Logical
Unit

* Fully memory
mapped custom
chip for VMS
including CPU
registers
VMD-28

 CPU Features
Specifications
This section gives an overview of VMU specifications.

Memory specifications

Flash memory

65536 bytes: Program/data area

65536 bytes: Data area

ROM

16384 bytes: Program area

4096 bytes: System BIOS program area

RAM

Arithmetic area: 256 bytes x 2 banks

Display area: 198 bytes (LCD video XRAM)

Work area: 256 bytes x 2 banks (work RAM)

Note: The work RAM in the work area is used as a send/receive buffer when connected to
the Dreamcast.

Bus cycle time and instruction cycle time

The bus cycle time refers to the ROM read time.

Caution: OCR7 (bit 7 of the oscillation control register OCR) controls the system clock generator operation and
cycle time. For details, refer to section “System Clock Generator”.
OCR7 = 1: 1/6 of system clock is used as cycle time
The frequency of the RC oscillator circuit is subject to tolerances. The reference value is 879.236 kHz,
but the frequency can range from about 600 kHz to 1200 kHz.

Bus cycle time Instruction cycle time System clock
oscillator

Oscillation frequency Power supply voltage Others

3.412ms 6.824ms RC oscillator 879.236kHz 3.15 to 3.8V OCR7=1*1

91.553ms 183.105ms Quartz oscillator 32.768kHz 3.15 to 3.8V OCR7=1*1
VMD-29

Visual Memory Unit (VMU) Hardware Manual
Ports

I/O ports: 2 (P1, P3)

Input port: 1 (P7)

LCD segment drive output ports: 48

LCD drive common output ports: 33

LCD controller

Display duty cycle: 1/33

Display bias: 1/5

LCD instruction: on/off

Graphics display: 32 vertical x 48 horizontal dots + 4 icons

Serial interface

8-bit serial interface x 2 channels (synchronous)

Integrated 8-bit baud rate generator (also used for 2- channel serial interface)

Dedicated Dreamcast interface (automatic start patter/end pattern detection)

Caution: Synchronous serial interface and dedicated Dreamcast interface cannot be used simultaneously.

Timer

Timer 0

16-bit timer/counter

with 8-bit programmable prescaler

Timer 1

16-bit timer/pulse generator

Base timer: clock selector function

Selects between 32.768 kHz quartz oscillator, system clock, timer 0 programmable prescaler output

500-ms overflow signal generator for clock (when 32.768 kHz quartz oscillator is selected)

Overflow signal generator for 976 ms, 3.9 ms, 15.6 ms, or 62.5 ms cycle (when 32.768 kHz quartz oscillator
is selected)
VMD-30

 CPU Features
Interrupts

The interrupt architecture comprises 13 sources and 10 vectors

1) External interrupt INT0: connection detection for dedicated Dreamcast interface

2) External interrupt INT1: low power supply voltage interrupt

3) External interrupt INT2: timer/counter T0L (timer 0, lower 8 bits)

4) External interrupt INT3: base timer

5) Timer/counter T0H (timer 0, upper 8 bits)

6) Timer T1L (lower 8 bits), timer T1H (upper 8 bits)

7) Serial interface 0 (SIO0)

8) Serial interface 1 (SIO1)

9) Dedicated Dreamcast interface

10) Port 3

Caution: The clock function of the VMU is implemented by counting the interrupts generated in 0.5 second
intervals by the base timer. The port 3 interrupt is a level interrupt which is maintained for as long as
the user presses a button.
If the timer is used to frequently generate interrupts or to accept the port 3 level interrupt, the internal
clock may run slow.
When using the base timer interrupt, call the user-side handler immediately after the label
timer_ex_exit in GHEAD.ASM. The user-side handler must be designed to keep processing time at a
minimum, so that the interrupt can be properly processed every 0.5 seconds.
Care must be taken to prevent clock slow-down already when designing an application.

Priority can be assigned to the interrupts using three interrupt levels (low, high, top). The interrupt priority register
can be used to specify high or low priority for the 11 interrupt sources of port 3 for external interrupt INT2 and
timer/counter T0L (timer 0, lower 8 bits). High or low priority can also be specified for external interrupt INT0
and INT1.
VMD-31

Visual Memory Unit (VMU) Hardware Manual
Stack area

128 bytes in RAM bank 0, from 80H to 0FFH. The internal clock uses 20 bytes. The stack is used up from the
top (80H).

High-speed arithmetic instructions

16 bit x 8 bit (execution time: 7 command cycles)

16 bit ❸ 8 bit (execution time: 7 command cycles)

3 oscillator circuits

RC oscillator: system clock (reference: 879.236 kHz; tolerance range: 600 to 1200 kHz)

Quartz oscillator: clock, system clock, LCD driver clock (32.768 kHz)

Standby function

Sets CPU to HALT mode. In this mode, instructions are not executed, but the internal clock continues to
operate. The mode can be canceled by a reset or interrupt.

The mode is identical to the sleep mode of the VMU, which can be canceled by pressing the SLEEP button.

Flash memory specifications

Memory type: EEPROM (Electrically Erasable Programmable ROM)

Capacity: 128 KB

Write method: using OS program

Write block size: 128 KB

Erase/write voltage: 3.15 to 3.8 V

Maximum number rewrite cycles: 50,000 (each cycle consisting of one FFH write and 00H write operation)

Ta = 25 °C, memory managed by program

Program memory space: 64 KB

System BIOS (ROM)/Application (flash memory) switching: by CHANGE instruction. At reset, BIOS
is activated.
VMD-32

 CPU Features
System block diagram
A block diagram of the VMU is shown below.

Figure 2.13 VMU System Block Diagram

Interrupt controller

Standby controller

Base timer

SIO0

SIO1

Bus interface

Port 1

Port 7

SIO

Work RAM for VMU

Timer 0

Timer 1

INT0 to 3 Noise filter

XRAM

LCD display controller

LCD driver

ROM

ACC

EEPROM

EEPROM controller

IR PLA

PC

B register

C register

RAM

Stackpointer

PSW

RAR

Port 3

EXT register

ALU

CF

Cl
oc

k
ge

ne
ra

to
r

RC

X'tal
VMD-33

Visual Memory Unit (VMU) Hardware Manual
VMD-34

Internal System Configuration
Unlike in a conventional CPU, the accumulator and all registers are mapped to RAM. The relationship between CPU
functions and special function registers is described in this section.

Memory Space
The VMU custom chip comprises internal memory space and flash memory space. The internal memory space is
divided into ROM (64 KB) and RAM (512 bytes). In ROM, sequential addresses are incremented with each normal
instruction execution, allowing linear access to 64 KB.

In RAM, the 256 bytes formed by address range 000 to 0FFH are assigned as general-purpose RAM. The 256 bytes
formed by address range 100 to 1FFH are assigned to the special function registers (SFR). General-purpose RAM
consists of 2 banks. The bank can be specified by bit 1 (RAMBK0) of the program status word (PSW) of the special
function registers (SFR). Bank 0 is also used as stack area. The SFR comprises accumulator (ACC), PSW, timer, I/O
ports etc., forming a completely memory-mapped I/O configuration.

The flash memory space has a capacity of 128 KB, divided into 2 banks of 64 KB each. Bank 0 only is available for
execution of application programs. Switching between the ROM system BIOS and a program in flash memory is
performed by a dedicated macro instruction (CHANGE). Data writing to flash memory must be performed by
calling the appropriate OS program.

Caution: When accessing the flash memory, inhibit all interrupts including the base timer. Because the base timer
is used by the internal clock, the inhibit interval should be kept as short as possible.

For writing to the flash memory, set the system clock to RC oscillator and the division ratio to 1/6. For write and
verify, set the system clock to RC oscillator and the division ratio to 1/12.

OS program routines in ROM are provided for flash memory write, data verify, and read operations.

A VMU application always is stored in bank 0 of the flash memory.
VMD-35

 Internal System Configuration
Figure 2.14 Three Memory Space Types

Program Counter (PC)
The program counter (PC) uses a 16-bit configuration for storing the address of the program memory (ROM) where
then next instruction to be executed is stored. The CPU refers to the PC value to execute a series of program
instructions. The PC is normally incremented in steps of one instruction. When divider instructions and
subroutines are executed and when interrupt or reset requests are processed, values for the respective operation
states are set in the PC. These values are shown in the table below.

4 KB *3

Internal program ROM Internal RAM register Flash memory

RAM bank 0

*1) Can be used as application program area*2) System program

*3) BIOS program

Bank 1

64 KB

Bank 0 *1

64 KB

RAM bank 1

SFR

16 KB *2
VMD-36

 Internal System Configuration
Table 2.3 Program Counter Setting Values

Caution: For convenience, 4 KB of ROM space are referred to as a page.
The "current page" refers to the page which contains the instruction that is to be executed after the
currently running instruction.
When an interrupt is generated during ROM program execution, the interrupt vector in ROM (address
in above table) is called. When an interrupt is generated while an application in flash memory is
executing, the interrupt vector of bank 0 in flash memory (address in above table) is called. Applications
cannot arbitrarily specify interrupt vectors. Rather, the specified program must be included in the
application. For details, refer to section 5.1 “Interrupt Functions”.

Operation Program counter value

Reset 0000H (internal program space)

External interrupt 0 0003H

External interrupt 1 000BH

External interrupt 2, timer/counter T0L interrupt 0013H

External interrupt 3, base timer interrupt 001BH

Timer/counter T0H interrupt 0023H

Timer T1L, timer T1H interrupt 002BH

SIO0 interrupt 0033H

SIO1 interrupt 003BH

VMU SIO interrupt 0043H

Port 3 interrupt 004BH

Unconditional branch instruction JMP a12 PC15 to PC12 = current page
PC11 to 00=a12

JMPF a16 C15 to 00=a16

BR r16 (PC+2)+r8 [128 to +127]

BRF r16 (PC+2)+r16 [0 to +65535]

Conditional branch instruction BZ_ BNZ_ BP_ BNE
BPC_ BN_ DBNZ_ BE

(PC+2 or +3)
+r8 [-128 to +127]

CALL instruction CALL a12 C15 to C12 = current page
PC11 to 00=a12

CALLF a12 C15 to 00=a16

CALLR 16 (PC+2)+r16 [0 to +65535]

Macro instruction CHANGE label name (or address) Value specified by other program mode label or address
VMD-37

Visual Memory Unit (VMU) Hardware Manual
ROM Space
The 64 KB ROM space comprises 16 KB for system programs and 4 KB for OS programs.

Figure 2.15 ROM Space

RAM Space
1222 bytes of RAM are included, comprising 198 bytes of LCD video XRAM and 512 bytes VTRBF work RAM. The
special function registers (SFR) are located in the top address range (100H to 1FFH) of RAM.

Table 2.4 RAM configuration

Memory Capacity

RAM size 1222 bytes

XRAM Bank 0 180H - 1FBH (96 bytes)

Bank 1 180H - 1FBH (96 bytes)

Bank 2 180H - 185H (6 bytes)

Main RAM Bank 0 000H - 0FFH (256 bytes)

Bank 1 000H - 0FFH (256 bytes)

VTRBF 166H (256 bytes x 2 banks)

System program
(16 KB)

0000H

3FFFH
4000H

DFFFH
E000H

EFFFH
F000H

FF00H

FFFFH

OS program (4 KB)
VMD-38

 Internal System Configuration
Indirect Address Registers
The 16-byte address range 00H to 0FH in RAM contains 4 banks of indirect address registers. Starting from the
lowest address, these consist of @R0, @R1 (for RAM), @R2, @R3 (for SFR). For addressing, the indirect address
register banks are specified by bits 3 and 4 of the program status word (PSW) (indirect address register bank flag:
IRBK0, 1). This 16-byte area can also be used as regular RAM.

The relationship between indirect address registers and RAM is shown in the table below.

Figure 2.16 Indirect Address Register Arrangement

Table 2.5 Indirect Address Register Map

(1) Direct addressing mode

Figure 2.17 Direct Addressing Mode

Indirect address
register name

Function Bank 0 (IRBK1=0)
(IRBK0=0)

Bank 1 (IRBK1=0)
(IRBK0=1)

Bank 2 (IRBK1=1)
(IRBK0=0)

Bank 3 (IRBK1=1)
(IRBK0=1)

_R0 RAM access RAM 00H RAM 04H RAM 08H RAM 0CH

_R1 RAM access RAM 01H RAM 05H RAM 09H RAM 0DH

_R2 SFR access RAM 02H RAM 06H RAM 0AH RAM 0EH

_R3 SFR access RAM 03H RAM 07H RAM 0BH RAM 0FH

@R000H

03H
04H

07H

08H

0BH

0CH

0FH

@R1

@R2

@R3

@R0

@R1

@R2

@R3

@R0

@R1

@R2

@R3

@R0

@R1

@R2

@R3

RAM bank 0

 Bank 3

 (IRBK1 =1)

 (IRBK0 =1)

 Bank 2

 (IRBK1 =1)

 (IRBK0 =0)

 Bank 1

 (IRBK1 =0)

 (IRBK0 =1)

 Bank 0

 (IRBK1 =0)

 (IRBK0 =0)

* RAM indirect address register
 @R0, @R1

* SFR indirect address register
 @R2, @R3

Bank 0

(1) RAM bank 0 (PSW 21 = 0)

Bank 0 address is selected

Bank 1 address is selected

(2) RAM bank 1 (PSW 21 = 1)

When executing instructions such as MOV #i8, d9

Bank 1

Bank 0

Bank 1
VMD-39

Visual Memory Unit (VMU) Hardware Manual
(2) Indirect addressing mode

Figure 2.18 Indirect Addressing Mode

Special function registers (SFR)

A table of RAM and SFR is shown in Table below. For information on the various registers in the SFR range, refer
to the sections on the various items.

Caution: The initial values are the values established by the BIOS after a reset.

R = READ X = Undetermined

W = WRITE H = Does not exist

Table 2.6 RAM Memory Map

Symbol Address R/W Designation Default value See page

RAM
(bank 0)

000H-0FFH R/W Data memory XXXXXXXX (stored at reset) 43

RAM
(bank 1)

000H-0FFH R/W Data memory XXXXXXXX (stored at reset) 43

ACC 100H R/W Accumulator 00000000 50

PSW 101H R/W Program status word 00H00000 52

B 102H R/W B register 00000000 51

C 103H R/W C register 00000000 51

TRL 104H R/W Table reference register lower byte 00000000 54

TRH 105H R/W Table reference register upper byte 00000000 54

SP 106H R/W Stack pointer XXXXXXXX 53

PCON 107H R/W Power control register HHHHHH00 158

IE 108H R/W Master interrupt enable control register 0HHHHH00 138

IP 109H R/W Interrupt priority control register 00000000 151

EXT 10DH R/W External memory control register HHHH0000 _

Bank 0

(1) RAM bank 0 (PSW 21 = 0)

Bank 0 address is selected

Rj selected from this area0F00

0F00

Bank 1 address is selected

(2) RAM bank 1 (PSW 21 = 1)

When executing instructions such as MOV #i8, @Rj

Bank 1

Bank 0

Bank 1
VMD-40

 Internal System Configuration
OCR 10EH R/W Oscillation control register 0H00HH00 156

T0CNT 110H R/W Timer 0 control register 00000000 67

T0PRR 111H R/W Timer 0 prescaler data 00000000 71

T0L 112H R Timer 0 low 00000000 71

T0LR 113H R/W Timer 0 low reload data 00000000 71

T0H 114H R Timer 0 high 00000000 72

T0HR 115H R/W Timer 0 high reload data 00000000 72

T1CNT 118H R/W Timer 1 control register 00000000 83

T1LC 11AH R/W Timer 1 low comparison data 00000000 86

T1L 11BH R Timer 1 low 00000000 85

T1LR W Timer 1 low reload data 00000000 85

T1HC 11CH R/W Timer 1 high comparison data 00000000 87

T1H 11DH R Timer 1 high 00000000 86

T1HR W Timer 1 high reload data 00000000 86

MCR 120H W Mode control register 00000000 127

STAD 122H R/W Start address register 00000000 129

CNR 123H W Character count register H0000000 130

TDR 124H W Time division register HH000000 130

XBNK 125H R/W Bank address register HHHHHH00 130

VCCR 127H W LCD contrast control register 00000000 131

SCON0 130H R/W SIO0 control register 00H00000 108

SBUF0 131H R/W SIO0 buffer 00000000 113

SBR 132H R/W SIO0 baud rate generator 00000000 113

SCON1 134H R/W SIO1 control register 00000000 111

SBUF1 135H R/W SIO1 buffer 00000000 113

P1 144H R/W Port 1 latch 00000000 58

P1DDR 145H W Port 1 data direction register 00000000 58

P1FCR 146H W Port 1 function control register 10111111 59

P3DDR 14DH W Port 3 data direction register 00000000 62

P3INT 14EH R/W Port 3 interrupt function control register 11111101 62

P7 15CH R Port 7 latch HHHHXXXX 64

I01CR 15DH R/W External interrupt 0, 1 control 00000000 135
VMD-41

Visual Memory Unit (VMU) Hardware Manual
I23CR 15EH R/W External interrupt 2, 3 control 00000000 137

ISL 15FH R/W Input signal select 11000000 138

VSEL 163H R/W Control register 11111100 143

VRMAD1 164H R/W System address register 1 00000000 144

VRMAD2 165H R/W System address register 2 HHHHHHH0 144

VTRBF 166H R/W Send/receive buffer XXXXXXXX 144

BTCR 17FH R/W Base timer control 01000001 101

RAM
(XRAM)
(Bank 0)

180H-1FBH R/W LCD memory XXXXXXXX (stored at reset) 126

RAM
(XRAM)
(Bank 1)

180H-1FBH R/W

RAM
(XRAM)
(Bank 2)

180H-185H R/W
VMD-42

 Internal System Configuration
Flash Memory
The VMU custom chip comprises a 128 KB flash memory space which consists of two 64-KB banks. Reading and
writing data from and to the flash memory is performed by calling the appropriate OS program. By using the ROM
table lookup instruction (LDC), ROM space data can be accessed. Applications are always placed in the 64 KB
memory space of bank 0. Switching between the system BIOS (ROM) and an application (flash memory) is
performed by a dedicated macro instruction (CHANGE).

Figure 2.19 Flash Memory Map

Data read/write for the flash memory is performed by calling an OS program. For details, refer to chapter 12
“Subroutine Reference” in the System BIOS manual.

Accumulator
The accumulator (ACC) is an 8-bit register used for data arithmetic processing, transfer, I/O operations etc. It is
assigned to address 100H of SFR, and initialized to 00H after a reset.

Unlike in a conventional CPU, a part of the memory is used to serve as accumulator.

Table 2.7 Accumulator (ACC)

B Register, C Register

The B register and C register are 8-bit registers used in combination with the accumulator for arithmetic operations.
They are assigned to address 102H (B register) and address 103H (C register) of SFR, and initialized to 00H after
a reset.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ACC 100H R/W ACC7 ACC6 ACC5 ACC4 ACC3 ACC2 ACC1 ACC0

Reset 0 0 0 0 0 0 0 0

Bank 0
64 KB

0000H

FFFFH
0000H

FFFFH

Bank 1
64 KB

Flash memory size: 64 KB x 2 banks
Banks: Bank 0, bank 1
Bank address: 0000H - FFFFH
VMD-43

Visual Memory Unit (VMU) Hardware Manual
B register

C register

Multiplication is performed using 16 bits x 8 bits. For the multiplicand (16 bits), the upper 8 bits are stored in the
accumulator and the lower 8 bits in the C register. The multiplier (8 bits) is stored in the B register. The processing
result (product) has 24 bits. The top 8 bits are stored in the B register, middle 8 bits in the accumulator, and lower 8
bits in the C register. Therefore, the following applies:

(ACC) (C) x (B) = (B) (ACC) (C)

Division is performed using 16 bits ∏ 8 bits. For the dividend (16 bits), the upper 8 bits are stored in the accumulator
and the lower 8 bits in the C register. The divisor (8 bits) is stored in the B register. The processing result (quotient)
has 16 bits. The upper 8 bits are stored in the accumulator, and the lower 8 bits in the C register. The surplus is stored
in the B register. Therefore, the following applies:

(ACC) (C) ÷ (B) = (B) (ACC) (C) mod (B)

Figure 2.20 Arithmetic Register Contents

Program Status Word (PSW)
The program status word (PSW) consists of flags indicating the arithmetic processing result status and flags
specifying the RAM banks and indirect address registers. It is assigned to address 101H of SFR, and initialized to 0
after a reset.

Table 2.8 Program status word (PSW)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

B 102H R/W B7 B 6 B 5 B 4 B 3 B 2 B 1 B 0

Reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

C 103H R/W C7 C6 C5 C4 C3 C2 C1 C0

Reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PSW 101H R/W CY AC _ IRBK1 IRBK0 OV RAMBK0 P

Reset 0 0 0 0 0 0 0 0

ACC C

B CACC

B

Product

ACC C

CACC B

B

Quotient Residual
VMD-44

 Internal System Configuration
CY (bit 7): carry flag

CY is set (1) when the processing result carries over to the next higher digit (carry) or to the next lower digit
for subtraction and comparison (borrow). Otherwise the flag is reset (0). The flag is influenced by rotating
instructions that include CY, and is reset (0) when an arithmetic instruction is executed.

AC (bit 6): auxiliary carry flag

AC is set (1) when the ACC bit 3 carries over to the next higher digit (carry) or to the next lower digit
(borrow). Otherwise the flag is reset (0).

IRBKx: indirect address register bank flag

Consists of IRBK1 (bit 4) and IRBK0 (bit 3) which specify indirect address register bank flag 1 and indirect
address register bank flag 0.

Serve for specifying the 4 register banks used as indirect address registers for indirect addressing within
each RAM bank.

OV (bit 2): overflow flag

When overflow occurs, the OV bit is set (1). Otherwise it is reset (0). This means that the bit is set when the
result of an arithmetic operation involving "negative number" + "negative number" or "negative number" -
"positive number" is positive, or when the result of an arithmetic operation involving "positive number" +
"positive number" or "positive number" - "negative number" is negative. For multiplication and division,
the bit is set when the contents of the B register are not 0, and reset when the contents of the B register are 0.

RAMBK0 (bit 1): RAM bank flag

Serves for specifying the RAM bank. When an instruction performs RAM access, the RAM address within
the specified bank is accessed.

P (bit 0): accumulator (ACC) parity flag

When the total number of bits set in the accumulator is odd, this bit is set (1). When the number is even, the
bit is reset (0). This bit is read-only.

Bank IRBK1 IRBK0

0 0 0

1 0 1

2 1 0

3 1 1

Bank RAMBK0

0 0

1 1
VMD-45

Visual Memory Unit (VMU) Hardware Manual
Stack Pointer
RAM bank 0 is used as stack memory. The 8-bit SP register is used to specify addresses in the stack area.

SP is assigned to address 106H of SFR. It is incremented before data are moved into stack memory and decremented
after data are fetched from stack memory.

After a reset, SP is undetermined, but system programs initialize it to 7FH. After SP is initialized, the application
is called.

Caution: The stack is used from RAM bank 0 address 80H upwards (towards 0ffH). The clock function uses up
to 20 bytes of the stack, leaving 108 bytes for the application.
When the PUSH instruction is executed, data are stored only after SP was incremented.
Also when PUSH or POP are used during access of RAM bank 1, the data will be stored in the RAM
bank 0 stack area.

Table 2.9 Stack pointer (SP)

When the PUSH instruction is executed, SP is incremented and the SFR and RAM data specified by the operand are
moved out. When the POP instruction is executed, the data are moved back into the SFR and RAM specified by the
operand, and SP is decremented.

Also when RAM bank 1 was specified for a PUSH or POP operation, data are stacked in RAM bank 0. When the
RAM address is used as operand, bank 0 (not bank 1) is accessed.

When a CALL instruction is executed, SP is incremented, and the lower 8 bits of the program counter (PC) are
moved to the stack. Then SP is incremented and the upper 8 bits of the PC are moved to the stack. When a RET
instruction is executed, data specified by SP are stored as the upper 8 bits of the PC, SP is decremented, and the data
specified by the SP are stored as the lower 8 bits of the PC. SP is then decremented further.

When an interrupt is received, SP is incremented, and the lower 8 bits of the PC are moved to the stack. Then SP is
incremented again, and the upper 8 bits of the PC are moved to the stack. When a RET1 instruction for returning
from interrupt processing is executed, the upper 8 bits of the PC are stored, SP is decremented, and the data
specified by the SP are stored as the lower 8 bits of the PC. SP is then decremented further.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SP 106H R/W SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

Reset X X X X X X X X
VMD-46

 Internal System Configuration
Table Reference Register (TRR)
The table reference register (TRR) is a 16-bit register that serves for ROM and flash memory addressing. The lower
byte (TRL) is assigned to address 104H of SFR and the upper byte (TRH) to address 105H of SFR. During reset, the
register is initialized to 00H.

The table lookup instruction (LDC) adds the data stored in the TRR to the data stored in the accumulator and uses
the result as address for reading data and transferring them to the accumulator. During flash memory read/write
(using OS programs), the data stored in the TRR are used as address for the specified bank.

Table 2.10 Table reference register (lower byte) (TRL)

Table 2.11 Table reference register (upper byte) (TRH)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRL 104H R/W TRL7 TRL6 TRL5 TRL4 TRL3 TRL2 TRL1 TRL0

Reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRH 105H R/W TRH7 TRH6 TRH5 TRH4 TRH3 TRH2 TRH1 TRH0

Reset 0 0 0 0 0 0 0 0
VMD-47

Visual Memory Unit (VMU) Hardware Manual
CHANGE Instruction
The CHANGE instruction serves for switching between the system BIOS and the application. When a system
program is running, the instruction causes a change to the application mode. The program counter is reset to the
address specified by label or address.

Format

CHANGE <label name or address>

Operation

As described below, operation of the CHANGE instruction differs, depending on whether it is executed while a
system program or the application is running. The actual mode shift occurs after the dedicated macro instruction
was executed.

1) System program running

The system switches from the system program to the application (game mode). The program counter is reset to the
application address specified by label or address.

2) Application running

The system switches from the application (game mode) to the system program.

However, if bit 1 (LDCEXT) of the external memory control register is set, the CHANGE instruction will not cause
a change to the system program. The application continues to run.

The program counter is reset to the system program address specified by label or address.

Sample program

Figure 2.21 System Program ↔Application Transition

OTHER_SIDE_SYMBOL

WORLD INTERNAL

Public
AAA
BBB

CHANGE

BBB:

AAA

Public

WORLD EXTERNAL

OTHER_SIDE_SYMBOL
AAA
BBB

CHANGE BBB

AAA:

PC

WORLD INTERNAL

247H
248H

600H

MNEMONIC
NOP
CHANGE 100H

NOP

PC

WORLD EXTERNAL
External programExample: internal program

100H
MNEMONIC
NOP

480H NOP
481H CHANGE 600H
VMD-48

Peripheral System
Configuration
This section gives details about peripheral devices including I/O ports, timer, serial communication, etc.

I/O Ports
The VMU custom chip has three I/O ports which are all mapped to memory using Special Function Registers (SFR).
For ports 1 and 3, data direction register (PnDDR) determine the I or O assignment. Port 1 is used only for the serial
interface and dedicated Dreamcast interface. Port 7 is a dedicated input port for the VMU buttons.

After a reset, all ports are set as input ports, and the port latch is "0".

To use the I/O ports, the following Special Function Registers must be operated.

Port 1 (P1) • P1 • P1DDR • P1FCR

Port 3 (P3) • P3 • P3DDR • P3INT • EXT

Port 7 (P7) • P7 (dedicated input port)

Caution: When reading an I/O port, depending on the instruction, data may be either latched (Figure 2.22,
“Instruction and Data Path,”) or read directly from the port (Figure 2.22, “Instruction and Data Path,”).
This must be taken into consideration when reading I/O port data. When reading an I/O port, some
instructions read port latched data. BPC, DBNZ, INC, DEC, SET1, CLR1, NOT1
VMD-49

 Peripheral System Configuration
Figure 2.22 Instruction and Data Path

Port 1

Port 1 can be used as I/O port for the serial interface of the VMU, or for the dedicated Dreamcast interface.

Applications can use only SIO (P10 - P15). To operate these registers, be sure to use bit-level instructions. For details
on SIO output, refer to the section on “Serial Interface”.

Caution: When coding VMU applications, the following operations must be included.
Standalone operation (SIO not used)

1. Monitor port 7 to detect 5V.
2. Store values of bits 2 and 5 of port 1.
3. When 5V is detected, change bits 2 and 5 of port 1 to port data output mode and output "0" for

these bits.
4. Reset stored values of bits 2 and 5 of port 1.

If these operations are not performed, the VMU may not be recognized correctly when connected
to the Dreamcast.
Except for the above operations and for serial data transfer, port 1 registers should not be operated
by an application.

Table 2.12 Port 1 latch (P1): 144H

Port 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P17 P16 P15 P14 P13 P12 P11 P10

Function Pulse output TEST SCK1 SB1 SO1 SCK0 SB0 SO0

D Q

D Q

D

7

Q

D Q

D Q

D Q

D Q

D Q

MPX

MPX

MPX

MPX

MPX

MPX

MPX

MPX

6 5 4 3 2 1 0

B
U
S

D Q

D Q

D

7

Q

D Q

D Q

D Q

D Q

D Q

MPX

MPX

MPX

MPX

MPX

MPX

MPX

MPX

6 5 4 3 2 1 0

B
U
S

VMD-50

 Peripheral System Configuration
Table 2.13 Port 1 data direction register (P1DDR): 145H

Caution: The data direction register for port 1 is a write-only register corresponding to each data latch bit. When
a bit operation instruction or an instruction such as INC, DEC, or DBNZ is used for a write-only register,
bits other than the specified bit become "1". For the P1DDR, use the following instructions.
MOV, MOV @, ST, ST @, POP

P1nDDR (bit 7 to 0): P17 - P10 I/O control

Specifies whether bits 7 to 0 of port 1 are used for input or output.

When set to "1", P1n is in output mode.

When reset to "0", P1n is in input mode.

Table 2.14 Port 1 function control register (P1FCR): 146H

Caution: The data direction register for port 1 is a write-only register. When a bit operation instruction or an
instruction such as INC, DEC, or DBNZ is used for a write- only register, bits other than the specified
bit become "1". For the P1FCR, use the following instructions.
MOV, MOV @, ST, ST @, POP

Stmbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PIDDR 145H W P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P11DDR P10DDR

Reset 0 0 0 0 0 0 0 0

Bit name Function

P17DDR (bit 7)

P10DDR (bit 7)

Input control

0: Input mode
1: Output mode

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PIFCR 146H W P17FCR P16FCR P15FCR P14FCR P13FCR P12FCR P11FCR P10FCR

____ 0 0 0 0 0 0 0 0
VMD-51

Visual Memory Unit (VMU) Hardware Manual
P17FCR (bit 7): Select P17 function

Controls the PWM assigned to P17. When set to "1", the logical sum of the PWM signal and the port latch
data is output. When reset to "0", the port latch data are output.

P16FCR (bit 6): Select P16 function

This bit is fixed to "0". It may not be manipulated by an application.

P15FCR (bit 5): Select P15 function

Controls the clock assigned to P15 for serial transfer 1. When set to "0", the logical sum of the serial interface
clock (SCK1) and port latch data is output. When reset to "0", port latch data are output.

Bit name Function

P17CR (bit 7) P17 control function

0: Port data (P17) output
1: PWM output

P16CR (bit 6) Use prohibited

0: Port data (P16) output (fixed)
1: Not allowed

P15CR (bit 5) P15 control function

0: Port data (P15) output
1: Serial interface data (SCK1) output

P14CR (bit 4) P14 control function

0: Port data (P14) output
1: Serial interface data (SB1) output

P13CR (bit 3) P13 control function

0: Port data (P13) output
1: Serial interface data (SO1) output

P12CR (bit 2) P12 control function

0: Port data (P12) output
1: Serial interface data (SCK0) output

P11CR (bit 1) P11 control function

0: Port data (P11) output
1: Serial interface data (SB0) output

P10CR (bit 0) P10 control function

0: Port data (P10) output
1: Serial interface data (SO0) output
VMD-52

 Peripheral System Configuration
P14FCR (bit 4): Select P14 function

Controls the data assigned to P14 for serial transfer 1. When set to "0", the logical sum of the serial interface
data (SB1) and port latch data is output. When reset to "0", port latch data are output.

P13FCR (bit 3): Select P13 function

Controls the data assigned to P13 for serial transfer 1. When set to "0", the logical sum of the serial interface
data (S01) and port latch data is output. When reset to "0", port latch data are output.

P12FCR (bit 2): Select P12 function

Controls the clock assigned to P12 for serial transfer 0. When set to "0", the logical sum of the serial interface
clock (SCK0) and port latch data is output. When reset to "0", port latch data are output.

P11FCR (bit 1): Select P11 function

Controls the data assigned to P11 for serial transfer 0 When set to "0", the logical sum of the serial interface
data (SB0) and port latch data is output. Serial interface data can always be input.

P10FCR (bit 0): Select P10 function

Controls the data assigned to P10 for serial transfer 0. When set to "0", the logical sum of the serial interface
data (S00) and port latch data is output. When reset to "0", port latch data are output.

Caution: • To use the function assigned to port 1, the corresponding port latch must be reset to "0".
For example, to use PWM, set P17FCR to "0" and reset P17 to "0".

• The instructions BPC, DBNZ, INC, DEC, SET1, CLR1, NOT1 read port latch data. Other instructions
read data assigned to the port.
VMD-53

Visual Memory Unit (VMU) Hardware Manual
Figure 2.23 Port 1 Block Diagram

Port 3

Port 3 is an input-only port dedicated to the VMU direction buttons, A button, B button, MODE button, and
SLEEP button.

Table 2.15 Port 3 latch (P3)

Bits 0 to 7 of port are programmable pull-up bits. The application must set the bit corresponding to the button to be
detected to "0". When the button is pressed, the bit is reset to "0".

Caution: Measures against simultaneous presses of different direction buttons must be taken by the application.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P3 14CH R/W P37 P36 P35 P34 P33 P32 P31 P30

Function SLEEP MODE B button A button RIGHT LEFT DOWN UP

Reset 0 0 0 0 0 0 0 0

D Q

D Q

D

7

Q

D Q

D Q

D Q

D Q

D Q

MPX

MPX

MPX

MPX

MPX

MPX

MPX

MPX

SIO0

SIO1

6 5 4 3 2

PWM

1 0 7

Output
buffer

Input
buffer

6 5 4 3 2 1 0

B
U
S

BUZ

SCK0

SO0

SCK0

SO0

P17/PWM

P1DDR(145H)P1FCR(146H)

F TYPE

P16/BUZ

P15/SCK1

P14SI1/SB1

P13SO1

P12/SCK0

P11/SI0/S1

P10/SO0

VMS serial interface circuit

SDCKB Output Enable

SDKCB Input

SDCKB Output

SDCKA Output Enable

SDCKA Input

SDCKA Output
VMD-54

 Peripheral System Configuration
Port 3 data direction register (P3DDR): 14DH

This register may not be manipulated by an application.

Table 2.16 Port 3 interrupt control register (P3INT)

P32INT (bit 2): port 3 interrupt generation selector flag

Determines whether an interrupt is generated while a button connected to port 3 is pressed. Whereas the
P30INT (bit 0) flag selects whether a generated interrupt is accepted or not, this flag controls interrupt
generation itself.

When reset to "0", no interrupt is generated.

When set to "0", an interrupt is generated.

Caution: The port 3 interrupt is a level interrupt which is generated continuously for as long as the button
is pressed.

P31INT (bit 1): port 3 interrupt source flag

This flag is relevant if the P32INT flag is set. The port 3 interrupt request status is monitored, and the flag
is set to "0" when an interrupt request is generated by port 3. When no interrupt request is generated, the
flag does not change. This allows an interrupt processing routine to specify an interrupt source.

Caution: This flag must be reset by the application. Use a suitable interrupt processing routine to do this.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P3INT 14EH R/W - - - - - P32INT P31INT P30INT

Reset H H H H H 0 0 0

Bit name Function

P32INT (bit 2) Port 3 interrupt control flag

0: Port interrupt disabled
1: Port interrupt enabled

P31INT (bit 1) Port 3 interrupt source flag

0: Interrupt source disabled
1: Interrupt source enabled

P32INT (bit 0) Port 3 interrupt request enable

0: Interrupt request disabled
1: Interrupt request enabled
VMD-55

Visual Memory Unit (VMU) Hardware Manual
P30INT (bit 0): port 3 interrupt request enable control

Enables (1) or disables (0) interrupt requests from port 3. When reset to "0", interrupt processing is disabled
and the interrupt processing routine is not called. When set to "0", the interrupt vector 004BH is called when
an interrupt is generated (P31INT = 1).

Figure 2.24 Port 3 block diagram

Port 7

Port 7 is a dedicated input port that serves for low- voltage detection and for checking the connection status to
the Dreamcast.

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D

P37

E TYPE

P36

P35

P34

P33

P32

P31

P30Q

MPX

MPX

MPX

MPX

MPX

MPX

MPX

MPX

B
U
S

MPX

P3DDR(14DH)

7 6 5 4 3 2 1 0

Port 3 interrupt circuit Po
rt

3
in

te
rr

up
t

ci
rc

ui
t

Output
buffer Input

buffer
VMD-56

 Peripheral System Configuration
Table 2.17 Port 7 (P7)

Bits 0 to 3 of port 7 are pulled up. Immediately after a reset, bit 1 is set to "0" and all other bits are reset to "0".

Caution: VMU applications should be designed in such a way as to store data in flash memory and then
terminate quickly when the VMU is connected to the Dreamcast controller while the application
is running.
The application should monitor bit 0 of port 7. When detecting that bit was set to "0", the same
application termination routine as when the MODE button is pressed should be carried out, and control
should be returned to the system BIOS. The interrupt INT0 can be used to detect the connection status.

Figure 2.25 Port 7 Block Diagram

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P7 15CH R - - - - P73 P72 P71 P70

Function - - - - ID1 ID0 Low voltage 5V detection

Reset H H H H 0 0 1 0

C TYPE

P73/INT3/T0IN

Pull-up resistor

B
U
S

P72/INT2/T0IN

D TYPE

Pull-up resistor

P70/INT0

P71/INT1
VMD-57

Visual Memory Unit (VMU) Hardware Manual
Timer/Counter 0 (T0)
The timer/counter 0 (T0) in the VMU custom chip is a 16- bit timer/counter with the following 4 functions. The
prescaler of timer 0 is an 8-bit type.

The following Special Function Registers are used to control the timer/counter 0.

T0H, T0HR, T0L, T0LR, T0CNT, T0PRR, ISL, I23CR

• Mode 0: 8-bit reload timer x 2 channels

• Mode 1: 8-bit reload timer + 8-bit reload counter

• Mode 2: 16-bit reload timer

• Mode 3: 16-bit reload counter

Functions

8-bit reload timer x 2 channels (mode 0)

The clock from the 8-bit prescaler is used to drive two separate 8-bit reload timers (T0H, T0L).

8-bit reload timer + 8-bit reload counter (mode 1)

T0H operates as an 8-bit reload timer driven by the prescaler clock. T0L performs counting by detecting the
input signal at the P72/INT2/T0IN and P73/INT3/T0IN pins.

16-bit reload timer (mode 2)

The clock from the 8-bit prescaler is used to drive the 16-bit reload timer (T0H + T0L).

16-bit reload counter (mode 3)

The overflow of T0L is used as clock for T0H, to drive the 16-bit reload counter. T0L counts the input signal
at the P72/INT2/T0IN and P73/INT3/T0IN pins.

Interrupt generation

When the interrupt enable bit is set, overflow of the register T0H or T0L generates a T0H or T0L interrupt.
VMD-58

 Peripheral System Configuration
Circuit Configuration

The timer/counter 0 (T0) configuration is shown in below.

Prescaler … ����

The prescaler is an 8-bit programmable counter that operates constantly while the system is on.

The cycle clock is a signal generated with each cycle when an instruction is executed and at HALT mode.

Timer/counter 0 low (T0L) … ➻

This 8-bit reload timer/counter uses the prescaler output or an external signal (from other VMU) as a clock.

In modes 0 and 1, T0L is the overflow. In modes 2 and 3, T0H is the overflow. The T0LR (reload register)
contents are reloaded to the respective counter. Reloading is carried out also when the T0LRUN (T0CNT
bit 6) is reset and the counter stops.

Timer/counter 0 high (T0H) … ➥

This 8-bit reload timer/counter uses the prescaler output or the T0L overflow as a clock.

At T0H overflow the contents of the timer 0 high reload register (T0HR) are reloaded. Reloading is carried
out also when the T0HRUN (T0CNT bit 7) is reset and the counter stops.

Timer/counter 0 control register (T0CNT) … ③

Serves for T0 mode 0 to 3 setting and interrupt control.

Figure 2.26 Timer/Counter 0 Block Diagram

Signal
detectorP72/INT2

/T0IN

P73/INT3
/T0IN

I23CR(15EH)

T0IN

Selector Selector

8-bit prescaler Base timer clockCycle clock

Reload register (T0LR)

Reload register (T0LR)

7 6 5 4 3 2 1 0

ISL(15FH)

- - 5 4 3 2 1 0

T0CNT(110H)

7 6 5 4 3 2 1 0

T0HOVF

T0LONG

T0LEXT

T0LOVF

8-bit counter (T0H)

Reload register (T0HR)

8-bit counter (T0H)

Signal
detector

Selector

Selector
VMD-59

Visual Memory Unit (VMU) Hardware Manual
Related Registers

Table 2.18 Timer/counter 0 control register (T0CNT)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T0CNT 14EH R/W P0HRUN P0LRUN P0LONG P0LEXT P0HOVF T0HIE T0LOVF T0LIE

Reset 0 0 0 0 0 0 0 0

Bit name Function

P0HRUN (bit 7) T0H count control

0: Count stop/data reload
1: Count start

P0LRUN (bit 6) T0L count control

0: Count stop/data reload
1: Count start

P0LONG (bit 5) Timer/counter 0 bit length
selector

0: 8 bit
1: 16 bit

P0LEXT (bit 4) T0L input clock select

0: Prescaler output
1: External pin input signal
Pin for external input can be
specified by input select
register (ISL)

P0HOVF (bit 3) T0H overflow flag

0: No overflow flag
1: Overflow flag

T0HIE (bit 2) T0H interrupt request
enabled

0: Interrupt request disabled
1: Interrupt request enabled

T0LOVF (bit 1) T0L overflow flag

0: No overflow flag
1: Overflow flag

T0LIE (bit 0) T0L interrupt request enabled

0: Interrupt request disabled
1: Interrupt request enabled
VMD-60

 Peripheral System Configuration
T0HRUN (bit 7): T0H count control

Controls count-up start/stop of timer/counter 0 high (T0H). When set to "0", the T0H clock is supplied and
counting starts. To stop counting, the bit must be reset to "0". This stops the clock and sends the reload data
(T0HR) to T0H.

T0LRUN (bit 6): T0L count control

Controls count-up start/stop of timer/counter 0 low (T0L). When set to "0", the T0L clock is supplied and
counting starts. To stop counting, the bit must be reset to "0". This stops the clock and sends the reload data
(T0LR) to T0L.

T0LONG (bit 5): Timer/counter 0 bit length select

Specifies the bit length of T0. "0" selects a 16-bit counter and "0" an 8-bit counter.

Table 2.19 For mode 0 or 1, specify "0", and for mode 2 or 3, specify "0".

T0LEXT (bit 4): T0L input clock select

Specifies the clock supplied to T0L. The clock can be either an external signal (from a another connected
VMU) or the prescaler output.

When the bit is set to "0", the external input signal is selected. When the bit is reset to "0", the prescaler
output is selected.

When the external signal is selected (1), either port P72 (INT2/T0IN pin) or P73 (INT3/T0IN pin) can be
used. as T0L clock. Switching between P72 and P73 is performed by the input signal select register (ISL).

T0HOVF (bit 3): T0H overflow flag

This flag is set when T0H overflow has occurred. If there is no overflow, the flag does not change.

This flag must be reset by the T0H interrupt processing routine or another routine of the application.

T0HIE (bit 2): T0H interrupt request enable control

Enables or disables interrupt request generation at T0H overflow.

When set to "0", the interrupt vector 0023H is called when T0H overflow occurs. When reset to "0", no
interrupt request is generated.

Mode T0LONG T0LEXT

0 0 0

1 0 1

2 1 0

3 1 1
VMD-61

Visual Memory Unit (VMU) Hardware Manual
T0LOVF (bit 1): T0L overflow flag

This flag is set when T0L overflow has occurred. If there is no overflow, the flag does not change.

This flag must be reset by the T0L interrupt processing routine or another routine of the application.

When the 16-bit counter is used, the flag is not set also when overflow occurs. When T0H overflow occurs,
it is set together with T0HOVF.

T0LIE (bit 0): T0L interrupt request enable control

Enables or disables interrupt request generation at T0L overflow.

When set to "0", the interrupt vector 0013H is called when T0H overflow occurs. When reset to "0", no
interrupt request is generated.

Caution: • The overflow flags (T0HOVF, T0LOVF) must be reset to "0" by the respective interrupt processing
routine of the application.

• When using the 16-bit counter, set T0HRUN and T0LRUN together to "0".
• When using the 16-bit counter, set T0HOVF and T0LOVF together to "0".

Input signal select register (ISL)

This register serves to select the time constant for the noise filter connected to P73 (INT3/T0IN pin) and to
select the external signal.

Caution: This register may not be manipulated by an application.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ISL 15FH R/W - - ISL5 ISL4 ISL3 ISL2 ISL1 ISL0

Reset H H 0 0 0 0 0 0
VMD-62

 Peripheral System Configuration
ISL5, ISL4 (bits 5, 4): base timer clock select

Select the base timer input clock.

ISL3 (bit 3): prohibited

Use of this bit is prohibited.

ISL2, ISL1 (bits 2, 1): noise filter time constant select

Selects the time constant of the noise filter.

Bit name Function

ISL5 (bit 5)

ISL4 (bit 4)

Base timer clock select

ISL5 ISL4

1
0
X

1
1
0

Timer/counter T0
prescaler
Cycle clock
Quartz oscillator

ISL3 (bit 3) Use prohibited

0: fBST/16 (fixed)
1: Not allowed

ISL2 (bit 2)
ISL1 (bit 1)

Noise filter time constant select

ISL2 ISL1

1
0
X

1
1
X

16Tcyc
64Tcyc
1Tcyc

ISL0 (bit 0) T0 clock input pin select

0: P72/INT2/T0IN pin
1: P73/INT3/T0IN pin

ISL5 ISL4 Base timer input clock

0 0 Quartz oscillator

ISL2 ISL1 Time constant

0 0 1Tcyc
VMD-63

Visual Memory Unit (VMU) Hardware Manual
The table below shows values for the signal time constant and noise range figures.

Caution: • A signal not matching the time constant conditions is considered noise and is not input.
• Sometimes even a signal matching the time constant conditions may be considered noise and

not input.
• A signal matching the time constant conditions is considered normal and is input.

ISL0 (bit 0): T0 clock input select

Sets port T0 external signal input to P73 (INT3/T0IN pin) or P72 (INT2/T0IN pin).

When reset to "0", the signal at P72 (INT2/T0IN pin) is used as T0 clock.

When set to "0", the signal at P73 (INT3/T0IN pin) is used as T0 clock.

Timer 0 prescaler register (T0PRR)

The timer 0 prescaler register (T0PRR) serves for setting the timer/counter 0 clock frequency. The 8-bit
programmable counter allows 256 different settings.

The 8-bit prescaler uses the cycle clock directly as its clock. By setting the desired data in T0PRR (111H), the
timer/counter 0 clock frequency TPR can be set.

Tcyc: Cycle clock

Timer 0 low register (T0L)

This is an 8-bit timer/counter.

It selects whether the output of the prescaler or the external signal from P72 (INT2/T0IN pin) or P73 (INT3/
T0IN pin) is used as clock signal.

Time constant Noise *1 Noise/

signal *2 Noise *3

1Tcyc < 1Tcyc 1Tcyc –

2Tcyc 2Tcyc <

8-bit prescaler: TPR = 1 x (256 - [T0PRR]) (decimal)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T0PRR 111H R/W T0PRR7 T0PRR6 T0PRR5 TOPRR4 T0PRR3 T0PRR2 T0PRR1 T0PRR0

Reset 0 0 0 0 0 0 0 0
VMD-64

 Peripheral System Configuration
The clock is used for count-up. When overflow occurs, the overflow flag is set and an interrupt is generated.

Timer 0 low reload register (T0LR)

The data for reloading in the timer/counter 0 low (T0L) are set in this register. When using 8-bit mode, the
contents of this register are reloaded into T0L.

Timer 0 high register (T0H)

This is an 8-bit timer/counter.

Count-up is performed with the prescaler output or the T0L overflow (T0HOVF). When overflow occurs,
the overflow flag is set and an interrupt is generated.

Timer 0 high reload register (T0HR)

The data for reloading in the timer/counter 0 high (T0H) are set in this register. When T0H overflow has
occurred and when the count was stopped (T0HRUN = 0), the contents of this register are reloaded
into T0H.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T0L 112H R T0L7 T0L6 T0L5 T0L4 T0L3 T0L2 T0L1 T0L0

Reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T0LR 113H R/W T0LR7 T0LR6 T0LR5 T0LR4 T0LR3 T0LR2 T0LR1 T0LR0

Reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T0H 114H R T0H7 T0H6 T0H5 T0H4 T0H3 T0H2 T0H1 T0H0

Reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T0HR 115H R/W T0HR7 T0HR6 T0HR5 T0HR4 T0HR3 T0HR2 T0HR1 T0HR0

Reset 0 0 0 0 0 0 0 0
VMD-65

Visual Memory Unit (VMU) Hardware Manual
External interrupt 2, 3 control register (I23CR)

Sets external signal detection and interrupt.

In combination with the input signal select register ISL0, this register specifies the count conditions. Possible
combinations are shown in the following table.

ISL0 I23CR7 I23CR6 I23CR3 I23CR2 External signal condition

1 0 1 - - P73/INT3/T0IN falling edge count

1 1 0 - - P73/INT3/T0IN rising edge count

1 1 1 - - P73/INT3/T0IN dual edge count

0 - - 0 1 P72/INT2/T0IN falling edge count

0 - - 1 0 P72/INT2/T0IN rising edge count

0 - - 1 1 P72/INT2/T0IN dual edge count

- 0 0 0 0 No count

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

I23CR 15EH R/W I23CR7 I23CR6 I23CR5 I23CR4 I23CR3 I23CR2 I23CR1 I23CR0

Reset 0 0 0 0 0 0 0 0

Bit Function

I23CR7 (bit 7) INT3 rising edge detection control

0: No detect
1: detect

I23CR6 (bit 6) INT3 falling edge detection control

0: No detect
1: detect

I23CR5 (bit 5) INT3 interrupt source

0: Interrupt source disabled
1: Interrupt source enabled

I23CR4 (bit 4) INT3 interrupt request enabled

0: Interrupt request disabled
1: Interrupt request enabled

I23CR3 (bit 3) INT2 rising edge detection control

0: No detect
1: detect
VMD-66

 Peripheral System Configuration
I23CR7 (bit 7): INT3 rising edge detection control

Specifies whether to detect the rising edge of the interrupt signal at P73 (INT3/T0IN pin).

When set to "0", the rising edge of the INT3 signal at P73 is detected. When the INT3 interrupt is generated,
I23CR5 is set to "0" and the interrupt processing routine specified by the interrupt vector is called, if
interrupt request is enabled (I23CR4 = 1).

When reset to "0", the rising edge of the interrupt signal is not detected.

I23CR6 (bit 6): INT3 falling edge detection control

Specifies whether to detect the falling edge of the interrupt signal at P73 (INT3/T0IN pin).

When set to "0", the falling edge of the INT3 signal at P73 is detected. When the INT3 interrupt is generated,
I23CR5 is set to "0" and the interrupt processing routine specified by the interrupt vector is called, if
interrupt request is enabled (I23CR4 = 1).

When reset to "0", the rising edge of the interrupt signal is not detected.

I23CR5 (bit 5): INT3 interrupt source

When interrupt edge detection at P73 (INT3/T0IN pin) has occurred, this flag is set.

The flag must be reset by the interrupt processing routine of the application.

I23CR4 (bit 4): INT3 interrupt request enable

Enables or disables the INT3 interrupt.

If set to "0", the INT3 interrupt vector is called when the I23CR5 flag is set.

If reset to "0", the interrupt processing routine is not called, also when an interrupt is generated.

I23CR2 (bit 2) INT3 falling edge detection control

0: No detect
1: detect

I23CR1 (bit 1) INT2 interrupt source

0: Interrupt source disabled
1: Interrupt source enabled

I23CR0 (bit 0) INT2 interrupt request enabled

0: Interrupt request disabled
1: Interrupt request enabled
VMD-67

Visual Memory Unit (VMU) Hardware Manual
I23CR3 (bit 3): INT2 rising edge detection control

Specifies whether to detect the rising edge of the interrupt signal at P72 (INT2/T0IN pin).

When set to "0", the rising edge of the INT2 signal at P72 is detected. When the INT2 interrupt is generated,
I23CR1 is set to "0" and the interrupt processing routine is called, if interrupt request is enabled (I23CR4 = 0).

I23CR2 (bit 2): INT2 falling edge detection control

Specifies whether to detect the falling edge of the interrupt signal at P72 (INT2/T0IN pin).

When set to "0", the falling edge of the INT2 signal at P72 is detected. When the INT2 interrupt is generated,
I23CR1 is set to "0" and the interrupt processing routine is called, if interrupt request is enabled (I23CR4 = 0).

I23CR1 (bit 1): INT2 interrupt source

When interrupt edge detection at P72 (INT2/T0IN pin) has occurred, this flag is set.

The flag must be reset by the interrupt processing routine of the application.

I23CR0 (bit 0): INT2 interrupt request enable

Enables or disables the INT3 interrupt.

If set to "0", the INT3 interrupt vector is called when the I23CR1 flag is set.

If reset to "0", the interrupt processing routine is not called, also when an interrupt is generated.

Caution: • When I23CR7 and I23CR6, or I23CR3 and I23CR2 are both "0", edge detection is not performed. When
both are "0", both edges are detected.

• Input from P73 (INT3/T0IN pin) is routed through a noise filter.
VMD-68

 Peripheral System Configuration
Circuit Configuration and Operation Principles

Timer 0 mode setting

Mode 0: 8-bit reload timer x 2 channels

In mode 0, timer 0 functions as an 8-bit reload timer with two channels. The relationship between the timer
value and the reload register (T0LR) setting value is as shown below.

TPR: Prescaler clock cycle

When the count control bit (T0HRUN, T0LRUN) is set, counting starts. When it is reset, counting stops, and
the contents of the reload register (T0HR, T0LR) are sent to the counter (T0H, T0L).

When the timer/counter 0 (T0H, T0L) overflows, the overflow flag (T0HOVF, T0LOVF) is set, and the
contents of the reload register (T0HR, T0LR) are sent to the counter (T0H, T0L).

When both the overflow flag (T0HOVF, T0LOVF) and interrupt request enable flag (T0HIE, T0LIE) are set,
the interrupt request is signalled to the interrupt control circuit.

Figure 2.27 Mode 0: 8-Bit Reload Timer x 2 Channel Circuit Configuration

Mode T0LONG T0LEXT

0 0 0

1 0 1

2 1 0

3 1 1

Time until T0HOVF is set (1) (decimal) = (256 - T0HR setting value) x TPR

Time until T0LOVF is set (1) (decimal) = (256 - T0LR setting value) x TPR

Prescaler

Cycle clock

Counter T0H (114H) T0H overflow flag
T0HOVF

• T0H
Set

Reload register T0HR (115H)

Prescaler

Cycle clock

Counter T0L (112H) T0L overflow flag
T0LOVF

• T0L
Set

Reload register T0LR (113H)
VMD-69

Visual Memory Unit (VMU) Hardware Manual
Mode 0 sample program

Figure 2.28 Flow Chart and Program

Mode 1: 8-bit reload timer + 8-bit reload counter

8-bit reload timer

The upper 8 bits of timer 0 (T0H) operate as an 8-bit reload timer. The relationship between the timer value
and the reload register (T0HR) setting value is as shown below.

TPR: Prescaler clock cycle

Each time T0HOVF is set, the reload register value is sent to the counter T0H. Timer operation continues
until the T0H count control bit (T0HRUN) is reset. Operation principles are the same as for mode 0.

Time until T0HOVF is set (1) (decimal) = (256 - T0HR setting value) x TPR

Start

MOV

MOV

MOV

MOV

MOV

#0FFH,T0PRR

#50H,T0HR

#00H,T0LR

#0C4H,T0CNT

#80H,IE

; Set TPRZ = 4 Tcyc

• Mode 0 sample program

CLR1 T0CNT,3 ; Set T0HOVF = 0

CLR1 T0CNT,6 ; Set T0LRUN = 0

CLR1 T0CNT,7 ; Set T0HRUN = 0

; Set T0H time = 704 Tcyc

; Set T0L time = 1024 Tcyc

; Set mode 0

LD T0L ; Read T0L data periodically

RETI ; Return from interrupt routine

; (use only interrupt T0H)

End

T0H time set
T0L time set

T0 mode set
 T0H, T0L operation start

T0H overflow flag clear

T0H, T0L operation stop

T0H interrupt routine

Return

Interrupt processing
VMD-70

 Peripheral System Configuration
Figure 2.29 Mode 1: 8-Bit Reload Timer (T0H) Block Diagram

8-bit reload counter

The lower 8 bits of timer 0 (T0L) are used to count up the external input signal. This signal is filtered by a
noise filter circuit. For details, refer to the section “Input Signal Select Register (ISL)” in “Timer/Counter
0 (T0)”.

The relationship between the count value and the reload register (T0LR) setting value is as shown below.

When the T0L overflow flag (T0LOVF) flag is set, the reload register (T0LR) value is sent to the counter
(T0L). Timer operation continues until the T0H count control bit (T0LRUN) is reset.

Figure 2.30 Mode 1: 8-Bit Reload Timer (T0L) Block Diagram

Time until T0LOVF is set (1) (decimal) = 256 - (T0LR setting value)

Prescaler

Cycle clock

Counter T0H (114H) T0H overflow flag
T0HOVF

Set

Reload register T0HR (115H)

Counter T0L (112H) T0L overflow flag
T0LOVF

Set

Reload register T0LR (113H)

P72/INT2/T0IN

P73/INT3/T0IN

MPX

Noise filter
VMD-71

Visual Memory Unit (VMU) Hardware Manual
Mode 1 sample program

Figure 2.31 Flow Chart and Program

Mode 2: 16-bit reload timer

In mode 2, T0H and T0L are connected in series and operate as a 16-bit timer.

To start the timer, the count control bits (T0HRUN, T0LRUN) of T0H and T0L must be set simultaneously.

The relationship between the timer value and the reload register (T0HR, T0LR) setting values is as
shown below.

TPR: Prescaler clock cycle

When T0LOVF and T0HOVF are both set, the reload register (T0HR, T0LR) values are sent simultaneously
to T0L and T0H when T0HOVF occurs. Timer operation continues until the T0H count control bit is reset.
Operation principles are the same as for mode 0.

Time until T0HOVF is set (1) (decimal)

 = (65536 - 256 x (T0HR setting value) - (T0LR setting value)) x TPR

Start

MOV

MOV

MOV

MOV

MOV

#0FEH,T0PRR

#50H,T0HR

#00H,T0LR

#40H,I23CR
MOV #01H,ISL

#0D4H,T0CNT

MOV #80H,IE

; Set TPR = 8 Tcyc

• Mode 1 sample program

CLR1 T0CNT,3 ; Set T0HOVF = 0

CLR1 T0CNT,6 ; Set T0LRUN = 0

CLR1 T0CNT,7 ; Set T0HRUN = 0

; Set T0H time = 1408 Tcyc

; Set T0L time = 256 Tcyc

; Use P71/INT3/T0IN for counter input

LD T0L ; Read T0L data periodically

RETI ; Return from interrupt routine

; Set mode 1
; (use only interrupt T0H)

End

T0H time set
T0L time set

T0 mode set
T0H, T0L operation start

T0H overflow flag clear

T0H, T0L operation stop

T0H interrupt routine

Return

Interrupt processing
VMD-72

 Peripheral System Configuration
For reading data from timer 0 (T0), use the following procedure.
T0L LD T0L ; Read T0L data (1)

â ST 020H

T0H LD T0H ; Read T0H data

â ST 021H

T0L LD T0L ; Read T0L (2) data again

â BP T0L,7,DES ; When T0L (2) bit 7 is "0"

BN 020H,7,DES ; and T0L (1) bit 7 is "0"

ST 020H

T0H LD T0H ; Read T0H (2)

ST 021H

DES: -- next program

Figure 2.32 Mode 2: 16-Bit Reload Timer Block Diagram

Mode 2 sample program

Figure 2.33 Flow Chart and Program

Prescaler

Cycle clock

Counter T0H (114H) T0H overflow flag
T0HOVF

Set

Reload register T0HR (115H)

(simultaneous)

Counter T0L (112H)

Reload register T0LR (113H)

Start

MOV

MOV

MOV

MOV

#0FFH,T0PRR

#70H,T0HR

#0FH,T0LR

#0E4H,T0CNT

MOV #80H,IE

; Set TPR = 4 Tcyc

• Mode 2 sample program

CLR1 T0CNT,3 ; Set T0HOVF = 0

CLR1 T0CNT,1 ; Set T0LOVF = 0

CLR1 T0CNT,6 ; Set T0LRUN = 0

CLR1 T0CNT,7 ; Set T0HRUN = 0

; Set T0H time = 147396 Tcyc

;

; Set mode 2

LD P1 ; Increment port 1 data latch
;

RETI ; Return from interrupt routine

; (use only interrupt T0H)

End

T0H time set

T0 mode set
T0H, T0L operation start

T0H overflow flag clear

T0H, T0L operation stop

T0H interrupt routine

Return

Interrupt processing
VMD-73

Visual Memory Unit (VMU) Hardware Manual
Mode 3: 16-bit reload counter

In mode 3, T0H and T0L are connected in a cascaded configuration and operate as a 16-bit counter. The
signal input to P72 (INT2/T0IN pin) or P73 (INT3/T0IN pin) is used as clock signal. Input signal selection
is carried out by the ISL register of SFR. The input from P73 (INT3/T0IN pin) is routed through a noise filter.

To start the timer, the count control bits (T0HRUN, T0LRUN) of T0H and T0L must be set simultaneously.

The relationship between the count value and the reload register (T0HR, T0LR) setting values is as
shown below.

When T0LOVF and T0HOVF are both set, the reload data (T0HR, T0LR) are sent simultaneously to T0L and
T0H when T0HOVF occurs. Timer operation continues until the count control bit is reset. Operation
principles are the same as for mode 0.

For reading data from timer 0 (T0), use the following procedure.
T0L LD T0L ; Read T0L data (1)

â ST 020H

T0H LD T0H ; Read T0H data

â ST 021H

T0L LD T0L ; Read T0L (2) data again

â BP T0L,7,DES ; When T0L (2) bit 7 is "0"

BN 020H,7,DES ; and T0L (1) bit 7 is "0"

ST 020H

T0H LD T0H ; Read T0H (2)

ST 021H

DES: -- next program

Figure 2.34 Mode 3: 16-Bit Reload Timer Block Diagram

Time until T0HOVF is set (1) (decimal) = 65536 - 256 x (T0HR setting value) - (T0LR setting value)

Noise filter Counter T0H (114H) T0H overflow flag
T0HOVF

Set

Reload register T0HR (115H)

(simultaneous)

P73/INT3

P72/INT2

Cycle clock

Reload register T0LR (113H)

MPX
VMD-74

 Peripheral System Configuration
Mode 2 sample program

Figure 2.35 Flow Chart and Program

Start

MOV

MOV

MOV

#50H,T0HR

#00H,T0LR

#0F4H,T0CNT

MOV #80H,IE

; Set T0 setting value = 45056

• Mode 3 sample program

CLR1 T0CNT,3 ; Set T0HOVF = 0

CLR1 T0CNT,1 ; Set T0LOVF = 0

CLR1 T0CNT,6 ; Set T0LRUN = 0

CLR1 T0CNT,7 ; Set T0HRUN = 0

;

MOV

MOV

#04H,I23CR

#00H,ISL

; Select INT2 falling edge

; Use P72/INT2 for input
; Set mode 3

LD P1 ; Increment port 1 data latch
;

RETI ; Return from interrupt routine

; (use only interrupt T0H)

End

T0H time set
T0L time set

T0L mode set
T0H, T0L operation start

T0H overflow flag clear

T0H, T0L operation stop

T0H interrupt routine

Return

Interrupt processing
VMD-75

Visual Memory Unit (VMU) Hardware Manual
Timer 1 (T1)
The timer/counter 1 (T1) in the VMU custom chip is a 16- bit timer with the following 4 functions.

• Mode 0: 8-bit reload timer x 2 channels

• Mode 1: 8-bit reload timer + 8-bit pulse generator

• Mode 2: 16-bit reload timer

• Mode 3: Variable bit length pulse generator (9 to 16 bits)

Functions

8-bit reload timer x 2 channels (mode 0)

The cycle clock is used to drive two separate 8-bit reload timers (T1H, T1L).

8-bit reload timer + 8-bit pulse generator (mode 1)

T1H operates as an 8-bit reload timer driven by the cycle clock. T1L operates as an 8-bit pulse generator
whose output appears at the P17/pulse output pin.

16-bit reload timer (mode 2)

The overflow of T1L is used as clock for T1H, to drive the 16-bit reload timer. The input clock to T1L is the
cycle clock. Each time a T1L overflow occurs, the T1LR and T1HR reload data are loaded into T1L and T1H.

The T1L clock can be the cycle clock or the cycle clock divided by 2.

Variable bit length pulse generator (9 to 16 bits) (mode 3)

T1L and T1H can be used to generate a 9 to 16 bit pulse signal. This signal is output via the P17/pulse
output pin.

The T1L clock can be the cycle clock or the cycle clock divided by 2.

Interrupt generation

When the interrupt request enable bit is set, overflow of the register T1H or T1L generates a T1H or T1L
interrupt request.

The following Special Function Registers must be operated to control the timer 1 (T1).

T1H, T1HR, T1HC, T1L, T1LR, T1LC, T1CNT, P1
VMD-76

 Peripheral System Configuration
Circuit Configuration

The timer/counter 1 (T1) configuration is shown in below.

Timer 1 low (T1L)... ����

This 8-bit reload timer uses the cycle clock or cycle clock divided by 2. When T1L overflow occurs, the T1LR
value is reloaded. The T1LR value is reloaded when T1L overflow occurs. Resetting the T1LRUN (T1CNT
bit 6) to'0' stops the timer and causes the T1LR data to be transferred to T1L.

Timer 1 low comparator (T1LC)... ➻

This circuit consists of the 8-bit timer 1 low comparator data register (T1LC) and an 8-bit data comparator.
It compares the data for T1L and T1LC.

Timer 1 high (T1H)... ➥

This 8-bit reload timer uses the cycle clock or the T1L overflow as clock. At T1H overflow, the T1HR value
is reloaded. Reload also occurs when T1HRUN (T1CNT bit 7) is reset to stop the timer.

Timer 1 high comparator (T1HC)... ③

This circuit consists of the 8-bit timer 1 high comparator data register (T1HC) and an 8-bit data comparator.
It compares the data for T1H and T1HC.

Timer 1 control register (T1CNT)... ❪

Serves for T1 mode setting and interrupt control.

Figure 2.36 Timer 1 Block Diagram

8-bit counter (T1L)

Reload register (T1LR)

T1LOVF

T1LONG

T1HOVF

T1LOVF

T1CNT(118H)

7 6 5 4 3 2 1 0

Comparison data register (T1LC)

Comparator

8-bit counter (T1H)

Reload register (T1HR)

Comparison data register (T1HC)

Comparator

Selector

Selector

1/2 cycle
clock

Cycle clock

P1FCR(146H)

7 6 5 4 3 2 1 0

P1DDR(141H)

7 6 5 4 3 2 1 0

PWM
control circuit P17Port 1 circuit
VMD-77

Visual Memory Unit (VMU) Hardware Manual
Related Registers

Timer 1 control register (T1CNT)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1CNT 118H R/W T1HRUN T1LRUN T1LONG ELDT1C T1HOVF T1HIE T1LOVF T1LIE

Reset 0 0 0 0 0 0 0 0

Bit name Function

T1HRUN (bit 7) T1H count control

0: Count stop/data reload
1: Count start

T1LRUN (bit 6) T1L count control

0: Count stop/data reload
1: Count start

T1LONG (bit 5) Timer 1 bit length selector

0: 8 bit
1: 16 bit

ELDT1C (bit 4) Pulse generator data update enabled

0: Disabled
1: Enabled

T1HOVF (bit 3) T1H overflow flag

0: No overflow flag
1: Overflow flag

T1HIE (bit 2) T1H interrupt request enabled

0: Interrupt request disabled

1: Interrupt request enabled

T1LOVF (bit 1) T1L overflow flag

0: No overflow flag
1: Overflow flag

T1LIE (bit 0) T1L interrupt request enabled

0: Interrupt request disabled
1: Interrupt request enabled
VMD-78

 Peripheral System Configuration
T1HRUN (bit 7): T1H count control

Controls count-up start/stop of timer 1 high (T1H). When set to "0", the T1H clock is supplied and counting
starts. To stop counting, the bit must be reset to "0". This stops the clock and sends the reload data (T1HR)
to T1H.

T1LRUN (bit 6): T1L count control

Controls count-up start/stop of timer 1 low (T1L). When set to "0", the T1L clock is supplied and counting
starts. To stop counting, the bit must be reset to "0". This stops the clock and sends the reload data (T1LR)
to T1L.

T1LONG (bit 5): Timer 1 bit length select

Specifies the bit length of T1 as 16 or 8 bit.

Setting the bit to "0" selects a 16-bit timer. For using modes 0 and 1, specify "0".

Resetting the bit to "0" selects an 8-bit timer. For using modes 2 and 3, specify "0".

ELDT1C (bit 4): Pulse generator data update enable control

Controls whether the comparison data register (T1HC, T1LC) values for generating the pulse signal are
sent to the comparator or not.

When set to "0", the values are sent to the comparator and updated to new pulse generator data.

When reset to "0", the data are not updated and the same pulse generator data are output.

To update both 8-bit counters at the same time, reset this flag, set the counter values, and then set the flag
again. This will update both 8-bit counters at the same time.

T1HOVF (bit 3): T1H overflow flag

This flag is set when T1L overflow has occurred. If there is no overflow, the flag does not change.

This flag must be reset by the T1H interrupt processing routine or another routine of the application.

T1HIE (bit 2): T1H interrupt request enable control

Enables or disables interrupt request generation at T1H overflow.

When set to "0", the interrupt generated by T1H overflow is accepted and the interrupt vector 002BH is
called. When reset to "0", the interrupt is not accepted and the interrupt processing routine is not called.

T1LOVF (bit 1): T1L overflow flag

This flag is set when T1L overflow has occurred. If there is no overflow, the flag does not change.

Regardless of the T1 bit length, the flag is set when overflow occurs at T1L.

This flag must be reset by the T1L interrupt processing routine or another routine of the application.

T1LIE (bit 0): T1L interrupt request enable control

Enables or disables interrupt request generation at T1L overflow.

When set to "0", the interrupt generated by T1L overflow is accepted and the interrupt vector 002BH
is called.
VMD-79

Visual Memory Unit (VMU) Hardware Manual
Caution: • The overflow flags (T1HOVF, T1LOVF) must be reset to "0" by the application.
• When using the 16-bit mode, the clock can be the cycle clock or the cycle clock divided by 2.
Ttc = Tcyc: T1HRUN=1, T1LRUN=1, T1LONG=1
Ttc = 1/2Tcyc: T1HRUN=0, T1LRUN=1, T1LONG=1
Ttc is the clock cycle

Timer 1 low register (T1L)

The timer 1 low register is an 8-bit timer. It uses the cycle clock or the cycle clock divided by 2.

When T1L overflow occurs, the T1LR value is transferred and the T1L overflow flag is set.

In modes 1 and 3, this is used for pulse signal generation.

Timer 1 low reload register (T1LR)

This is the reload register for timer 1 low (T1L).

Each time a T1L overflow occurs, and whenever T1LRUN=0 applies, the reload register value is loaded
into T1L.

In modes 1 and 3, this is used for pulse signal generation.

T1L and T1LR are at the same address. T1L is read-only, and T1LR is write-only.

Caution: When a bit operation instruction or the INC, DEC, or DBNZ instruction is used on a write-only register,
a bit other than the specified bit will be set.
For T1LR, use the following instructions:

MOV, MOV @, ST, ST @, POP

Timer 1 low comparator data register (T1LC)

This is the comparator data register for timer 1 low (T1L).

When ELDT1C (bit 4 of T1CNT) is set and T1LONG=0 applies, the next T1L overflow will cause the value
of this register to be sent to the pulse generator control circuit (comparator). When T1LONG=1 applies, the
next T1H overflow will have the same effect.

When T1LRUN=0, the value of this register is always sent to the pulse generator control circuit.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1L 11BH R T1L7 T1L6 T1L5 T1L4 T1L3 T1L2 T1L1 T1L0

Reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1LR 11BH W T1LR7 T1LR6 T1LR5 T1LR4 T1LR3 T1LR2 T1LR1 T1LR0

Reset 0 0 0 0 0 0 0 0
VMD-80

 Peripheral System Configuration
Timer 1 high register (T1H)

This is an 8-bit timer which uses the cycle clock or the T1L overflow (T1LOVF) as clock. At T1H overflow,
the T1H overflow flag is set.

In mode 3, this is used for pulse signal generation.

Timer 1 high reload register (T1HR)

This is the timer 1 high (T1H) reload register.

Each time a T1H overflow occurs, and whenever T1HRUN=0 applies, the reload register value is loaded
into T1H.

In mode 3, this is used for pulse signal generation.

T1H and T1LH are at the same address. T1H is read-only, and T1LH is write-only.

Caution: When a bit operation instruction or the INC, DEC, or DBNZ instruction is used on a write-only register,
a bit other than the specified bit will be set.
For T1LR, use the following instructions:

MOV, MOV @, ST, ST @, POP

Timer 1 high comparator data register (T1HC)

This is the comparator data register for timer 1 high (T1H).

When ELDT1C (bit 4 of T1CNT) is set and T1LONG=0 applies, the next T1L overflow will cause the value
of this register to be sent to the pulse generator control circuit (comparator). When T1LONG=1 applies, the
next T1H overflow will have the same effect.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1LC 11AH R/W T1LC7 T1LC6 T1LC5 T1LC4 T1LC3 T1LC2 T1LC1 T1LC0

Reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1H 11DH R T1H7 T1H6 T1H5 T1H4 T1H3 T1H2 T1H1 T1H0

Reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1HR 11DH W T1HR7 T1HR6 T1HR5 T1HR4 T1HR3 T1HR2 T1HR1 T1HR0

Reset 0 0 0 0 0 0 0 0
VMD-81

Visual Memory Unit (VMU) Hardware Manual
Circuit Configuration and Operation Principles

Timer 1 mode setting

ModeClock frequencyT1LONGP17FCRP17DDRP1777770Tcyc00yc01102Tcyc_1/22222222Tcyc10XX30

Mode 0: 8-bit reload timer x 2 channels

In mode 0, timer 1 functions as an 8-bit reload timer with two channels. The relationship between the timer
value and the reload register (T1LR) setting value is as shown below.

Tcyc: Cycle clock

When the count control bit (T1HRUN, T1LRUN) is set, counting starts. When it is reset, counting stops, and
the contents of the reload register (T1HR, T1LR) are sent to the counter (T1H, T1L).

When the timer 1 (T1H, T1L) overflows, the overflow flag (T1HOVF, T1LOVF) is set, and the contents of the
reload register (T1HR, T1LR) are sent to the counter (T1H, T1L).

When both the overflow flag (T1HOVF, T1LOVF) and interrupt request enable flag (T1HIE, T1LIE) are set,
the interrupt request is signalled to the interrupt control circuit.

Figure 2.37 8-Bit Reload Timer x 2 Channel Circuit Configuration

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1HC 11CH R/W T1HC7 T1HC6 T1HC5 T1HC4 T1HC3 T1HC2 T1HC1 T1HC0

Reset 0 0 0 0 0 0 0 0

Time until T0HOVF is set (1) (decimal) = (256 - T1HR setting value) x Tcyc

Time until T0LOVF is set (1) (decimal) = (256 - T1LR setting value) x Tcyc

8-bit counter T1H (11DH)

Reload register T1HR (11DH)

Cycle clock
T1H overflow flag
(T1HOVF)

Set

Set

T1H

8-bit counter T1L (11BH)

Reload register T1LR (11BH)

Cycle clock
T1L overflow flag
(T1LOVF)

T1L
VMD-82

 Peripheral System Configuration
Mode 0 sample program

Figure 2.38 Flow Chart and Program

Mode 1: 8-bit reload timer + 8-bit pulse generator

8-bit reload timer

The upper 8 bits of timer 0 (T1H) operate as an 8-bit reload timer. The relationship between the timer value
and the reload register (T1HR) setting value is as shown below.

Tcyc: Cycle clock

Each time T1HOVF is set, the reload register value is sent to the counter T1H. Timer operation continues
until the T1H count control bit (T1HRUN) is reset. Operation principles are the same as for mode 0.

Time until T1HOVF is set (1) (decimal) = (256 - T1HR setting value) x Tcyc

Start

MOV

MOV

MOV

#50H,T1HR

#00H,T1LR

#0C4H,T1CNT

• Mode 0 sample program

CLR1 T0CNT,3 ; Set T1HOVF = 0

CLR1 T0CNT,6 ; Set T1LRUN = 0

CLR1 T0CNT,7 ; Set T1HRUN = 0

; Set T1H time = 176 Tcyc

; Set T1L time = 256 Tcyc

; Set mode 0

LD T1L ; Read T1L data periodically

RETI ; Return from interrupt routine

; (use only interrupt T1H)

End

T1H time set
T1L time set

T1 mode set
T1H, T1L operation start

T1H overflow flag clear

T1H, T1L operation stop

T1H interrupt routine

Return

Interrupt processing
VMD-83

Visual Memory Unit (VMU) Hardware Manual
Figure 2.39 Mode 1: 8-Bit Reload Timer (T1H) Block Diagram

8-bit pulse generator

The comparator compares the value of the T1L counted up from the reload value by the cycle clock to the
value of the comparator data register T1LC. If there is no match (T1L π T1LC), "0" is output. If there is a
match (T1L = T1LC), "0" is output. This continues until T1L overflow is generated.

The pulse signal cycle is determined by the reload register T1LR. The relationship between the counter
value and the pulse output waveform is shown in Fig. below.

The pulse output waveform is determined by the comparison data register T1LC and the reload register
T1LR. When the comparison data register T1LC is rewritten, there will be a pulse cycle delay until the pulse
output waveform reflects the new data.

Whenever T1L overflows, the T1L overflow flag (T1LOVF) is set.

The pulse output signal related equations are shown below.

Tcyc: Cycle clock

Caution: Make sure that T1LC ≥ T1LR applies

Pulse output signal “L” level pulse width (decimal) =

(T1LC setting value - T1LR setting value) x Tcyc

Pulse output signal cycle (decimal) = (256 - T1LR setting value) x Tcyc

8-bit counter T1H (11DH)

Reload register T1HR (11DH)

Cycle clock
T1H overflow flag
(T1HOVF)

Set
T1H
VMD-84

 Peripheral System Configuration
Figure 2.40 Counter Value and Pulse Generator Output Waveform

Figure 2.41 Mode 1: 8-Bit Pulse Generator Block Diagram

256-T1LR

T1LC-T1LR

Pulse signal

8-bit counter value

0

[T1LR]

[T1LC]

255

Comparison data register
T1LC (11AH)

Comparator Pulse signal output8-bit counter T1L (11BH)

Reload register T1LR (11BH)

Cycle clock
VMD-85

Visual Memory Unit (VMU) Hardware Manual
Mode 1 sample program

Figure 2.42 Flow Chart and program

Start

MOV

MOV

MOV

#0C0H,T1LR

#0D0H,T1LC

#0D1H,T1CNT

• Mode 1 sample program

; T1LR =192 → 256 - 192 = 64

; T1LR =208 → 208 - 192 = 16

; \"L" level pulse width is 16 Tcyc
; Pulse signal cycle is 64 Tcyc

MOV #0FFH,T1LC
; T1LC =255 → 255 - 192 = 63
; \"L" level pulse width is 63 Tcyc

MOV

CLR

#80H,P1FCR

P1,7

MOV #80,P1DDR

; Set P17 to pulse signal output

; Set P17 port latch to "0"

; Set P17 to output mode

; Start mode 1

End

Set pulse signal cycle
Set "L" level pulse width

Set T1 mode

Start T1L operation

Change "L" level pulse width

16Tcyc

Pulse signal

T1LR

T1LC

255

64Tcyc

Pulse signal

T1LR

T1LC

255
Counter value

64Tcyc

63Tcyc
VMD-86

 Peripheral System Configuration
Mode 2: 16-bit reload timer

To operate the timer as 16-bit reload timer, T1LRUN and T1LONG must be set together. This should be
done with the MOV instruction.

The T1L clock (Ttc) can be either the cycle clock (Tcyc) or half the cycle clock (1/2Tcyc). The setting is made
as follows.

The relationship between the timer value and the reload register (T1HR, T1LR) is as shown below.

Caution: Note that this is different from the timer/counter 0 (T0).

Ttc: T1L clock (Tcyc or 1/2 Tcyc)

At each T1LOVF, the reload data (T1LR) are sent to T1L, and at each T1HOVF, the reload data (T1HR) are
sent to T1H. Counting continues until the count control bit is reset. Operation principles are the same as for
mode 0.

For reading data from timer 1 (T1), use the following procedure.

T1L LD T1L ; Read T1L data (1)

â ST 020H

T1H LD T1H ; Read T1H data

â ST 021H

T1L LD T1L ; Read T1L (2) data again

â BP T1L,7,DES; When T1L (2) bit 7 is "0"

BN 020H,7,DES; and T1L (1) bit 7 is "0"

ST 020H

T1H LD T1H ; Read T1H (2)

ST 021H

DES: - next program

Figure 2.43 Mode 2: 16-Bit Reload Timer Block Diagram

Ttc = Tcyc: T1HRUN = 1, T1LRUN = 1, T1LONG = 1

Ttc = 1/2Tcyc: T1HRUN = 0, T1LRUN = 1, T1LONG = 1

Time until T1HOVF is set (1) (decimal) =

(256 - T1HR setting value) x (256 - T1LR setting value) x Ttc

Time until T1LOVF is set (1) (decimal) = (256 - T1LR setting value) x Ttc

T1H overflow flag
(T1HOVF)

Set
Counter T1L (11BH)

Reload register T1LR (11BH)

1/2 cycle clock
or

cycle clock
Counter T1H (11DH)

Reload register T1HR (11DH)
VMD-87

Visual Memory Unit (VMU) Hardware Manual
Mode 2 sample program

Figure 2.44 Flow Chart and Program

Mode 3: Variable bit length pulse generator (9 to 16 bits)

In mode 3, timer 1 (T1L, T1H) operates as a variable bit length pulse generator. The range of 9 to 16 bits is
determined by T1HR.

To activate the pulse generator, set the bit length of timer 1 to 16 (T1LONG=1) and set the T1L count control
bit (T1LRUN). When the 16-bit length is selected, the control bit T1LRUN controls start/stop of all 16 bits.
To set the timer 1 control register (T1CNT) bit at the same time, use the MOV instruction.

The pulse generator clock (Ttc) can be either the cycle clock (Tcyc) or half the cycle clock (1/2Tcyc). The
setting is made as follows.

Whenever T1L overflows, the T1L overflow flag (T1LOVF) is set. Similarly, whenever T1H overflows, the
T1H overflow flag (T1HOVF) is set. Counting continues until the count control bit is reset.

Ttc = Tcyc: T1HRUN = 1, T1LRUN = 1, T1LONG = 1

Ttc = 1/2Tcyc: T1HRUN = 0, T1LRUN = 1, T1LONG = 1

Start

MOV
MOV

MOV

#50H,T1HR
#00H,T1LR

#0E4H,T1CNT

• Mode 2 sample program

CLR1 T1CNT,3 ; Set T1HOVF = 0

CLR1 T1CNT,1 ; Set T1LOVF = 0

CLR1 T0CNT,6 ; Set T1LRUN = 0

CLR1 T0CNT,7 ; Set T1HRUN = 0

; Set T1 to 45056

MOV #00H,P1FCR ; Select P17 output port data

;
; Set mode 2

INC P1 ; Increment port 1 data latch
;

RETI ; Return from interrupt routine

; (use only interrupt T1H)

End

T1H time set
T1L time set

T1L mode set
T1H, T1L operation start

T1H overflow flag clear

T1H, T1L operation stop

T1H interrupt routine

Return

Interrupt processing
VMD-88

 Peripheral System Configuration
The relationship between the timer value and the reload register (T1Hr, T1LR) values is as shown below.

Ttc: T1L clock (Tcyc pr 1/2 Tcyc)

An example for a signal output from the pulse output pin P17 in mode 3 is shown in Fig. below.

Figure 2.45 Mode 3 Pulse Signal Output Waveform

The output signal consists of a repetition of the large interval P which is made up of upt o 256 repetitions
of the small interval T. The number of repetitions for T can be set with T1HR. The “L” level width in the
small interval T can be set with T1LC as in mode 1, and the smallest unit is Ttc. The total “L” level width
<sigma>TL of the large interval P can be set with T1LC and T1HC. The T1HR value limits the data that can
be obtained by T1HC.

For details on the relationship between the output waveform and T1HC and T1LC, refer to chapter 17
“Variable Bit Length Pulse Generator” in the appendix.

The relationship between the pulse generator bit length and the value of T1LR and T1HR, as well as the
value of T1LC and T1HC is shown below. All T1LR bits are to be set to 00H.

Table 2.20 Bit Length and T1H/T1L Register

(X: 0 or 1) X indicates effective bits

Time until T1HOVF is set (1) (decimal) =

(256 - T1HR setting value) x (256 - T1LR setting value) ¥ Ttc

Time until T1LOVF is set (1) (decimal) = (256 - T1LR setting value) ¥ Ttc

Pulse Pulse bit length setting
(binary)

“L” level pulse width
setting (binary)

Bit length T1HR value T1HL value T1LC value (upper bit) T1HC value (lower bit)

16 0000 0000 0000 0000 XXXX XXXX XXXX XXXX

15 1000 0000 0000 0000 XXXX XXXX XXXX XXX0

14 1100 0000 0000 0000 XXXX XXXX XXXX XX00

13 1110 0000 0000 0000 XXXX XXXX XXXX X000

12 1111 0000 0000 0000 XXXX XXXX XXXX 0000

11 1111 1000 0000 0000 XXXX XXXX XXX0 0000

10 1111 1100 0000 0000 XXXX XXXX XX00 0000

9 1111 1110 0000 0000 XXXX XXXX X000 0000

Small interval T

Large interval P
VMD-89

Visual Memory Unit (VMU) Hardware Manual
For example, if the bit length is 16 bits, the large interval P contains 256 small intervals T, and the following
applies:

TP = 256 x T

 Because the small interval T is 256 x TTc (cycle clock or 1/2 cycle clock), the following applies:

TP = 256 x 256 x Ttc = 65536 x Ttc

The total “L” level additional pulse width STL of the large interval P is set with T1HC.

STL+ = [T1HC] x Ttc

Because the “L” level width of the small interval T can be set with T1LC, the total “L” level interval width
STL is calculated as follows.

STL = (256 = mT1LC] + [T1HC]) x Ttc

When T1LC = 03H, T1HC = 0B4H

STL = (256 x 03+180) x Tcyc = 948 x Ttc

The “L” level ratio RL is calculated as follows.

RL = STL/TP = 948/65536 = approx. 1.447%

When T1LC = 0FFH, T1HC = 0FFH, the “L” level ratio RL is calculated as follows.

RL = STL/TP = 65535/65536 = approx. 99.998%

The relationship between pulse bit length and settable pulse width is as follows.

Large interval P cycle TP

TP = 2[bit] x Ttc

 Total “L” level pulse width STL in large interval P

STL = (2[bit] = mT1LC]/256+[T1HC]) x Ttc

Note: T1HC and T1LC are decimal values. [T1HC] is the effective bit value.

Table 2.21 Bit Length and Pulse Width and Precision

Bit length T1LC T1HC _TL TP[Ttc] Precision

min. max. min. max. min. max.

16 0 255 0 255 0 65535 65535 1/65535

15 0 255 0 127 0 32767 32767 1/32767

14 0 255 0 63 0 16383 16383 1/16383

13 0 255 0 31 0 8191 8191 1/8191

12 0 255 0 15 0 4095 4095 1/4095

11 0 255 0 7 0 2047 2047 1/2047

10 0 255 0 3 0 1023 1023 1/1023

9 0 255 0 1 0 511 511 1/511
VMD-90

 Peripheral System Configuration
Note: T1HC represents the value for effective bits indicated in the table. For example, with a bit length
of 11, bits 7 through 5 are effective. The maximum value therefore is 7.

Example: Setting values (binary) for use as 14-bit pulse generator

• T1HR value: 1100 0000B

• T1LR value: 0000 0000B

• Pulse generator 14-bit setting value

Figure 2.46 14-Bit Pulse Generator

In the small interval T, two types of pulses are output. In the large interval P, pulse (1) is (64-T1HC) times,
and pulse (2) is output T1HC times.

Figure 2.47 T1LC x Ttc pulse

Figure 2.48 (T1LC +1) x Ttc pulse

For details on the relationship between the output waveform and T1HC and T1LC, refer to chapter 17
“Variable Bit Length Pulse Generator” in the appendix.

Small interval T

MSB

Large interval P
14 bit, therefore small interval T x 64

T1LC7 T1LC6 T1LC5 T1LC4 T1LC3 T1LC2 T1LC1 T1LC0

LSB

T1LC7 T1LC6 T1LC5 T1LC4 T1LC3 T1LC2

256 x Ttc

T1LC x Ttc

(1)

256 x Ttc(2)

(T1LC+1) x Ttc
VMD-91

Visual Memory Unit (VMU) Hardware Manual
Caution: • To set the “L” level pulse width, use the following procedure.
(1) Reset data update enable flag ELDT1C to "0".
(2) Rewrite T1LC and T1HC values.
(3) Set data update enable flag ELDT1C to "0".

• The delay between rewriting T1LC and T1HC and the waveform output based on the new data
is equal to the interval between setting ELDT1C to "0" and the maximum pulse cycle.

• For using 16-bit mode, the clock can be either the cycle clock or the cycle clock divided by 2.
Ttc = Tcyc:T1HRUN=1, T1LRUN=1, T1LONG=1
Ttc = 1/2Tcyc:T1HRUN=0, T1LRUN=1, T1LONG=1

Figure 2.49 Mode 3: Variable Bit Length Pulse Generator Block Diagram

Counter T1L (11BH)
1/2 cycle clock

or
cycle clock

Comparator

Pulse generator control circuit Port 1 circuit

PWM output

Counter T1HR (11DH)

Reload register T1H (11DH)

Comparator

Comparator data
register T1HC (11CH)

Reload register T1LR (11BH)
Comparator data

register T1LC (11AH)
VMD-92

 Peripheral System Configuration
Mode 3 sample program

Figure 2.50 Flow

Start

MOV
MOV

MOV

#0C0H,T1HR
#00H,T1LR

#80H,P1FCR

• Mode 3 sample program

CLR1 1LC,4 ; ELDT1C =0

SET1 T1LC,4 ; ELDT1C =0

CLR1 T0CNT,6 ; Set T1LRUN = 0
CLR1 T0CNT,7 ; Set T1LRUN = 0

; Set 14-bit length

;
MOV
MOV

#0B4H,T1HC
#03H,T1LC

; Set total "L" level pulse width

; to 110.5 Tcyc

MOV
MOV

#54H,T1LC
#0D0H,T1HC

; Set total "L" level pulse width

; to 2712.5 Tcyc

MOV #00H,P1

MOV #70H,T1CNT

MOV #80H,P1DDR

; Set mode 3

; Use P17 for pulse signal output
;

End

Set pulse signal output conditions

T1 mode set

T1H, T1L operation start

Change "L" level pulse width

Prohibit data update

Set total "L" level pulse width

T1H, T1L operation stop

Allow data update
VMD-93

Visual Memory Unit (VMU) Hardware Manual
Base Timer
The base timer in the VMU custom chip is a 14-bit binary up counter with the following 4 functions.

Caution: The clock function of the VMU is implemented by counting the interrupts generated in 0.5 second
intervals by the base timer. The port 3 interrupt is a level interrupt which is maintained for as long as
the user presses a button.
If another timer is used to frequently generate interrupts or to accept the port 3 level interrupt, the
internal clock may run slow.
When using the base timer interrupt, call the user-side handler immediately after the label
timer_ex_exit in GHEAD.ASM. The user-side handler must be designed to keep processing time at a
minimum, so that the interrupt can be properly processed every 0.5 seconds.
Care must be taken to prevent clock slow-down already when designing an application.

• Clock timer

• 14-bit binary up counter

• Fast-forward mode (using 6-bit base timer)

Functions

Clock timer

When the 32.768 kHz quartz oscillator is used as count clock for the base timer, a clock with 0.5 second steps
can be implemented. The base timer count clock is a quartz oscillator.

14-bit binary up counter

By using the 8-bit binary up counter and 6-bit binary up counter in conjunction, a 14-bit binary up counter
can be configured. The counters can be cleared by the application.

Fast-forward mode (using 6-bit base timer)

When the 6-bit timer is used as base timer, and the 32.768 kHz quartz oscillator is used as count clock, a
clock with 2 millisecond steps can be implemented. Bit length switching is performed by the base timer
control register (BTCR).

Interrupt generation

When the interrupt request enable bit is set, an interrupt request generated by the base timer will call the
register vector 001BH. There are two types of interrupt requests that can be generated by the base timer,
referred to as base timer interrupt 0 and base timer interrupt 1.

The following Special Function Registers must be operated to control the base timer.

BTCR, P1, timer 0 functions, interrupt functions
VMD-94

 Peripheral System Configuration
Circuit Configuration

The base counter configuration is shown in Fig. below.

8-bit binary up counter... ����

This is an up counter whose input is selected by the input signal select register (ISL). It generates a 4 kHz/
2 kHz buzzer output signal. When the counter overflows, it generates a base timer interrupt 1 source. The
overflow becomes the clock for the 6-bit binary counter.

6-bit binary up counter... ➻

This is a 6-bit up counter which uses either the signal selected by the input signal select register (ISL) or 8-
bit counter overflow as input. When the counter overflows, it generates a base timer interrupt 0 and 1
source. Input clock switching is performed by the base timer control register BCTR.

Base timer input clock source...➥

The quartz oscillator should be selected by the input signal select register (ISL) as base timer clock. Do not
use other oscillators.

Figure 2.51 Base timer block diagram

BTCR(17FH)

7 6 5 4 3 2 1 0

- - 5 4 3 2 1 0

Se
le

ct
or

32.768
KHz

Quartz oscillator

0

1

1/fast

256/fast

16/fast 16/BUZ
8/fast

128/fast
32/Fast

16384/fast (64/fast)

2048/fast (8/fast)
512/fast (2/fast)

Counter clear

8-bit counter

0:clear

ISL3
P16 output

control (45H)

P16 port data
 (144H)

P16 function
control (146H)

Timer/counter 0
prescaler

Cycle clock

6-bit counter

0:clear

Base timer interrupt 0 request

Base timer interrupt 1 request

Interrupt request

ISL(15FH)

Se
le

ct
or

Se
le

ct
or
VMD-95

Visual Memory Unit (VMU) Hardware Manual
Related Registers

Table 2.22 Base timer control register (BTCR)

Caution: BTCR7, BTCR6, BTCR0 may not be manipulated by an application.
To operate other bits, be sure to use bit level instructions.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BTCR 17FH R/W BTCR7 BTCR6 BTCR5 BTCR4 BTCR3 BTCR2 BTCR1 BTCR0

Reset 0 0 0 0 0 0 0 0

Bit name Function

BTCR7 (bit 7) Base timer interrupt 0 cycle control

0: 16384/fBST

BTCR6 (bit 6) Base timer operation control

1: base timer start

BTCR5 (bit 5)

BTCR4 (bit 4)

Base timer interrupt 1 cycle control

BTCR7 BTCR5 BTCR4

X

X

0

0

0

0

1

1

0

1

0

1

32/fBST

128/fBST

512/fBST

2048/fBST

BTCR3 (bit 3) Base timer interrupt 1 source

0: Interrupt source disabled

1: Interrupt source enabled

BTCR2 (bit 2) Base timer interrupt 1 request enabled

0: Interrupt request disabled

1: Interrupt request enabled

BTCR1 (bit 1) Base timer interrupt 0 source

0: Interrupt source disabled

1: Interrupt source enabled

BTCR0 (bit 0) Base timer interrupt 0 request enabled

1: Interrupt request enabled
VMD-96

 Peripheral System Configuration
BTCR7 (bit 7): base timer interrupt 0 cycle control 0: fixed

Specifies the cycle for base timer interrupt 0 source generation.

When set to "0", the cycle is 16384/fBST. In this case, the interval at which the interrupt 0 source is generated
for 14-bit counter overflow is 16384/fBST.

When reset to "0", the cycle is 64/fBST. To use the fast- forward mode, set this flag.

Caution: Because the base timer is used for the clock of the VMU, these registers may never be manipulated by
an application.

BTCR6 (bit 6): base timer operation control 1: fixed

Starts or stops the base timer count operation.

When set to "0", the count operation starts.

When reset to "0", the count operation stops, and the 14- bit counter is cleared.

Caution: Because the base timer is used for the clock of the VMU, these registers may never be manipulated by
an application.

BTCR5 - BTCR4 (bits 5 - 4): base timer interrupt 1 cycle control

Select the cycle for base timer interrupt 1 source generation.

fBST: Input clock frequency

BTCR3 (bit 3): base timer interrupt 1 source flag

This flag is set whenever the base timer interrupt 1 source is generated at the cycle set with BTCR7, BTCR5,
and BTCR4. When no interrupt is generated, the flag does not change.

Caution: This flag must be reset by a suitable interrupt processing routine.

BTCR7 BTCR5 BTCR4 Base timer interrupt 1 cycle

x 0 0 32/fBST

x 0 1 128/fBST

0 1 0 512/fBST

0 1 1 2048/fBST
VMD-97

Visual Memory Unit (VMU) Hardware Manual
BTCR2 (bit 2): base timer interrupt 1 request enable control

Enables or disables the base timer interrupt 1 request.

When set to "0", the base timer interrupt 1 source will generate an interrupt request to interrupt
vector 001BH.

When reset to "0", no interrupt request is generated.

BTCR1 (bit 1): base timer interrupt 0 source flag

This flag is set whenever the base timer interrupt 0 source is generated at the cycle set with BTCR7. When
no interrupt is generated, the flag does not change.

Caution: This flag must be reset by a suitable interrupt processing routine.

BTCR0 (bit 0): base timer interrupt 0 request enable control 0: fixed

Enables or disables the base timer interrupt 0 request.

When set to "0", the base timer interrupt 0 source will call the interrupt vector 001BH.

When reset to "0", no interrupt request is generated.

Caution: Because the base timer is used for the clock of the VMU, these registers may never be manipulated by
an application.

Caution: • In fast-forward mode (BTCR7, BTCR5 = 1), do not set both the system clock and the base timer to the
quartz oscillator.

• BTCR may occasionally become "0" when BTCR5 and BTCR4 are changed. This is a rare occurrence,
but to guard against it, you should save the value of BTCR3 before changing BTCR5 and BTCR4 and
then set the value again in BTCR3 after the change.

Input Signal Select Register (ISL)

For details, refer to the section “Input Signal Select Register (ISL)” in “Timer/Counter 0 (T0)”.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ISL 15FH R/W - - ISL5 ISL4 ISL3 ISL2 ISL1 ISL0

Reset 0 0 0 0 0 0 0 0
VMD-98

 Peripheral System Configuration
Using the Base Timer

Figure 2.52 Clock timer

Bit name Function

ISL5 (bit 5)

ISL4 (bit 4)

Base timer clock select

ISL5 ISL4

X 0 Fixed to quartz oscillator

ISL3 (bit 3) Use prohibited

0: fBST/16 (fixed)

ISL2 (bit 2)

ISL1 (bit 1)

Noise filter time constant select

ISL2 ISL1 Time constant

1

0

X

1

1

0

16Tcyc

64 Tcyc

1 Tcyc

ISL0 (bit 0) T0 clock input pin select

0: P72/INT2/T0IN pin

1: P73/INT3/T0IN pin

Start Related register Sample program

BTCR CLR1 BTCR,6

• Clock timer

; Stop base timer count

BTCR CLR1 BTCR,7 ; Select 14-bit base timer mode

ISL CLR1 ISL,4 ; Set base timer clock to sub clock

;

Interrupt processing
routine

CLR1 BTCR,1 ; Base timer interrupt

RETI

; Set flag to 0

; Return to main routine

BTCR CLR1 BTCR,0 ; Enable base timer interrupt 0

SET BTCR,6 ; Start base timer count

Interrupt is generated here

Clear counter

Set interrupt cycle

Start counter

Clock processing

Next program
VMD-99

Visual Memory Unit (VMU) Hardware Manual
Serial Interface
The custom chip of the VMU incorporates a 2-channel synchronous serial interface with a data word length of 8 bits.
It uses port 1 and allows two VMU units to communicate directly. When connected to the Dreamcast, the interface
is automatically switched to the dedicated Dreamcast interface.

Reference: For information on how to ensure problem-free serial communication, refer to chapter “Serial
Communication Precautions” in the appendix.

Caution: Because the dedicated Dreamcast interface (Maple bus mode) also uses port 1, it cannot be used at the
same time as the synchronous serial interface.
When using the synchronous serial interface, an application must prohibit activation of the dedicated
Dreamcast interface.

The serial interface has the following main functions and features.

• 2-channel synchronous serial interface

• Selectable transfer clock

• Serial interface SIO0 transfer clock with switchable polarity

• LSB/MSB switchable start sequence

• Switchable operation modes

• Overrun detection

• Transfer bit length control

Functions and Features

2-channel synchronous serial interface

Two serial interface channels are provided: SIO0 using P10 to P12 and SIO1 using P13 to P15.

Normally, the VMU uses SIO0 as master and SIO1 as slave.

Selectable transfer clock

The following three clock types can be selected. For SIO0, the transfer clock polarity can also be selected.

• Internal clock

• External clock

• Software clock

Serial interface SIO0 transfer clock with switchable polarity

The polarity of the transfer clock for the serial interface SIO0 can be selected as follows.

1) Operation stop, SCK0 = "0"; data output hold

2) Operation stop, SCK0 = "0"; data output bit 0 of SBUF0
VMD-100

 Peripheral System Configuration
LSB/MSB switchable start sequence

Data transfer via the serial interface can start either with the LSB or the MSB. This setting can be made
individually for each channel.

Overrun detection

An error is generated when a clock exceeding 8 bits is received.

Transfer bit length control

A setting is available to control whether operation stops or continues after 8 bits have been transferred.

Interrupt

The following Special Function Registers must be operated to control the serial interface.

When the interrupt request enable bit is set, overflow of the octal counter generates an SIO0 or SIO1
interrupt request.

SCON0, SCON1, SBR, SBUF0, SBUF1, P1, P1DDR, P1FCR

Caution: When data transfer via the serial interface has been carried out, observe the following points.
(1)Do not make any settings for serial transfer while no other VMU unit is connected. When transfer
is completed, be sure to make the settings listed in (3).
To make serial transfer settings, check the status of port 7 to verify whether another VMU unit
is connected.
(2) When connection of another VMU unit has been verified, make serial transfer settings.
Use port 7 to verify whether another VMU unit is connected.
(3)At the end of serial transfer, and when no other VMU unit is connected, establish the
following settings.
SCON0 = 00H
SCON1 = 00H
P1FCR = 0BFH
P1DDR = 0A4H
If serial transfer settings are made while no other VMU unit is connected, normal operation
is not assured.
VMD-101

Visual Memory Unit (VMU) Hardware Manual
Circuit Configuration

The serial interface configuration is shown in Figures below.

Shift register...����

This component consists of two 8-bit shift registers (SBUF0, SBUF1) to operate the specified clock.

Octal counter...➻

Counts the shift clock and detects transfer end.

Baud rate generator...➥

Consists of an 8-bit register (SBR) for data settings and an 8-bit reload counter. When “internal clock” is selected as
transfer clock, the clock data created here are transferred. The baud rate generator is used both by SIO0 and SIO1.

Reference: For more information on the internal clock, refer to section on “Serial Transfer Clock”.

Polarity switcher

Controls the transfer clock polarity before and after serial transfer.

Figure 2.53 Serial interface (SIO0) Block Diagram

SBUF0 (131H)

P10 output control (145H)

P10/SO0
P10 function control (146H)
P10 port latch (144H)

SCCN0 (130H)

LSB/MSB sequence select

SIO0 shift register

Interrupt request

Signal A to S101

7 6

BUS

5 4 3 2 1 0

BUS

8

8SBR0 (132H)

Baud rate generator

BUS

8-bit reload counter 1/2

P12 output control

SCON03
SCON04

SCON13
SCON14

System clock

P12/SCK0 P12 function control (145H)
P12 port latch (144H)

P11 output control (145H)

P11/SI0
 /SB0

P11 function control (146H)

P11 port latch (144H) C
R

Q8-link counter

Polarity switching
circuit
VMD-102

 Peripheral System Configuration
Figure 2.54 Serial interface (SIO1) Block Diagram

Related Registers

SIO0 control register (SCON0)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SCON0 130H R/W SCON07 SCON06 - SCON04 SCON03 SCON02 SCON01 SCON00

Reset 0 0 H 0 0 0 0 0

1/2

SBUF1 (131H)

P13 output control (145H)

P13/SO1
P13 function control (146H)
P13 port latch (144H)

SCON1 (130H)

LSB/MSB sequence select

SIO0 shift register

Interrupt request

7 6

BUS

5 4 3 2 1 0

BUS

8

6

P15 output control (145H)

SCON13
SCON14

Signal A
from S100

P15/SCK1 P15 function control (146H)
P15 port latch (144H)

P14 output control (145H)

P14/SI1
 /SB1

P14 function control (146H)
P14 port latch (144H) C

R
Q8-link counter
VMD-103

Visual Memory Unit (VMU) Hardware Manual
SCON07 (bit 7): SCK0 polarity control

Controls the polarity of transfer clock SCK0 used by SIO0.

When set to "0", SCK0 is "0" when SIO0 operation stops, and bit 0 of SBUF0 is output.

When reset to "0", SCK0 is "0" when SIO0 operation stops, and the last transferred data is held at the output.

SCON06 (bit 6): overrun flag

Detects serial transfer errors in SIO0.

When an 8-bit data transfer is completed (SCON01 has become "0") and the transfer clock is received (falling
edge was detected), the flag is set.

During continuous transfer, the overflow flag is set every 8 bits.

Caution: This flag is not reset automatically. It must be reset by the application.

Bit name Function

SCON07 (bit 7) Polarity control

0: at operation stop, SCK0 = 1, maintain data output

1: at operation stop, SCK0 = 0, output data is bit 0 of SBUF0

SCON06 (bit 6) Overrun flag

0: No overrun

1: Overrun

SCON04 (bit 4) Transfer bit length control

0: 8-bit transfer

1: Continuous transfer

SCON03 (bit 3) Transfer control

0: Stop transfer

1: Start transfer

SCON02 (bit 2) LSB/MSB sequence select

0: LSB first

1: MSB first

SCON01 (bit 1) Serial transfer end flag

0: Transfer in progress

1: Transfer end

SCON00 (bit 0) Interrupt request enabled

0: Interrupt request disabled

1: Interrupt request enabled
VMD-104

 Peripheral System Configuration
SCON04 (bit 4): transfer bit length control

Switches the SIO0 transfer data bit length to 8 bit continuous (1) or 8 bit (0).

When set to "0", data of 2 byte or more can be sent continuously in 8-bit units.

When reset to "0", only 8 bits of data (1 byte) can be sent.

This flag is not reset after transfer. It must be reset by the application.

SCON03 (bit 3): SIO0 operation control

Starts or stops SIO0 transfer.

When set to "0", 8-bit serial transfer at SIO0 starts. When 8 bits have been transferred, the flag is reset.

When reset to "0", serial transfer at SIO0 stops.

SCON02 (bit 2): LSB/MSB start select

Selects whether data are transferred starting with the MSB or LSB.

When set to "0", the transfer starts with the MSB.

When reset to "0", the transfer starts with the LSB.

Caution: This flag applies both to sending and receiving data. The setting must match at both ends.

SCON01 (bit 1): SIO0 transfer end flag

Detects the end of serial transfer.

The flag is set when a serial transfer of 8 bits is completed.

When this flag is set, and a falling edge of the transfer clock is detected, the overrun flag is set.

Caution: This flag is not reset automatically. It must be reset by the application.

SCON00 (bit 0): SIO0 interrupt request enable control

Enables or disables interrupt request generation at SIO0 transfer end.

When set to "0", the interrupt vector 0033H is called when SIO0 transfer ends.

When reset to "0", no interrupt request is generated.

Caution: The transfer end flag becomes "0" at the end of 8 bits (1 byte) transfer, regardless of the transfer bit
length control setting.
The overrun flag is only set when overrun was detected. It does not generate an interrupt.
VMD-105

Visual Memory Unit (VMU) Hardware Manual
SIO1 control register (SCON1)

SCON16 (bit 6): overrun flag

Detects serial transfer errors in SIO1.

When an 8-bit data transfer is completed (SCON11 became "0") and the transfer clock is received
(falling edge was detected), the flag is set.

During continuous transfer, the overflow flag is set every 8 bits.

Caution: This flag is not reset automatically. It must be reset by the application.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SCON1 134H R/W - SCON16 - SCON14 SCON13 SCON12 SCON11 SCON10

Reset H 0 H 0 0 0 0 0

Bit name Function

SCON16 (bit 6) Overrun flag

0: No overrun

1: Overrun

SCON14 (bit 4) Transfer bit length control

0: 8-bit transfer

1: Continuous transfer

SCON13 (bit 3) Transfer control

0: Stop transfer

1: Start transfer

SCON12 (bit 2) LSB/MSB sequence select

0: LSB first

1: MSB first

SCON11 (bit 1) Serial transfer end flag

0: Transfer in progress

1: Transfer end

SCON10 (bit 0) Interrupt request enabled

0: Interrupt request disabled

1: Interrupt request enabled
VMD-106

 Peripheral System Configuration
SCON14 (bit 4): transfer bit length control

Switches the SIO1 transfer data bit length to 8 bit continuous (1) or 8 bit (0).

When set to "0", data of 2 byte or more can be sent continuously in 8-bit units.

When reset to "0", only 8 bits of data (1 byte) can be sent. When the 8-bit transfer is completed, the
transfer end flag (SCON11) is set.

Caution: This flag is not reset after transfer. It must be reset by the application.

SCON13 (bit 3): SIO1 operation control

Starts or stops SIO1 transfer.

When set to "0", 8-bit serial transfer at SIO1 starts. When 8 bits have been transferred, the flag is reset.

When reset to "0", serial transfer at SIO1 stops.

SCON12 (bit 2): LSB/MSB start select

Selects whether data are transferred starting with the MSB or LSB.

When set to "0", the transfer starts with the MSB.

When reset to "0", the transfer starts with the LSB.

Caution: This flag applies both to sending and receiving data. The setting must match at both ends.

SCON11 (bit 1): SIO1 transfer end flag

Detects the end of serial transfer.

The flag is set when a serial transfer of 8 bits is completed.

When this flag is set, and a falling edge of the transfer clock is detected, the overrun flag is set.

Caution: This flag is not reset automatically. It must be reset by the application.

SCON10 (bit 0): SIO1 interrupt request enable control

Enables or disables interrupt request generation at SIO1 transfer end.

When set to "0", the interrupt vector 003BH is called when SIO1 transfer ends.

When reset to "0", no interrupt request is generated.

Caution: The transfer end flag becomes "0" after 8 bits (1 byte) have been transferred, regardless of the transfer
bit length control setting.

The overrun flag is only set when overrun was detected. It does not generate an interrupt.
VMD-107

Visual Memory Unit (VMU) Hardware Manual
Baud rate generator register (SBR)

When the internal clock is used as transfer clock, this register sets the transfer rate. The value is common to
both SIO0 and SIO1. The transfer rate TSBR can be obtained by the following equation.

Figure 2.55 SIO0, SIO1 transfer rate

Serial buffer 0 (SBUF0)

Stores transfer data (8 bits) from SIO0.

Serial buffer 1 (SBUF1)

Stores transfer data (8 bits) from SIO1.

Dedicated Dreamcast interface circuit

In addition to the serial interface described above, port 1 also operates as an input/output port for the
dedicated Dreamcast interface. It is not possible to use the dedicated Dreamcast interface and the serial
interface simultaneously.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SBR 132H R/W SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

Reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SBUF0 131H R/W SBUF07 SBUF06 SBUF05 SBUF04 SBUF03 SBUF02 SBUF01 SBUF00

Reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SBUF1 135H R/W SBUF17 SBUF16 SBUF15 SBUF14 SBUF13 SBUF12 SBUF11 SBUF10

Reset 0 0 0 0 0 0 0 0

Transfer rate

Shift clock

TSBR = (256 - [SBR setting value]) x 2 x Tcyc (Tcyc = cycle clock)

TSBR
VMD-108

 Peripheral System Configuration
Serial Interface Operation

Transfer via the serial interface starts when the transfer control bit (SCON03, SCON13) or transfer bit length select
bit (SCON04, SCON14) is set. The transfer mode can be the Maple bus mode or normal mode, but applications can
only use the normal mode.

Normal mode

Data transfer uses two data lines and one clock line. The data lines are S1 (dedicated input) and S0
(dedicated output). This mode follows conventional transfer principles and is suited for communication
with a specific device.

Caution: For communication between two VMU units, use normal mode.

Figure 2.56 Connection of two VMU units

The transfer mode can be specified by operating the Special Function Register assigned to port 1
(refer to below). The mode can be specified separately for SIO0 and SIO1.

Serial transfer timing

The shift registers are synchronized to the falling edge of the serial clock SCK0 and SCK1, and data from
the shift registers are output at the SO0 and SO1 pins. At the rising edge of the serial clock, the data input
from pins SI0 and SI1 are read into the shift registers.

Operation Mode Settings

Normal mode

The output pins or port latch data for the transfer clock used as internal clock must be reset. The following
pins are used in normal mode.

Send
SIO0

VMS 1 VMS 2

SCK0 SCK1

Receive
SIO1

Receive
SIO1

Send
SIO0

SO0 SI1

SO1 SI0

SI0 SO1

SCK1 SCK0

SI1 SO0
VMD-109

Visual Memory Unit (VMU) Hardware Manual
Table 2.23 Pins Used in Normal Mode

Caution: Tcyc before starting transfer, SCKn is set to "0". At less than 1 Tcyc, correct data will not be output.

Table 2.24 Port 1 Settings for SIO0 (Special Function Registers)

Note: The software clock is programmed to alternately write "0" and "0" to the port (P12), and the output
is used as transfer clock.

Table 2.25 Port 1 Settings for SIO1 (Special Function Registers)

Note: The software clock is programmed to alternately write "0" and "0" to the port (P15), and the output
is used as transfer clock.

Mode SIO0 SIO1

Input pin P11/SI0/SB0 P14/SI1/SB1

Output pin P10/SO0_P11/SI0/SB0Åj P13/SO1_P14/SI1/SB1_

Transfer clock P12/SCK0 P15/SCK1

Pin Function Special function register value

P11/SI0/SB0

P10/SO0

Receive

Send

P11DDR = 0

P10 = 0

P10DDR = 1

P10FCR = 1

P11/SI0/SB0

P10/SO0

Receive

General input/output

P11DDR = 0

P10FCR = 0

P12/SCK0 Internal clock P12 = 0

P12DDR = 1

P12FCR = 1

Pin Function Special function register value

P14/SI11/SB1 Receive P14DDR = 0

P13/SO1 General input/output P13FCR = 0
VMD-110

 Peripheral System Configuration
Figure 2.57 Normal mode signal path (SIO1 example)

Caution: To set Pn to “output”, PnFCR must be set to "0" before PnDDR. If PnDDR is set first, "0" may be output
from Pn when PnDDR is set. This applies both to SIO0 and SIO1.

Serial transfer clock

The serial transfer clock (shift clock) uses the P12/SCK0 pin for SIO0 and the P15/SCK1 pin for SIO1. According to
the applied circuit specifications, one of the following three clock types can be selected for SIO0 and SIO1 separately.
For SIO0, the transfer clock polarity can also be selected.

• Internal clock

• External clock

• Software clock

Internal clock

Normally, the internal clock is used for serial transfer. The dedicated serial baud rate generator (SBR)
integrated in the VMU custom chip generates the transfer clock which is supplied to the SIO0 and
SIO1 circuitry.

When the serial interface is driven with the internal clock, the baud rate generator must be activated.
When this is done, the serial transfer clock will be output from the serial interface clock pin (P12/SCK0,
P15/SCK1).

The relationship between the transfer rate and the baud rate generator setting is as shown below. The
setting values are decimal.

TSBR = (256 - [SBR setting value]) X 2 X Tcyc (Tcyc is the cycle clock)

SIO1 shift register

Shift clock

SBUF1 (135H)

BUS

8

P14 output control (145H)

P14 function control (146H)
P14 port latch (144H)

SI1

P13 output control (145H)

P13 function control (146H)
P13 port latch (144H)

SO1
VMD-111

Visual Memory Unit (VMU) Hardware Manual
Figure 2.58 Baud Rate Generator Configuration Diagram

Caution: To set Pn to “output”, PnFCR must be set to "0" before PnDDR. If PnDDR is set first, "0" may be output
from Pn when PnDDR is set. This applies both to SIO0 and SIO1.

External clock

The VMU custom chip can perform serial transfer using an externally supplied clock.

Software clock

Using a program to alternately output "0" and "0" from ports P12/SCK0 and P15/SCK1, the output can be
used as serial transfer clock.

Figure 2.59 Clock Generation Example

Cycle clock

SCON14
SCON13

SCON04
SCON03

P15/SCK1

Transfer rate

Transfer clock

TSBR = (256 - [SBR setting value]) x 2 x Tcyc (Tcyc = cycle clock)

TSBR

Internal bus

Reload register

8-bit counter
1/2

P12/SCK0
1/2

Polarity
switching

circuit

Clock generation example

Transfer clock

SIO0 SET 1 CLR 1 SET 1
SIO1

P 1,2
5

P 1,2
5

P 1,2
5

VMD-112

 Peripheral System Configuration
To use this type of transfer clock, appropriate settings must be made first for ports P12/SCK0 and
P15 SCK1.

Table 2.26 Transfer Clock Settings

Caution: • Serial data and serial clock pulse width must be at least 1/2 the cycle time.
This is especially important when using the quartz oscillator or the external clock. For example, when
using the 32.768 kHz quartz oscillator, the cycle clock will be 366 ms, requiring a pulse width of at
least 183 ms.

• When outputting the serial clock from port 1, the port 1 registers must be set in the order shown
below, otherwise correct operation is not assured.

1) P1FCR setting

2) P1DDR setting

3) SCONn setting (transfer control bit setting)

Serial Transfer Timing

During serial transfer, the transfer clock SCK0 of SIO0 (when SCON07 = 0) and SIO1 outputs a "High" level (SCK0
= 1) before and after operation. The last transferred data is held at the output.

When SCON07 = 1, the transfer clock SCK0 of SIO0 outputs a "low" level (SCK0 = 0) before and after operation. Bit
0 (SBUF00) of the serial buffer 0 (SBUF0) is held at the output (refer to Table 4-40). In SIO1, polarity switching is
not possible.

Pin Function Special function register value

P12/SCK0 Internal clock P12 = 0

P12DDR = 1

P12FCR = 1

External clock P12DDR = 0

Software clock P12 = 0/1

P12DDR = 1

P12FCR = 0

P15/SCK1 Internal clock P15 = 0

P15DDR = 1

P15FCR = 1

External clock P15DDR = 0

Software clock P15 = 0/1

P15DDR = 1

P15FCR = 0
VMD-113

Visual Memory Unit (VMU) Hardware Manual
SIO0

SIO1

Figure 2.60 Transfer Clock and Output Data (1)

Figure 2.61 Transfer Clock and Output Data (2)

LSB/MSB Switchable Start Sequence

The serial transfer buffer read/write order for data can be set to either LSB ➔ MSB or MSB ➔ LSB.

Note: For VMU, either of these is acceptable.
The method used by computers complying to the RS-232C standard is LSB ➔ MSB.

This function allows selection of “LSB-first” or “MSB- first” order for serial data transfer. The setting is made with
the serial transfer control register (SCON0, SCON1).

Caution: The LSB/MSB order selection must be made before the start of transfer. If the setting is changed after
transfer has started, the transfer continues with the original setting.

Figure 2.62 Serial Transfer Buffer and Internal Bus When LSB First Is Selected

SCON07 = 0 At operation stop, SCK0 = 1, maintain data output

SCON07 = 1 At operation stop, SCK0 = 0, output data is bit 0 of SBUF0

At operation stop, SCK0 = 1, maintain data output

SCK0

P10/SO0
or

P11/SI0/SB0
D0 D1 D2 D3 D4 D5 D6 D7

SCK0
P10/SO0

or
P11/SI0/SB0

D0 D1 D2 D3 D4 D5 D6 D7 SBUF00

MSB

SI0
SI1

SO0
SO1

LSB

7 6 5 4

Internal bus

Serial transfer buffer

3 2 1 0
VMD-114

 Peripheral System Configuration
Figure 2.63 Serial Transfer Buffer and Internal Bus When MSB First Is Selected

The Figures below show the serial transfer send/receive timing in SIO0 when using LSB first and MSB first.

Figure 2.64 Serial Transfer Buffer and Internal Bus When LSB First Is Selected

Figure 2.65 Serial Transfer Buffer and Internal Bus When MSB First Is Selected

MSB

SI0
SI1

SO0
SO1

LSB

7 6 5 4

Internal bus

Serial transfer buffer

3 2 1 0

P12/SCK0 pin

P10/SO0 pin

SCON03

SCON01

P11/SIO/SB0 pin

SIO0 shift
 register

Upper 4 bits
Lower 4 bits

O0 O1 O2 O3 O4 O5 O6 O7

I0 I1 I2 I3 I4 I5 I6 I7

I0O7O6O5O7O6O5O4 I1I0O7O6 I2I1I0O7 I3I2I1I0 I4I3I2I1 I5I4I3I2 I6I5I4I3 I7I6I5I4

O4O3O2O1O3O2O1O0 O5O4O3O2 O6O5O4O3 O7O6O5O4 I0O7O6O5 I1I0O7O6 I2I1I0O7 I3I2I1I0

P12/SCK0 pin

P10/SO0 pin

SCON03

SCON01

P11/SIO/SB0 pin

SIO0 shift
register

Upper 4 bits
Lower 4 bits

O7

MSB LSB

O6 O5 O4 O3 O2 O1 O0

I7 I6 I5 I4 I3 I2 I1 I0

O6O5O4O3O7O6O5O4 O5O4O3O2 O4O3O2O1 O3O2O1O0 O2O1O0I7 O1O0I7I6 O0I7I6I5 I7I6I5I4

O2O1O0I7O3O2O1O0 O1O0I7I6 O0I7I6I5 I7I6I5I4 I6I5I4I3 I5I4I3I2 I4I3I2I1 I3I2I1I0
VMD-115

Visual Memory Unit (VMU) Hardware Manual
Overrun Detection

The overrun detection function serves to catch serial transfer errors.

If the interrupt source flag (SCON01, SCON11) is set, the overrun flag (SCON06, SCON16) will be set at the falling
edge of the transfer clock.

The normal send timing and overrun timing are shown in Fig. below. At the rising edge of the transfer clock for the
8th data bit, the interrupt source flag (SCON01, SCON11) is set. When the falling edge of the transfer clock is
detected in this condition, the overrun detection flag is set.

The overrun flag is only set when overrun is detected. It does not generate an interrupt or have other results.

Caution: • Before checking the overrun flag, wait at least 1/2 transfer clock cycles after the interrupt source flag
was set to "0".

• Also when a transfer mode exceeding 8 bits (continuous transfer mode) was set, the overrun detection
function operates in the same way as for 8-bit transfer.

Figure 2.66 Serial Transfer Buffer and Internal Bus When LSB First Is Selected

Octal Counter

Overrun flag

Interrupt
source flag

Serial input
data

Serial
transfer clock

Normal transfer timing (8-bit transfer)
Noise Overrun occurs

I0 I1 I2 I3 I3 I4 I5 I6 I7

10 2 3 4 5 6 7 0

Octal Counter

Overrun flag

Interrupt
source flag

Serial input
data

Serial
transfer
clock

Timing diagram for normal transfer (8-bit transfer)

I0 I1 I2 I3 I4 I5 I6 I7

10 2 3 4 5 6 7 0
VMD-116

 Peripheral System Configuration
Transfer Bit Length Control

When sending more than 8 bits of serial data, continuous transfer can be selected with the transfer bit length control
bit SCON04 or SCON14.

• When SCON04 or SCON14 is set, serial transfer starts. This bit is not reset also after 8 bits of data have
been transferred.

• The interrupt source flag is set with the same timing as for 8-bit transfer (at 8-bit transfer end).

• The overrun detection bit SCON06 or SCON16 is set at the serial clock falling edge when 8 bits have been
exceeded. For information on the timing, see section “Overrun Detection”.

• When the transfer bit length has been set to 8 bits, transfer starts when the transfer control bit SCON03
or SCON13 is set. When 8 bits of data have been transferred, the transfer control bit is reset which in turn
causes the interrupt source flag (SCON01, SCON11) to be set. Serial transfer stops automatically.

• When the transfer bit length has been set to continuous, transfer starts when the transfer bit length
control bit SCON04 or SCON14 is set. Transfer continues until the bit is reset. The interrupt source flag is
set after 8 bits of data have been transferred.

Sample Program

SIO0 serial transfer (1) (send) sample program

Transfer parameters

• 8-bit transfer

• Transfer data: 038H (8 bits)

• MSB-first

• Falling edge output

• Normal mode

• Internal clock

• Baud rate: 25.6 ms

• System clock: 32.768 kHz quartz oscillator

The baud rate equation yields the following

TSBR = (256 - [SBR]) x 2 x Tcyc

\[SBR] = 256 - TSBR / (2 x Tcyc)

Here, the result is TSBR = 25.6 ms, Tcyc = 366 us. The baud rate generator register (SBR) setting value
therefore is as follows.

[SBR] = 256-25600 / (2 x 366)

= approx. 221 (decimal)

➔ 0DDH (hex)
VMD-117

Visual Memory Unit (VMU) Hardware Manual
Figure 2.67 Serial Transfer (1) Timing

Figure 2.68 Serial Transfer (Send) Sample Program

SIO1 serial transfer (2) (receive) sample program

Transfer parameters

• 16-bit transfer

• LSB-first

• External clock

• Same output data from SO1 as SB1

• Store upper 8 bit of read data at RAM address 031H, and lower 8 bit at RAM address 030H

P12/SCK0 pin

P10/SO0 pin

P11/SIO/SB0 pin

SIO0 shift
register

Upper 4 bits

Baud rate

Lower 4 bits

0

MSB LSB

0 1 1 1 0 0 0

I7 I6 I5 I4 I3 I2 I1 I0

01110011 1110 1100 1000 000I 00II 0III IIII

000I71000 00I7I6 0I7I6I5 I7I6I5I4 I6I5I4I3 I5I4I3I2 I4I3I2I1 I3I2I1I0

Start

MOV
SET1 SCON0,2

MOV

MOV

#38H,SBUF0
#0DDH,SBR

#05H,P1DDR

; Store transfer data in SBUF0
; Set transfer rate TSBR

; Set "MSB first"

CLR1 P1,0

CLR1 P1,2

; Set P10 latch to "0"

; Set P12 latch to "0"

; Set P10DDR to "1"

MOV #20H,OCR

SET1 SCON0,3

; Switch system clock
; to sub clock

; Start 8-bit transfer

; Set P11DDR to "0"

MOV #05H,P1FCR ; Set P10FCR to "1"
; Set P12FCR to "1"

; Set P12DDR to "1"

End

Set transfer data
and

transfer rate

Set SO0

Set SCK0

Set SI0

Switch system clock

Start transfer
VMD-118

 Peripheral System Configuration
Figure 2.69 Serial Transfer (2) Timing

Figure 2.70 Serial Transfer (Receive) Sample Program

Caution: In this example, if there is a rising edge (B) of the transfer clock between the instruction following SELF0
and the SELF1 instruction, an error will occur. The transfer clock should be set with a sufficiently long
cycle in relation to the cycle clock.
• Set SCKn to "0" 1 Tcyc before the start of transfer. If less than 1 Tcyc, correct data will not be obtained.
• To set Pn to “output”, PnFCR must be set to "0" before PnDDR. If PnDDR is set first, "0" may be output
from Pn when PnDDR is set. This applies both to SIO0 and SIO1.

A B

Overrun flag
SCON16

Interrupt
source flag
SCON11

Transfer block

Transfer data
P14/SB1 pin

Set to "0" by software

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

Start

CLR1
CLR1 SCON1,2

CLR1

SET1

P1,4
P1,3

SCON1,4
SELF0:BN SCON1,1,SELF0

; Set P14 latch to "0"
; Set P13 latch to "0"

; Set "LSB first"

MOV #08H,P1DDR ; Set P13FCR to "1"

; Set P13DDR to "1"

; Set P14DDR to "0"

; Set P15DDR to "0"

; Start 16-bit transfer

CLR1 SCON1,1 ; Set interrupt source flag to "0"

MOV #08H,P1DDR

; Wait until end of 8-bit transfer
LD SBUF1 ; Store data in accumulator
ST #30H ; Store lower 8 bits in RAM30H

SELF1:BN SCON1,1,SELF1 ; Wait until end of 8-bit transfer
LD SBUF1 ; Store data in accumulator
ST #31H

MOV #0H,SCON1

; Store upper 8 bits in RAM31H

; End transfer

End

Set SB1

Set SCK1

Set SO1

Start 8-bit transfer
(lower 8 bits)

Start 8-bit transfer
(upper 8 bits)

End transfer
VMD-119

Visual Memory Unit (VMU) Hardware Manual
Dot Matrix LCD Controller
The LCD controller/driver automatically reads data stored in display RAM and generates the signals to drive the
dot matrix LCD. The display mode is a graphics mode in which one bit of data in display RAM corresponds to on/
off of one dot on the LCD.

The dot matrix LCD controller/driver consists of the following circuit blocks.

• Display RAM (XRAM)

• Display control register

• LCD power supply

Functions

• Display duty cycle: 1/33

• Display bias: 1/5

• Graphics display

• LCD instruction display on/off

• Graphics display capability 48 (horizontal) x 32 (vertical) matrix + 4 mode icons

The following Special Function Registers must be operated to control the display.

• MCR: display on/off control

• STAD: display start address control

• CNR: horizontal byte number control

• TDR: display duty cycle control

• VCCR: display contrast control

• XBNK: display RAM bank address control

Display RAM (XRAM)

The display RAM consists of two banks of 96 x 8 bits for dot matrix control and three 6-bit banks for icon control.

The LCD controller/driver reads the data stored in XRAM and generates the signal to drive the LCD.

Caution: Before reading from or writing to XRAM, set the system clock to the RC oscillator.
VMD-120

 Peripheral System Configuration
Figure 2.71 Display XRAM Configuration

Display Control Registers

Mode control register (MCR)

Controls display controller operation start/stop, cursor display, and LCD clock division ratio.

Caution: The mode control register is write-only. When a bit operation instruction or the INC, DEC, or DBNZ
instruction is used on a write-only register, a bit other than the specified bit will be set. Use the
following instructions for manipulating this register.
MOV, MOV@, ST, ST@, POP
When accessing the register, bits 7 - 5 and bit 0 must be set to their fixed values.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MCR 120H W MCR7 MCR6 MCR5 MCR4 MCR3 - - MCR0

Reset 0 0 0 0 0 0 0 0

180H 181H 18BH 18CH 18FH

Not available for use

190H 191H 19BH 19CH 19FH

1F0H 1F1H 1FBH 1FCH 1FFH

180H 181H 18BH 18CH 18FH

1F0H 1F1H 1FBH 1FCH 1FFH

180H 181H 18BH 18CH 18FH

Bank 0

Bank 1

Bank 2
VMD-121

Visual Memory Unit (VMU) Hardware Manual
MCR7, MCR5 (bits 7, 5): LCD clock division ratio

Be sure to reset MCR7, MCR5 to "0".

MCR4 (bit 4): LCD clock 1/2 division select

This bit controls whether to divide the LCD clock selected with MCR7 - MCR5 by 2.

When reset to "0", the LCD clock is divided by 2.

When set to "0", the LCD clock is not divided.

The frame frequency is as follows.

1/2 division (MCR4 = 0): 82.7 Hz

1/1 division (MCR4 = 1): 165.5 Hz

MCR3 (bit 3): LCD controller control

This bit controls display controller operation start/stop.

When set to "0", the LCD controller operation starts.

When reset to "0", the LCD controller operation stops. This means that the display will not be updated also
when the XRAM contents change. The actual LCD is not switched on and off.

MCR0 (bit 0): display mode select

The display mode should always be set to graphics mode.

Graphics display MCR0 = 1

Bit name Function

MCR7 (bit 7)

MCR6 (bit 6)

MCR5 (bit 5)

LCD clock division ratio selection

MCR7 MCR6 MCR5 Division ratio

0 0 0 1/1 * Always set MCR7 -
MCR5 to 0

MCR4 (bit 4) LCD clock 1/2 division ratio select circuit

0: Signal determined by MCR7 - MCR5 is divided by 2 and selected as LCD clock
1: Signal determined by MCR7 - MCR5 is selected as LCD clock (direct mode)

MCR3 (bit 3) LCD controller control

0: LCD controller stop
1: LCD controller start/continue

MCR0 (bit 0) Display mode select

1: Graphic mode * Always set MCR4 to 1
VMD-122

 Peripheral System Configuration
Figure 2.72 Dot Matrix Display

Display start address control register (STAD)

Controls the display start address.

Caution: Changing the STAD value affects not only XRAM bank 0 but also banks 1 and 2, which can cause icons
to flash or all icons to be shown simultaneously. In such a case, change the data in bytes 1 to 6 of the
display start address specified by STAD as follows.
This will cause the game icon only to be shown. Access to bank 2 of XRAM is normally prohibited, but
if STAD is set to a value other than 00H, it is allowed.
When flash memory access is carried out while STAD is set to a value other than 00H, a part of the
screen is rewritten. This is because the BIOS causes the flash memory access icon to be shown.
Therefore, STAD should be reset to 00H before calling the BIOS to access the flash memory.

STAD7, STAD0 (bits 7, 0): XRAM display start address setting

These bits set the starting address of the display data for the LCD (XRAM 180H is assumed as STAD = 00H).

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

STAD 122H R/W STAD7 STAD6 STAD5 STAD4 STAD3 STAD2 STAD1 STAD0

Reset 0 0 0 0 0 0 0 0

Bit name Function

STAD7 (bit 7)

 |

STAD0 (bit 0)

Display RAM start address setting

STAD7 STAD6 STAD5 STAD4 STAD3 STAD2 STAD1 STAD0 Start address

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

â â â

1 1 1 1 1 1 1 1 255
VMD-123

Visual Memory Unit (VMU) Hardware Manual
The data changes in 2-byte units.

Start address XRAM address STAD7 STAD6 STAD5 STAD4 STAD3 STAD2 STAD1 STAD0

0H 180H (bank 0) 0 0 0 0 0 0 0 0

1H 182H (bank 0) 0 0 0 0 0 0 0 1

2H 184H (bank 0) 0 0 0 0 0 0 1 0

3H 186H (bank 0) 0 0 0 0 0 0 1 1

4H 188H (bank 0) 0 0 0 0 0 1 0 0

5H 18AH (bank 0) 0 0 0 0 0 1 0 1

6H Not available 0 0 0 0 0 1 1 0

7H Not available 0 0 0 0 0 1 1 1

8H 190H (bank 0) 0 0 0 0 1 0 0 0

9H 192H (bank 0) 0 0 0 0 1 0 0 1

0AH 194H (bank 0) 0 0 0 0 1 0 1 0

0BH 196H (bank 0) 0 0 0 0 1 0 1 1

0CH 198H (bank 0) 0 0 0 0 1 1 0 0

0DH 19AH (bank 0) 0 0 0 0 1 1 0 1

0EH Not available 0 0 0 0 1 1 1 0

0FH Not available 0 0 0 0 1 1 1 1

10H 1A0H (bank 0) 0 0 0 1 0 0 0 0

11H 1A2H (bank 0) 0 0 0 1 0 0 0 1

: : : : : : : : : :

3DH 1FAH (bank 0) 0 0 1 1 1 1 0 1

3EH Not available 0 0 1 1 1 1 1 0

3FH Not available 0 0 1 1 1 1 1 1

40H 180H (bank 1) 0 1 0 0 0 0 0 0

41H 182H (bank 1) 0 1 0 0 0 0 0 1

: : : : : : : : : :

7DH 1FAH (bank 1) 0 1 1 1 1 1 0 1

7EH Not available 0 1 1 1 1 1 1 0

7FH Not available 0 1 1 1 1 1 1 1

80H 180H (bank 2) 1 0 0 0 0 0 0 0

81H 182H (bank 2) 1 0 0 0 0 0 0 1

82H 184H (bank 2) 1 0 0 0 0 0 1 0

83H - FFH Not available
VMD-124

 Peripheral System Configuration
Caution: As indicated in the table, some start addresses can lead to operation errors. Do not use xx6H, xx7H,
xxEH, xxFH as start addresses.

Character number register (CNR) 123H

This register may not be accessed by applications.

Time division register (TDR) 124H

This register may not be accessed by applications.

Bank address register (XBNK)

Switches the XRAM bank.

XBNK1, XBNK0 (bits 1, 0): display RAM bank address control

Switches the XRAM bank.

The dot matrix display RAM banks 0 and 1 have a capacity of 96 bytes each. Applications can access only
banks 0 and 1.

XRAM bank 2 contains 6 bytes and serves for the icons that indicate the VMU operation mode.

Caution: Applications may not manipulate XRAM bank 2.

LCD contrast control register (VCCR)

This register controls the LCD on/off state.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

XBNK 125H R/W - - - - - - XBNK1 XBNK0

Reset 0 0 0 0 0 0 0 0

Bit name Function

XRBK1 (bit 1)

|

XRBK0 (bit 0)

Set display RAM start address

XRBK1 XRBK0 Bank address

0

0

1

0

1

0

0

1

2

1 1 Not available
VMD-125

Visual Memory Unit (VMU) Hardware Manual
Caution: • The unit does not incorporate a contrast control.
• The LCD contrast control register is write-only. When a bit operation instruction or the INC, DEC, or
DBNZ instruction is used on a write-only register, a bit other than the specified bit will be set. Use the
following instructions for manipulating this register.
MOV, MOV@, ST, ST@, POP

When accessing the register, bits 5 to 0 must be set to their fixed values.

VCCR7 (bit 7): LCD display control

This bit specifies whether display is carried out or not.

When reset to "0", power to the LCD is shut off, so that the display is deactivated.

Figure 2.73 LCD ON State

When set to "0", power to the LCD is supplied, so that the display is activated.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

VCCR 127H W VCCR7 VCCR6 VCCR5 VCCR4 VCCR3 VCCR2 VCCR1 VCCR0

Reset 0 0 0 0 0 0 0 0

Bit name Function

VCCR7 (bit 7) Liquid crystal display control

0: Liquid crystal display OFF

1: Liquid crystal display ON

VCCR6 (bit 6) LCD RAM access control

0: CPU RAM access enabled

1: CPU RAM access disabled

VCCR5 (bit 5)

 |

VCCR0 (bit 0)

* Always set VCCR5 - VCCR0 to 0

(1) Liquid crystal display ON (VCCR7 = 1)
VMD-126

 Peripheral System Configuration
Figure 2.74 LCD OFF State

Caution: Always start the display controller (MCR3 = 1) before activating the display (VCCR7 = 1).
To deactivate the display, first set VCCR7 to "0" and then set MCR3 to "0".

VCCR6 (bit 6): LCD display RAM access control

When the quartz oscillator is used as system clock and LCD display is on, be sure to disable access from the
CPU to the XRAM (VCCR6 = 1) after changing the system clock.

When reading from or writing to XRAM, or when the RC oscillator is used for the system clock and the
display is used, enable access from the CPU to the XRAM (VCCR6 = 0).

The procedure for changing the system clock while the display is used is as follows.

• RC oscillator à quartz oscillator
VCRR6 = 1
OCR5 = 1, OCR4 = 0

• Quartz oscillator à RC oscillator
VCRR6 = 0
OCR5 = 0, OCR4 = 0 (RC oscillator)

VCCR5 - VCCR0 (bits 5 - 0)

Always set these bits to "0".

Caution: When using the LCD, set the VCCR last.

(2) Liquid crystal display OFF (VCCR7 = 0)
VMD-127

Visual Memory Unit (VMU) Hardware Manual
External Interrupt Function
The VMU custom chip has a function that detects external input signals on P70/INT0, P71/INT1, P72/INT2/T0IN,
and P73/INT3/T0IN and generates interrupt requests to four vector addresses.

The signal types to be detected can be selected by the application. P70 is used for detecting when the VMU is
connected to the controller. P71 is used for low-voltage detection.

Detection pins and interrupt vectors

Signals that can be detected

The priority ranking of the INT0 and INT1 pin interrupts can be set to either "High" or "Low" by the master
interrupt enable control register (IE). When set to "High", interrupt processing is carried out regardless of
the master interrupt enable setting. The priority ranking of interrupts other than INT0 and INT1 can be set
to either "High" or "Low" by the interrupt priority control register (IP). A noise filter with switchable time
constant is connected to the P73/INT3/TOIN pin.

Figure 2.75 Interrupt Detection Signals

Detection of other VMU unit

When another VMU unit is connected, the values at pins P70 through P73 are as follows.

To use the external interrupt function, the following Special Function Registers must be operated.

I01CR, I23CR, ISL, IE

Pin Vector address Pin Vector address

P70/INT0 003H P72/INT2/T0IN Pin 013H

P71/INT1 00BH P73/INT3/T0IN Pin 01BH

P70 P72 P73

Connected to VMU L L H

Not connected to VMU L L L

INT0, INT1 pin Rising edge

Falling edge

"H" level

"L" level

H

L

INT0, INT1 pin Rising edge

Falling edge

Dual level ,
VMD-128

 Peripheral System Configuration
Circuit Configuration

Figure 2.76 External Interrupt Circuit Block Diagram

Related Registers

External interrupt 0, 1 control register (I01CR)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

I01CR 15DH R/W I01CR7 I01CR6 I01CR5 I01CR4 I01CR3 I01CR2 I01CR1 I01CR0

Reset 0 0 0 0 0 0 0 0

"H" level
MPX

"L" level

7

I01CR (15DH)

6 5 4 3 2 1 0

7

I23CR (15EH)

6 5 4 3 2 1 0

MPX

ISL
0

ISL

ISL (15FH)

ISL(15FH)

1

P70/INT0
5V detect

"H" level
MPX

"L" level

P71/INT1
Low
voltage

MPXP72/INT2
/T0IN
ID0

P73/INT3
/T0IN
ID1

MPX

Interrupt request

Interrupt request

Interrupt request

Interrupt request

Timer 0
External signal input

Noise filter
VMD-129

Visual Memory Unit (VMU) Hardware Manual
I01CR7, I01CR6 (bits 7, 6): INT1 detection level/edge select

Selects the INT1 interrupt condition for signals input on the P71/INT1 pin.

Bit name Function

IO1CR7 (bit 7)

IO1CR6 (bit 6)

INT1 detection level/edge select

I01CR7 I01CR6 INT1 interrupt condition

0

0

1

1

1

1

0

1

Detect falling edge

Detect “L” level

Detect falling edge

Detect “H” level

IO1CR5 (bit 5) INT1 interrupt source

0: Interrupt source disabled

1: Interrupt source enabled

IO1CR4 (bit 4) INT1 interrupt control

0: Interrupt disabled

1: Interrupt enabled

IO1CR3 (bit 3)

IO1CR2 (bit 2)

INT0 detection level/edge select

I01CR3 I01CR2 INT0 interrupt condition

0

0

1

1

0

1

0

1

Detect falling edge

Detect “L” level

Detect falling edge

Detect “H” level

IO1CR (bit 0) INT0 interrupt source

0: Interrupt source disabled

1: Interrupt source enabled

IO1CR1 (bit 1) INT0 interrupt control

0: Interrupt disabled

1: Interrupt enabled

I01CR7 I01CR6 INT1 interrupt
condition

0 0 Detect falling edge

0 1 Detect “L” level

1 0 Detect rising edge

1 1 Detect “H” level
VMD-130

 Peripheral System Configuration
Note: When level detection is used, an interrupt is generated continuously while the signal is at "High"
or "Low" level.

I01CR5 (bit 5): INT1 interrupt source

This bit is set if the condition specified by bits I01CR7 and I01CR6 is met. If INT1 interrupt is enabled
(I01CR4 = 1), the interrupt vector 00BH is called and interrupt processing begins.

Caution: This flag is not reset automatically. It must be reset by the application.

I01CR4 (bit 4): INT1 interrupt enable control

This bit enables or disables the external INT1 interrupt.

When set to "0", INT1 interrupt processing is carried out if I01CR5 is set.

When reset to "0", interrupt processing is not carried out.

I01CR3, I01CR2 (bits 3, 2): INT0 detection level/edge select

Selects the INT0 interrupt condition for signals input on the P70/INT0 pin.

Note: When level detection is used, an interrupt is generated continuously while the signal is at "High"
or "Low" level.

I01CR1 (bit 1): INT0 interrupt source

This bit is set if the condition specified by bits I01CR3 and I01CR2 is met. If INT0 interrupt is enabled
(I01CR0 = 1), the interrupt vector 0003H is called and interrupt processing begins.

Caution: This flag is not reset automatically. It must be reset by the application.

I01CR0 (bit 0): INT0 interrupt enable control

This bit enables or disables the external INT0 interrupt.

When set to "0", INT0 interrupt processing is carried out if I01CR1 is set.

When reset to "0", interrupt processing is not carried out.

I01CR3 I01CR2 INT0 interrupt condition

0 0 Detect falling edge

0 1 Detect “L” level

1 0 Detect rising edge

1 1 Detect “H” level
VMD-131

Visual Memory Unit (VMU) Hardware Manual
External interrupt 2, 3 control register (I23CR)

For details, refer to “Timer/Counter 0 (T0)”, section “External Interrupt 2, 3 Control Register (I23CR)”.

Input Signal Select Register (ISL)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

I23CR 15EH R/W I23CR7 I23CR6 I23CR5 I23CR4 I23CR3 I23CR2 I23CR1 I23CR0

Reset 0 0 0 0 0 0 0 0

Bit name Function

I23CR7 (bit 7) INT3 rising edge detect control

0: Detect disabled

1: Detect enabled

I23CR6 (bit 6) INT3 falling edge detect control

0: Detect disabled

1: Detect enabled

I23CR5 (bit 5) INT3 interrupt source

0: Interrupt source disabled

1: Interrupt source enabled

I23CR4 (bit 4) INT3 interrupt control

0: Interrupt disabled

1: Interrupt enabled

I23CR3 (bit 3) INT2 rising edge detect control

0: Detect disabled

1: Detect enabled

I23CR2 (bit 2) INT2 falling edge detect control

0: Detect disabled

1: Detect enabled

I23CR1 (bit 1) INT2 interrupt source

0: Interrupt source disabled

1: Interrupt source enabled

I23CR0 (bit 0) INT2 interrupt control

0: Interrupt disabled

1: Interrupt enabled
VMD-132

 Peripheral System Configuration
For details, refer to “Timer/Counter 0 (T0)”, section “External Signal Select Register (ISL)”.

Master interrupt enable register (IE)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ISL 15FH R/W - - ISL5 ISL4 ISL3 ISL2 ISL1 ISL0

Reset H H 0 0 0 0 0 0

Bit name Function

ISL5 (bit 5)

ISL4 (bit 4)

Base timer clock select

ISL5 ISL4

1

0

X

1

1

0

Timer/counter T0 prescaler

Cycle clock

Quartz oscillator

ISL3 (bit 3) Use prohibited

0: fBST/16 (fixed)

1: Not allowed

ISL2 (bit 2)

ISL1 (bit 1)

Noise filter time constant select

ISL2 ISL1 Time constant

1

0

X

1

1

0

16Tcyc

64Tcyc

1Tcyc

ISL0 (bit 0) T0 clock input pin select

0: P72/INT2/T0IN pin

1: P73/INT3/T0IN pin

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IE 108H R/W IE7 - - - - - IE1 IE0

Reset 0 H H H H H 0 0
VMD-133

Visual Memory Unit (VMU) Hardware Manual
IE7 (bit 7): master interrupt enable control

Enables or disables acceptance of all interrupts, regardless of priority level.

When set to "1", all interrupt requests are enabled.

When reset to "0", interrupts of "high" and "low" priority are disabled.

IE1 - IE0 (bits 1 - 0): INT0, INT1 interrupt priority control

Controls the priority level of external interrupts.

Caution: • INT0 and INT1 can be set to "low" priority but not to "high" priority with IE7.
• It is not possible to set the external interrupt INT1 only to "high" priority.

Bit name Function

IE7 (bit 7) Master interrupt control (high level, low level)

0: All interrupt requests disabled

1: All interrupt requests enabled

IE1 (bit 1)

IE0 (bit 0)

INT0, INT1 interrupt priority control

IE1 IE0 INT1 priority level INT0 priority level

0

1

X

0

0

1

Highest

Low

Low

Highest

Highest

Low

IE1 IE0 INT1 priority level INT0 priority level

0 0 Highest Highest

1 0 Low Highest

X 1 Low Low
VMD-134

 Peripheral System Configuration
Port Interrupt Functions
In addition to its digital I/O functions, port 3 can be used to generate an interrupt in response to an external input
signal, or to cancel the sleep (HALT) condition.

A port interrupt can be implemented through port 3.

Function

In addition to its digital I/O functions, port 3 generates an interrupt when it detects a "Low" level signal.

To use the port interrupt function, the following Special Function Registers must be operated.

P3, P3DDR, P3INT, IE

Circuit Configuration

Figure 2.77 Port 3 Interrupt Circuit Block Diagram

7
P3 (14CH)

6 5 4 3 2 1 0

7

P3DDR (14DH)

Port 3 interrupt request

6 5 4 3 2 1 0

7

P3INT (14EH)

6 5 4 3 2 1 0

P30

P31

P32

P33

P34

P35

P36

P37
VMD-135

Visual Memory Unit (VMU) Hardware Manual
Related Registers

Port 3 interrupt control register (P3INT)

For details, refer to the section “Port 3 Interrupt Control Register (P3INT)” in "Port 3".

Master interrupt enable control register (IE)

For details, refer to the section “Master interrupt Control Register (IE)” in “External Interrupt Functions”.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P3INT 14EH R/W - - - - - P32INT P31INT P30INT

Reset H H H H H 0 0 0

Bit name Function

P32INT2 (bit 2) Port 3 interrupt control flag

0: Port 3 interrupt generation disabled

1: Port 3 interrupt generation enabled

P32INT1 (bit 1) Port 3 interrupt source flag

0: Interrupt source disabled

1: Interrupt source enabled

P32INT0 (bit 0) Port 3 interrupt request control

0: Interrupt request disabled

1: Interrupt request enabled

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IE 108H R/W IE7 - - - - - IE1 IE0

Reset 0 H H H H H 0 0
VMD-136

 Peripheral System Configuration
Operation Description

Port 3 interrupt

1. Set bit 2 of the port 3 control register (P3INT) to "1". This selects port 3 interrupt.

2. Among the pins of port 3 (P37 to P30), select the Special Function Register on which "Low" level detection should
occur. The following conditions must be met to accept a port 3 interrupt.

• The corresponding bit in the port 3 control register (P3DDR) must be set to input mode.

P3mDDR = 0 (m = 0 to 7)

• The corresponding bit in the port 3 register (P3) must be set.

P3n = 1 (m = 0 to 7)

3. When a "Low" level is detected, the interrupt source is set to "1". If the interrupt request enable flag has been set,
an interrupt request is generated, and if the master interrupt enable flag has been set, the interrupt vector 004BH
is called.

4. If the conditions listed in 2. are met while in HALT mode, the HALT mode is terminated and the interrupt vector
004BH is called.

State Transition

The flowchart below shows activation and cancellation of HALT mode.

HALT mode state transition

Bit name Function

IE7 (bit 7) Master interrupt control (high level, low level)

0: All interrupt requests disabled

1: All interrupt requests enabled

IE1 (bit 1)

IE0 (bit 0)

INT0, INT1 interrupt priority control

IE1 IE0 INT1 priority level INT0 priority level

0

1

X

0

0

1

Highest

Low

Low

Highest

Highest

Low
VMD-137

Visual Memory Unit (VMU) Hardware Manual
Figure 2.78 Flow Chart

Port 3 state setting

Start

HALT setting

Port 3

"L" level detect ?

YES

YES

YES

NO

End

Interrupt

enable flag = 1 ?

Master
interrupt

enable flag = 1 ?

Cancel HALT mode and
branch to address 004BH

HALT mode

NO

NO

HALT mode
VMD-138

 Peripheral System Configuration
VMU Work RAM
The VMU contains 256 bytes x 2 banks of RAM to be used as communications buffer when connected to the
Dreamcast. When not connected to the Dreamcast, this RAM is available for applications.

To determine whether data transfer with the Dreamcast is being carried out, check the ASEL flag in the VSEL
register. When the flag is "1", data transfer is in progress.

Note that data integrity will not be assured if an application writes to this RAM while data transfer is in progress.

Work RAM Control Registers

VMU control register (VSEL)

The application can alter only bit 4. Be sure to use a bit level instruction.

INCE (bit 4): VTRBF address counter automatic increment

This bit controls the automatic incrementing of the address counter when reading/writing VTRBF.

When set to "1", the address counter is automatically incremented by 1 after VTRBF has been accessed.

When reset to "0", the address counter maintains its setting.

SIOSEL (bit 1): P1 port use select control

Specifies whether the P1 port (P10 to P15) is to be used as a normal I/O port for synchronous serial
communication or as dedicated Dreamcast interface.

ASEL (bit 0): VTRBF address input select control

Controls access to the VTRBF used as buffer for the VMU and dedicated Dreamcast interface.

Table 2.27 Work RAM access address (VRMAD1, VRMAD2)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

VSEL 163H R/W - - - INCE - - SIOSEL ASEL

Reset H H H 0 H H 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

VRMAD1 164H R/W VRMAD7 VRMAD6 VRMAD5 VRMAD4 VRMAD3 VRMAD2 VRMAD1 VRMAD0

Reset 0 0 0 0 0 0 0 0
VMD-139

Visual Memory Unit (VMU) Hardware Manual
Set the address for reading/writing the work RAM (VTRBF). VRMAD1 specifies the lower 8 bits of the address and
VRMAD2 the bank. When bit 4 of VSEL is set to "1", VRMAD is incremented each time the VTRBF is accessed.

Table 2.28 Work RAM (VTRBF)

This register serves for reading and writing data in the address specified by VRMAD.

When this register is written to, the data are written to the RAM address specified by VRMAD.

When this register is read from, the data are read from the RAM address specified by VRMAD.

When bit 4 of VSEL is set to "1", VRMAD is incremented each time the register is accessed.

Accessing Work RAM

To access work RAM, store the desired RAM address in the VRMAD1 and VRMAD2 registers. Then read or write
to VTRBF to access data in the work RAM.

Caution: The VRMAD1 and VRMAD2 registers are provided with an auto- increment function. To enable this
function, set the INCE bit of VSEL to "1". To disable it, set the bit to "0".

Precautions for Using Work RAM Address Register

The work RAM access procedure is shown in Fig. below.

To access work RAM from an application, specify the work RAM address in the VRMAD1 and VRMAD2 registers.

If the INCE flag of the VSEL register is set to "1", VRMAD is incremented automatically after each time VTRBF is
accessed. The program therefore must be written so as to take the status of the INCE flag of the VSEL register
into account.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

VRMAD2 165H R/W - - - - - - - VRMAD8

Reset H H H H H H H 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

VTRBF 166H R/W VTRBF7 VTRBF6 VTRBF5 VTRBF4 VTRBF3 VTRBF2 VTRBF1 VTRBF0

Reset 0 0 0 0 0 0 0 0
VMD-140

 Peripheral System Configuration
Figure 2.79 Work RAM Access

CPU data 1

VTRBF register

data 1

VTRBF
(work RAM)

VRMAD1, VRMAD2
(system address register)

INCE = "1"

Address value before access

Address value after access
(address before access + 1)

CPU data 1

VTRBF register

data 1

VTRBF
(work RAM)

VRMAD1, VRMAD2
(system address register)

INCE = "0"

Address value before access

Address value after access
(no change)
VMD-141

Visual Memory Unit (VMU) Hardware Manual
Flash Memory
The VMU custom chip incorporates 128 KB of flash memory (EEPROM = Electrically Erasable Programmable ROM)
which can be used to store application program code or data.

Features and Functions

• Capacity: 131072 x 8 bits (program/data area)

• Programmable/erasable in block (page) units
1 block = 128 bytes (1 page)

• Number of write/erase cycles:
50,000 times/page (managed by program) (at 25°C ambient temperature)

• Integrated step-up circuit for writing

• Write end detection possible (by calling OS program)
Toggle bit principle
Data polling principle

• Software batch erase possible

Accessing Program/Data Area of Flash Memory

The program/data area of flash memory is accessed by calling an OS program. For details, refer to the
"BIOS" section.

When connected to the Dreamcast, an application can be transferred to the VMU from the Dreamcast. For details
on the transfer procedure, refer to the section on the buSaveExecFile() function in the SEGA Library Manual Vol. 2.

By connecting the development computer to the Dreamcast with a special cable and using the dedicated Memory
Card Utility, an application can be transferred to the VMU. For details, refer to the VMU Tutorial.
VMD-142

Control Functions
This section contains information about the interrupt controller and the system clock.

Interrupt Functions
Interrupts are used to temporarily interrupt a running program in order to execute other program with higher
priority. The VMU incorporates circuits for generating 13 types of interrupts. These are shown in the table below.

Caution: Some interrupt processing functions cannot be set freely by applications.
VMD-143

 Control Functions
Interrupt Types

Table 2.29 Interrupt Table

Caution: • The priority ranking indicates which interrupt is handled first if several interrupts are generated
simultaneously. The priority ranking changes if specified in the interrupt priority control register (IP).

Priority
sequence

Interrupt type Internal/
External

Vector
address

Interrupt request Source flag Enable flag Register
address

Priority
setting

1 External interrupt INT0 External 0003H P70/INT0 event
detection

I01CR1 I01CR0 15DH Highest/low

2 External interrupt INT1 External 000BH P71/INT1 event
detection

I01CR5 I01CR4 15DH

3 External interrupt INT2 External 0013H P72/INT2 event
detection

I23CR1 I23CR0 15EH High/low

Timer/counter T0L
(lower 8 bits)

Internal Timer/counter
T0L lower 8 bits
overflow

T0CNT1 T0CNT0 110H

4 External interrupt INT3 External 001BH P73/INT3 event
detection

I23CR5 I23CR4 15EH High/low

Base timer Internal Base timer
overflow

BTCR1
BTCR3

BTCR0
BTCR2

17FH

5 Timer/counter T0H
(lower 8 bits)

Internal 0023H Timer/counter
T0L lower 8 bits
overflow

T0CNT1 T0CNT0 110H High/low

6 Timer T1 Internal 002BH Timer T1L
overflow

T1CNT1 T1CNT0 118H High/low

Timer T1H
overflow

T1CNT3 T1CNT2

7 SIO0 Internal 0033H SIO0 end detect SCON01 SCON00 130H High/low

8 SIO1 Internal 003BH SIO1 end detect SCON11 SCON10 134H High/low

9 VMU interrupt Internal 0043H VMU transfer
receive end
detect

RFB RFBENA 160H/161H High/low

10 Port 3 interrupt (P32INT = 1) External 004BH Port 3 "L" level
detect

P31INT P30INT 14EH High/low
VMD-144

 Control Functions
Interrupt Function Operation

When an interrupt as listed in Table 5-1 is generated, the corresponding interrupt request flag is set. This indicates
to the interrupt control circuit that an interrupt request has occurred.

The interrupt control circuit accepts interrupts in the order of their priority. There are three priority levels: "highest",
"high", and "low". To enable interrupts with "high" and "low" priority, the master interrupt flag (IE7) must also be
set in addition to the individual interrupt enable flags. IE7 controls interrupts with "high" and "low" priority. If INT0
or INT1 are set to "highest" priority by the interrupt priority control flag (IE1, IE0), interrupt processing occurs
regardless of the master interrupt enable flag.

Interrupt sources with a priority ranking from 3 to 9 can be specified as having either "high" or "low" priority by the
interrupt priority control register (IP).

When an interrupt is generated, the interrupt control circuit waits until the currently executing instruction is
completed. Then it stores the program counter (PC) contents in the stack (in RAM) and executes the interrupt
processing routine. This operation uses 2 bytes of stack (RAM) and increments the stack pointer (SP) by +2. After
returning from the interrupt processing routine, the stack pointer is decremented by -2.

By executing a RETI instruction at the end of the interrupt processing routine, execution returns to the
original program.

Interrupt nesting is possible and can be up to 3 levels deep.

During execution of the RETI instruction or an instruction (MOV, ST, etc.) that writes to one of the special function
registers listed below, or while writing to flash memory, interrupt request flag acceptance processing is
not performed.

Figure 2.80 Cycle Without Interrupt Processing

To use the interrupt function, the following Special Function Registers must be operated.

IE, IP, SP < Caution >, special function registers in the function block that accepts the interrupt

Caution: System program settings are made during a hardware reset. It is not possible to directly manipulate the
SP from an application.

RETI instruction

Interrupt requestflag
not accepted
VMD-145

Visual Memory Unit (VMU) Hardware Manual
Circuit Configuration

Figure 2.81 Interrupt Function 1 Block Diagram

7

IE(108H)

004BH

0043H

Interrupt

Highest priority level interrupt signal

INT0 interrupt request

INT1 interrupt request

INT2 interrupt request

T0L interrupt request

INT3 interrupt request

Base timer interrupt request

T0H interrupt request

T1L interrupt request

T1H interrupt request

SIO0 interrupt request

SIO1 interrupt request

VMS interrupt request

Port 3 interrupt request

High/low priority level
interrupt signal

6 5 4 3 2 1 0

7 6 5 4 3 2 1

IP(109H)

0

Co
nt

ro
l C

irc
ui

t
003BH

000BH

003BH

0033H

002BH

0023H

001BH

0013H
VMD-146

 Control Functions
Related Registers

Master interrupt enable control register (IE)

For details, refer to the section “Master Interrupt Control Register (IE)” in “External Interrupt Functions”.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IE 108H R/W IE7 - - - - - IE1 IE0

Reset 0 H H H H H 0 0
VMD-147

Visual Memory Unit (VMU) Hardware Manual
Interrupt Priority Control Register (IP)

Bit name Function

IE7 (bit 7) Master interrupt control (high level, low level)

0: All interrupt requests disabled
1: All interrupt requests enabled

IE1 (bit 1)

IE0 (bit 0)

INT0, INT1 interrupt priority control

IE1 IE0 INT1 priority level INT0 priority level

0

1

X

0

0

1

Highest

Low

Low

Highest

Highest

Low

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IP 109H R/W IP7 IP6 IP5 IP4 IP3 IP2 IP1 IP0

Reset 0 - 0 0 0 0 0 0

Bit name Function

IP7 (bit 7) Port 3 interrupt priority level setting

0: Low

1: High

IP5 (bit 5) SIO1 interrupt priority level setting

0: Low

1: High

IP4 (bit 4) SIO0 interrupt priority level setting

0: Low

1: High

IP3 (bit 3) T1 interrupt priority level setting

0: Low

1: High

IP2 (bit 2) T0H interrupt priority level setting

17 0: Low

1: High

IP1 (bit 1) INT3 and base timer interrupt priority level setting

0: Low

1: High

IP0 (bit 0) INT2 and T0L interrupt priority level setting

0: Low

1: High
VMD-148

 Control Functions
IP7 (bit 7): port 3 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the port 3 interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INT0 and INT0 interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

IP5 (bit 5): SIO1 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the SIO1 interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INT0 and INT0 interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

IP4 (bit 4): SIO0 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the SIO0 interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INT0 and INT0 interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

IP3 (bit 3): T1 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the T1 interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INT0 and INT0 interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

IP2 (bit 2): T0H interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the TOH interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INT0 and INT0 interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

IP1 (bit 1): INT3/base timer interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the INT3/base timer interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INT0 and INT0 interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

IP0 (bit 0): INT2/T0L interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the INT2/TOL interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INT0 and INT0 interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".
VMD-149

Visual Memory Unit (VMU) Hardware Manual
Interrupt Priority Ranking

The priority ranking of interrupts is as follows.

Highest level > high level > low level

If multiple interrupts of the same priority level are generated simultaneously, the processing order will be as shown
in Table below. The multiple interrupt control circuit controls overlapping interrupts, allowing nesting of "low" level
➔ "high" level ➔ "highest" level interrupts.

Highest level

The external interrupts INT0 and INT1 can be set to the "highest" priority level. Interrupts with this priority
level are not controlled by the masking enable flag (IE7).

High level

Interrupt sources other than the external interrupts INT0 and INT1 that correspond to the bits that are set
in the interrupt priority control register (IP). Interrupts with this priority level are controlled by the masking
enable flag (IE7).

Low level

Interrupt sources INT0 or INT1 for which "low" level is set in IE0 or IE1 and that correspond to the bits that
are reset in the interrupt priority control register (IP). Interrupts with this priority level are controlled by the
masking enable flag (IE7).

Figure 2.82 Interrupt Priority Sequence

For example, to give the SIO1 end interrupt higher priority than the INT0 interrupt, set IE0 and IP5 to "1" (IE0 = 1,
IP = 00100000B).

INT0 INT1 High

High

Low

1

↑

↓

IP

0

Priority

Priority

Low

Highest

INT2 T0H T1 SIO0 SIO1 VMS Port 3INT3
base timer T0L

INT2
T0HINT1INT0 T1 SIO0 SIO1 VMS Port 3T0L

IP2IE1,IE0 IP0 IP1 IP3 IP4 IP5 IP6 IP7

INT3
base timer
VMD-150

 Control Functions
Figure 2.83 SIO1 Interrupt Priority Sequence

To give the SIO1 end interrupt priority between INT2 and INT0, set IE0, IP5, and IP0 to "1" (IE0 = 1, IP = 00100001B).

Figure 2.84 T0L ➔ SIO1 ➔ INT0 Priority Change

Multiple interrupt handling

If a "low" priority interrupt is generated while a "high" priority interrupt routine is being executed, the
"low" priority interrupt is accepted after the "high" priority interrupt routine is completed and one
instruction was executed.

If an interrupt routine is being executed and an interrupt of the same priority level is generated, the second
interrupt request is not accepted.

System Clock Generation
The VMU incorporates two oscillator circuits: a RC oscillator and a quartz oscillator. Either of these can be selected
to supply the system clock. This selection is performed through software.

The oscillation frequencies and cycle clock data for these circuits are shown below.

Oscillator Frequency Cycle clock Purpose Characteristics

RC oscillator 879.236KHz 6.284 ms Flash memory access Uses this clock for flash memory
For write operations, set the division ratio to 1/6.

Quartz oscillator 32.768KHz 183.105 ms Standalone operation clock Processing speed is reduced for preserving
battery power

INT0 INT1

1

↑

↓

IP

0

INT2 T0H T1 SIO0 SIO1 VMS Port 3INT3
base timer

INT3
base timer

T0L

INT2
T0HINT1INT0 T1 SIO0 SIO1 VMS Port 3T0L

IP2IE1,IE0 IP0 IP1 IP3 IP4 IP5 IP6 IP7

INT0 INT1

1

↑

↓

IP

0

INT2 T0H T1 SIO0 SIO1 VMS

VMS

Port 3

Port 3

INT3
base timer

INT3
base timer

T0L

INT2
T0HINT1INT0 T1 SIO0 SIO1T0L

IP2IE1,IE0 IP0 IP1 IP3 IP4 IP5 IP6 IP7
VMD-151

Visual Memory Unit (VMU) Hardware Manual
Note: Because the RC oscillator consumes more battery power, you should normally use the quartz
oscillator for the system clock. Due to individual tolerances in CR circuits, correct audio frequency
output will not be obtained with PWM. For PWM, use the quartz oscillator. The tolerance range of the
RC oscillator is 600 to 1200 kHz. Applications using the oscillator should be designed for a reference
frequency of 879.236 kHz.
VMD-152

 Control Functions
Features and Functions

• Generation of system clock to be used as reference for instructions

• System clock can be selected through software, using either RC oscillator or quartz oscillator.

• Generation of base timer clock

• RC oscillator can be stopped through software.

• Two system clocks are generated: system clock 1 (S1) for circuit block that operates also in HALT mode,
and system clock 2 (S2) for circuit block that stops to operate in HALT mode
To use the system clock, the following Special Function Registers must be operated.
OCR, PCON
VMD-153

Visual Memory Unit (VMU) Hardware Manual
Circuit Configuration

The system clock generator configuration is shown in Fig. below.

Quartz oscillator...����

This quartz oscillator has an oscillation frequency of 32.768 kHz.

RC oscillator...➻

This circuit uses capacitors (C) and resistors (R) to generate a frequency of 879.236 kHz. The tolerance range
is 600 - 1200 kHz.

System clock selector...➥

Bits 4 and 5 of the oscillation control register (OCR) are used to select either the quartz oscillator or the RC
oscillator.

System clock generation circuit...③

This circuit generates system clock 1 and system clock 2 from the source selected by the system clock
selector. System clock 1 (S1) operates while instructions are executed and during HALT mode. System clock
2 (S2) operates while instructions are executed.

Oscillation control register (OCR)... (

Serves for RC oscillator start/stop, system clock source selection, and cycle clock control.

Power control register (PCON)...)

Sets the standby state (HALT mode).
VMD-154

 Control Functions
Figure 2.85 System Clock Generator Block Diagram

Block status during reset and HALT

Table 2.30 Operation Status at Standby

Caution: Immediately after a hardware reset, the RC oscillator is automatically selected for the system clock. The
system BIOS then switches to the quartz oscillator.

Block Condition

Reset HALT

RC oscillator Operates Same as when activated

Quartz oscillator Stops Same as when activated

System clock generator Operates Operates

- - - - - - - 07 - 5 4 - - 1 -

Sy
st

em
 c

lo
ck

 s
el

ec
to

r

HA
LT

 s
ig

na
l

RC
oscillator

OCR(10EH) PCON(107H)

S1
system clock 1 Note 1)

S2
system clock 2 Note 2)

1: Stop operation

Quartz
oscillator

circuit

10

00

XT1

XT2

System clock
generator

Note 1): System clock 1 (S1) is used for circuits that operate during instruction execution and in HALT mode.
Note 2): System clock 2 (S2) is used for circuits that operate during instruction execution but not in HALT mode.
VMD-155

Visual Memory Unit (VMU) Hardware Manual
Related Registers

Oscillation control register (OCR)

OCR7 (bit 7): system clock generation circuit control

This bit controls whether the clock source for the cycle clock is divided by 12 or by 6.

When set to "1", the cycle clock is 1/6 of the clock source.

When set to "0", the cycle clock is 1/12 of the clock source.

For the VMU, the setting should be as follows.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

OCR 10EH R/W OCR7 - OCR5 OCR4 - - OCR1 -

Reset 0 H 0 0 H H 0 0

Bit name Function

OCR7 (bit 7) System clock generator control

0: Cycle time source is oscillator frequency x 1/2

1: Cycle time source is oscillator frequency x 1/6

OCR6 (bit 6)

OCR4 (bit 4)

System clock select

OCR5 OCR4 System clock

0

0

1

1

0

1

0

1

RC oscillator

Prohibited

Quartz oscillator

Prohibited

Reset/HALT cancel: RC oscillator

OCR1 (bit 1) RC oscillator select

0: RC oscillator operation start/continue

1: RC oscillator operation stop

System clock OCR7

RC oscillator OCR7=0/1

Quartz oscillator OCR7=1
VMD-156

 Control Functions
Caution: To use the quartz oscillator, be sure to set this bit to "1".
When using the RC oscillator, select the 1/12 division ratio (OCR7 = "0") except when writing to
flash memory.

OCR5, OCR4 (bit 5, 4): system clock select

This bit selects the system clock. During a hardware reset, the system clock is automatically set to the
RC oscillator.

OCR1 (bit 1): RC oscillator control

This bit stops/starts the RC oscillator.

When set to "1", the RC oscillator is stopped.

When reset to "0", the RC oscillator operates.

Caution: Note that negative logic is employed here. "0" means start and "1" means stop.

Power control register (PCON)

OCR5 OCR4 System clock

0 0 RC oscillator

0 1 Prohibited

1 0 Quartz oscillator

1 1 Prohibited

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PCON 107H R/W - - - - - - - PCON0

Reset H H H H H H 0 0

Bit name Function

PCON0 (bit 0) HALT mode control

0:

1: Set to HALT mode
VMD-157

Visual Memory Unit (VMU) Hardware Manual
PCON0 (bit 0): HALT mode control

This bit sets the VMU to the sleep state.

When set to "1", the VMU custom chip goes into HALT mode, causing the VMU to enter the sleep state.
Program execution stops at the address where HALT was execute, and the oscillator maintains its current
state. The system clock 2 (S2) stops.

The HALT mode is canceled by an interrupt. When the HALT mode is canceled, this bit will be
automatically reset.

Directly resetting the bit to "0" does not cause a state change.

Note: In HALT mode, the LCD driver, LCD, timer 0, and timer 1 continue to operate. For details, refer to
section on “Sleep Function”.
VMD-158

 Control Functions
System Clock Operation Mode

There are three types of system clock.

RC oscillator

This clock is selected in the cases listed below. The oscillation frequency of the RC oscillator is 879.236 kHz.

Caution: Due to the characteristics of RC oscillators, there is a wide variation in frequency. The tolerance range
for the VMU is 600 to 1200 kHz.

• Hardware reset

• Power-on (battery replacement)

Quartz oscillator

This oscillator allows implementing a slow processing mode with reduced current consumption, for
long-term backup. The oscillation frequency is 32.678 kHz.

When the quartz oscillator is used for the system clock, the RC oscillator can be stopped, using the
oscillation control register (OCR). This allows a further reduction in current consumption.

The VMU custom chip enters the HALT mode as shown in the state transition diagram of Fig. below.
VMD-159

Visual Memory Unit (VMU) Hardware Manual
Figure 2.86 Clock Operation Mode Transition Diagram

RC OSC: RC oscillator SUB: Quartz oscillator frequency

SUB OSC: Quartz oscillator circuit PCON0: power control register bit 0 (HALT
control)

S1: System clock 1 OCR1: Oscillation control register bit 1

S2: System clock 2 OCR4: Oscillation control register bit 4

RC: RC oscillator frequency OCR5: Oscillation control register bit 5

Caution: When switching the system clock to the stopped quartz oscillator, a wait period is required to allow the
oscillator to stabilize. For the quartz oscillator in the VMU (32.678 kHz), this wait period is approx. 200 ms.

Reset

RES=H

RES=L

RC OSC

Interrupt

PCON0= : Operating

MAIN OSC : Operating

SUB OSC : Operating

S1 : RC

S2 : RC

RC OSC : Operating

MAIN OSC : Operating

SUB OSC : Operating

S1 : RC

S2 : Stopped

RC OSC : Stopped

MAIN OSC : Operating

SUB OSC : Operating

S1 : SUB

S2 : SUB

RC OSC : Stopped

MAIN OSC : Stopped

SUB OSC : Operating

S1 : SUB

S2 : SUB

Interrupt

PCON0=RC OSC : Stopped

MAIN OSC : Operating

SUB OSC : Operating

S1 : SUB

S2 : Stopped

Interrupt

PCON0=RC OSC : Stopped

MAIN OSC : Stopped

SUB OSC : Operating

S1 : RC

S2 : Stopped

OCR0=1

OCR4=0

OCR5=1

NORMAL MODEHALT MODE
VMD-160

 Control Functions
Sleep Function
The VMU custom chip provides a HALT mode designed to reduce power consumption during program standby
and to delay battery exhaustion. In this mode, the CPU does not execute instructions. The sleep mode of the VMU
makes use of the HALT mode.
VMD-161

Visual Memory Unit (VMU) Hardware Manual
Related Registers

Power control register (PCON)

For details, refer to the section “Power control register (PCON)” in “System Clock Generation”.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PCON 107H R/W - - - - - - - PCON0

Reset H H H H H H 0 0

Bit name Function

PCON0 (bit 0) HALT mode control

0:

1: Set to HALT mode
VMD-162

 Control Functions
Standby Operation Status

Table 2.31 Block Operation Status in Standby Mode

Note: If the quartz oscillator is selected for the system clock, stop the RC oscillator through
software (OCR1 = 1).

Item HALT mode

Setting method PCON0=1

Oscillation circuits CF oscillator Operation continues

RC oscillator

Quartz oscillator Operation continues

Internal clock S1 Operation continues

S2 Operation stops

CPU Operation stops

I/O ports Hold data from immediately before HALT mode

RAM Hold data from immediately before HALT mode

Base timer Operation continues

Timer 0 Operation continues

Timer 1 Operation continues

Serial transfer Operation continues

Interrupt circuits Operation continues

LCD controller Operation continues

Remote control circuit Operation continues

Watchdog timer Operation continues or stops

Released by Reset

Accepted interrupt request
VMD-163

Visual Memory Unit (VMU) Hardware Manual
HALT Mode

The HALT mode allows stopping program execution while keeping the quartz oscillator and RC oscillator
circuits running.

Power consumption can be reduced through intermittent operation of the system by recurringly setting HALT
mode and having it released in response to an interrupt.

Setting HALT mode

HALT mode is set by setting bit 0 of the power control register (PCON0).

Releasing HALT mode

HALT mode can be released in one of two ways: through a hardware reset or through receiving an interrupt
request.

Releasing HALT mode through hardware reset

When a "Low" level signal is input to the pin, HALT mode is released and the CPU enters the reset state.
Returning the pin to "high" level triggers a normal cold start procedure, with the system program executing
the VMU initialization routine.

Releasing HALT mode through interrupt request

When the master interrupt enable flag (IE7) and interrupt request enable flag are both set and an interrupt
request is generated, the HALT mode is canceled. Subsequently, the processing routine corresponding to
the interrupt is called.

If HALT mode was activated in interrupt processing routine A, and the interrupt requested generated while
in HALT mode has the same or a lower priority level than interrupt A, the interrupt is not accepted and
HALT mode will not be canceled.

Caution: • If the external interrupts INT0 and INT1 are set to the "highest" priority level, the master interrupt
enable flag has no effect.
• Set the interrupt used to cancel HALT mode to a higher priority level than the interrupt in effect when
the system entered the HALT mode.

Table 2.32 HALT Mode Cancel Interrupt Priority Levels

Normal level: No interrupt is present.

Interrupt level in HALT mode Interrupt level for HALT mode cancel

Normal level Low, High, or Highest

Low High or Highest

High Highest

Highest (Cancel by interrupt not possible)
VMD-164

 Control Functions
Hardware Reset Function
The hardware reset function serves for initializing the VMU for example when the batteries are replaced or while
the unit is running.
VMD-165

Visual Memory Unit (VMU) Hardware Manual
External Reset Pin Function

Applying an "L" level signal to the pin for 200 us or more reliably triggers a reset.

Caution: A very narrow "Low" level pulse can also cause a reset.

The configuration of the reset circuit is shown in Fig. below.

Figure 2.87 Reset Circuit Block Diagram

Synchronization
circuit

RES

+

VMD-166

 Control Functions
Hardware Status During a Reset

When a reset is generated through the pin, the entire hardware is initialized according to the reset signal, which is
synchronized with the system clock.

When a reset occurs, the system clock is switched to the RC oscillator. Therefore the hardware is initialized
immediately after power-on.

During reset, the program counter (PC) is set to 0000H. The special function registers (SFR) are set to the initial
values listed in the Table below.

The contents of RAM, work RAM, stack pointer, and XRAM are maintained.

Caution: The initial values listed below are the values established by the BIOS after a reset.
VMD-167

Visual Memory Unit (VMU) Hardware Manual
Table 2.33 Special Function Register Initial Values

Symbol Address R/W Designation Initial value See
page

RAM
(bank 0)

000H-0FFH R/W Data memory XXXXXXXX
(retained after a reset)

43

RAM
(bank 1)

000H-0FFH R/W Data memory XXXXXXXX
(retained after a reset)

43

ACC 100H R/W Accumulator 00000000 50

PSW 101H R/W Program status word 00H00000 52

B 102H R/W B register 00000000 51

C 103H R/W C register 00000000 51

TRL 104H R/W Table reference register lower byte 00000000 54

TRH 105H R/W Table reference register upper byte 00000000 54

SP 106H R/W Stack pointer XXXXXXXX 53

PCON 107H R/W Power control register HHHHHH00 158

IE 108H R/W Master interrupt enable control register 0HHHHH00 138

IP 109H R/W Interrupt priority control register 00000000 151

EXT 10DH R/W External memory control register HHHH0000 -

OCR 10EH R/W Oscillation control register 0H00HH00 156

T0CNT 110H R/W Timer 0 control register 00000000 67

T0PRR 111H R/W Timer 0 prescaler data 00000000 71

T0L 112H R Timer 0 low 00000000 71

T0LR 113H R/W Timer 0 low reload register 00000000 71

T0H 114H R Timer 0 high 00000000 72

T0HR 115H R/W Timer 0 high reload register 00000000 72

T1CNT 118H R/W Timer 1 control register 00000000 83

T1LC 11AH R/W Timer 1 low compare data 00000000 86

T1L 11BH R Timer 1 low 00000000 85

T1LR W Timer 1 low reload data 00000000 85

T1HC 11CH R/W Timer 1 high compare data 00000000 87

T1H 11DH R Timer 1 high 00000000 86
VMD-168

 Control Functions
T1HR W Timer 1 high reload data 00000000 86

MCR 120H W Mode control register 00000000 127

STAD 122H R/W Start address register 00000000 129

CNR 123H W Character count register H0000000 130

TDR 124H W Time division register HH000000 130

XBNK 125H R/W Bank address register HHHHHH00 130

VCCR 127H W LCD contrast control register 00000000 131

SCON0 130H R/W SIO0 control register 00H00000 108

SBUF0 131H R/W SIO0 buffer 00000000 113

SBR 132H R/W SIO baud rate generator 00000000 113

SCON1 134H R/W SIO1 control register 00000000 111

SBUF1 135H R/W SIO1 buffer 00000000 113

P1 144H R/W Port 1 latch 00000000 58

P1DDR 145H W Port 1 data direction register 00000000 58

P1FCR 146H W Port 1 function control register 10111111 59

P3DDR 14DH W Port 3 data direction register 00000000 62

P3INT 14EH R/W Port 3 interrupt function control register 11111101 62

P7 15CH R Port 7 latch HHHHXXXX 64

I01CR 15DH R/W External interrupt 0, 1 control 00000000 135

I23CR 15EH R/W External interrupt 2, 3 control 00000000 137

ISL 15FH R/W Input signal select 11000000 138

VSEL 163H R/W Control register 11111100 143

VRMAD1 164H R/W System address register 1 00000000 144

VRMAD2 165H R/W System address register 2 HHHHHHH0 144

VTRBF 166H R/W Send/receive buffer XXXXXXXX 144

BTCR 17FH R/W Base timer control 01000001 101

RAM (XRAM)
(Bank 0)

180H-1FBH R/W LCD display memory XXXXXXXX
(retained after a reset)

126

RAM (XRAM)
(Bank 1)

180H-1FBH R/W

RAM (XRAM)
(Bank 2)

180H-185H R/W
VMD-169

Visual Memory Unit (VMU) Hardware Manual
VMD-170

Programs in ROM
The ROM of the VMU contains the following programs. Together, these are called the system BIOS.

Figure 2.88 ROM Memory Map

Reserved area

System program area

ROM

OS program area
4 KB

16 KB

0000H

4000H

E000H

EFFFH

FFFFH

Application

OS program call

Flash memory Bank 0

CHANGE instruction

Header
0000H

01FFH
VMD-171

 Programs in ROM
System Programs
Programs designed for performing VMU file management, clock display, and control functions when connected to
the Dreamcast are called system programs.

These programs are permanently placed in ROM. In addition, the ROM also contains the VMU initialization routine
that is executed when a hardware reset is performed.
VMD-172

 Programs in ROM
OS Programs
OS programs perform basic VMU functions such as reading from and writing to flash memory, getting clock data,
checking for the low-voltage condition, etc.

These programs correspond to the BIOS in a conventional computer. The programs can be called by an application.
Because software interrupts cannot be used, headers defined in the upper region of the flash memory are used to
call the programs.
VMD-173

Visual Memory Unit (VMU) Hardware Manual
Headers
The assembler file GHEAD.ASM supplied with the VMU SDK contains the headers.

By using “include” when compiling an application, the headers are placed in the 0000H - 01FFH range of the flash
memory. The size can be changed by changing GHEAD.ASM.

The header area defines the interface for switching between a game application and the system application, the
interface for calling an OS program from an application, as well as application-specific interrupt vectors.

Caution: It is not possible to obtain the system BIOS version or VMU hardware revision from an application.
VMD-174

Memory Space
The system BIOS uses the following memory areas.

RAM

The system BIOS uses the RAM bank 0 for processing. The range from 080H to 0FFH of RAM bank 0 is used
as stack area.

RAM bank 0 can generally not be accessed by an application, except for reading the internal clock and the
low-voltage auto detect flag.

The stack area (080H to 0FFH of RAM bank 0) can also be accessed by an application, but care must be taken
not to corrupt the stack.

The 256 bytes of RAM bank 1 can be used by an application.

Special function registers (SFR)

The 100H to 17FH range at the top of RAM is designated as special function registers (SFR). This includes
the CPU registers, peripheral device control registers, and other registers.

Work RAM (VTRBF)

When connected to the Dreamcast, the system BIOS uses these 512 bytes as communication buffer. During
standalone operation, the memory is available to the application as RAM. Access is possible only through
SFR in 1-byte units.

XRAM

This is the RAM for the liquid-crystal display. It corresponds to the video RAM in a conventional computer.
XRAM consists of three banks. Banks 0 and 1 can be used by the application to drive the dot-matrix display.
Bank 2 serves for the VMU mode icons and cannot be accessed by the application.
VMD-175

 Memory Space
Figure 2.89 VMU Memory Map

Reserved
area

System
program

area

ROM

OS
program

area

0000H

4000H

E000H

EFFFH

FFFFH

0000H

FFFFH

Work RAM
512 bytes

0000H

01FFH

RAM 256 bytes x 2

XRAM
Bank 0

Upper half

Pointer

Bank 1
Lower half

SFR

Stack area

0000H

01FFH
01BFH

0180H

00FFH

0080H
VMD-176

System BIOS Functions
Applications can call subroutines that are part of OS programs making up the system BIOS. The system BIOS has
the following functions.

System initialization

This is performed when the VMU is reset.

Execution mode selection

This includes game data and application management, editing, application startup and shutdown, time
display and adjustment.

Mode selection is performed with the MODE button and the A button.

Subroutines

Subroutines can be used by applications. The subroutines allow flash memory access and readout of
internal clock data.

1) Flash memory write

2) Flash memory read

3) Flash memory verify

4) Clock count-up timer
VMD-177

 System BIOS Functions
VMD-178

Subroutine Call Procedure
The illustration below shows the operation flow for an application calling a subroutine (part of an OS program),
until the return to the application.

Figure 2.90 Program Call Flow

Flash memory space

(Header, user program)

LABEL MNEMONIC

WORLD EXTERNAL

OTHER SIDE SYSBOL os_call

PUBLIC os_call

jmp main

jmp main

:

:

change os_call

br_hrad_ret

callf os_int

RET Return to main

_head_ret:

os_int:

os-ret:

main:

ROM space

(System program, OS program)

LABEL MNEMONIC

WORLD INTERNAL

OTHER SIDE SYSBOL os_ret

PUBLIC os_call

:

:

callf os_main

change os_ret

ret

(OS main program starts here)

os_call:

os_main

Call flow start

Start
VMD-179

 Subroutine Call Procedure
Processing Contents of Labels
The purpose and function of labels in subroutines are explained below.

Reference: When reading this section, you should also refer to “GHEAD.ASM” supplied with the VMU SDK.

Caution: In the explanation below, labels are referred to using preliminary names.

Application (flash memory)

main

Application main program

os_int

Subroutine for switching to ROM space processing.

In the example, calling this subroutine will cause the program to move to ROM space processing.
When returning from ROM space, the main program resumes.

This subroutine is provided in the header.

os_ret

Subroutine for returning to the flash memory space.

While processing occurs in ROM space, executing a CHANGE instruction with this label as argument
causes a return to the flash memory. After the return, processing jumps to the interrupt return routine
provided in the header.

System BIOS (ROM)

os_CALL

This is a return routine for calling an OS program and returning to flash memory. It calls a subroutine in an
OS program and returns processing to the flash memory space after completion of the subroutine.

os_main

This is the main OS program. It performs processing for the provided subroutines.
VMD-180

 Subroutine Call Procedure
Interaction Between System BIOS and Application
Assuming that an application in the flash memory is running, the processing flow from calling an OS program until
return is described below. Refer also to the sample flow chart.

1) At the point where the running application wants to use an OS program, it calls the os_int subroutine.

2) Interrupt processing routines which need to jump to an OS program must contain the os_int subroutine.

3) The CHANGE instruction in the os_int subroutine jumps to the OS program call routine in ROM
(os_CALL).

4) The OS program call routine calls the subroutine in the OS main program (os_main).
OS program processing begins at this point.

5) When OS program processing ends, the RET instruction jumps to the next address of the CALL
instruction in the OS program call routine. The OS program call routine always must contain a
CHANGE instruction for returning to the flash memory after the OS program CALL instruction.

6) After returning from the OS program subroutine, the CHANGE instruction moves processing to the
flash memory. The application provides a subroutine (os_ret) to be called when returning from ROM.

7) This subroutine is called a header. It is supplied as part of the library provided to developers, and must
be placed at a fixed location in the application.

8) (In the current example, the headers os_int and os_ret are used.)

9) From the above return routine, processing returns to the os_int subroutine and then to the main program
(main) through the RET instruction.

Note: CHANGE instruction
The CHANGE instruction is used to move from the flash memory space to the ROM space and vice
versa. Executing the CHANGE instruction causes processing of a program currently running in ROM
(or flash memory) to change to flash memory (or ROM). The program counter is set to the specified label
(or address).
VMD-181

Visual Memory Unit (VMU) Hardware Manual
VMD-182

Application Shutdown Procedure
When MODE Button is Pressed
If the MODE button is pressed while an application is running, processing must be interrupted and the system
application mode management screen must be restored immediately.

This section explains the procedure for handing over control from the game application to the system application.

Figure 2.91 Mode Select Screen Restore Flow

Flash memory space

(Header, user program)

LABEL MNEMONIC

WORLD EXTERNAL

OTHER SIDE SYSBOL int_ret:

jmp main

change game_end

jmp main

:

:

(User program data store)

_game_end:

main:

ROM space

(System program, OS program)

LABEL MNEMONIC

WORLD INTERNAL

PUBLIC int_ret

:

:

jmp mode_main

ret

(Mode select screen program)

game_end:

mode_main:

¨ Monitor MODE button
status When pressed,
jump to _game_end
VMD-183

 Application Shutdown Procedure When MODE Button is Pressed
Processing Contents of Labels
The purpose and function of labels in subroutines are explained below.

Reference: When reading this section, you should also refer to “GHEAD.ASM” supplied with the VMU SDK.

Caution: In the explanation below, labels are referred to using preliminary names, except for game_end.

Application (flash memory)

main

Application main program

The application must be programmed to jump to the OS program return routine listed below when the
MODE button is pressed.

_game_end

Subroutine for terminating the application and moving processing to the OS program. If data for the
application are to be saved, the code for saving data must be included before jumping to this subroutine.

Caution: The OS program does not save data.

System BIOS (ROM)

game_end

This subroutine serves as a window for returning to the system BIOS after the application ends. The
subroutine starts the mode selection program.

Caution: All applications must be designed to speedily CHANGE to game_end when the MODE button
is pressed.
Any data required for returning to the game at a later point must be saved by the application in flash
memory. This must be performed before the CHANGE to game_end. The restore procedure for saved
data must also be handled by the application.

mode_main

This is the mode selection program.

Reference: For details on mode selection, refer to chapter 19 “VMU Mode Selection” in the appendix.
VMD-184

 Application Shutdown Procedure When MODE Button is Pressed
Interaction Between System BIOS and Application
Assuming that an application in the flash memory is running, the processing flow for returning to the mode
selection screen is described below. Refer also to the sample flow chart.

1. At the point where the MODE button is pressed while the application is running, processing jumps to the
_game_end subroutine.

The CHANGE instruction in the _game_end subroutine hands processing over to the program in ROM. If data for
the application are to be saved, the code for saving data must be included before executing the CHANGE
instruction in the _game_end subroutine.

Caution: Do not use the port 3 interrupt for detecting a MODE button press. If the port 3 interrupt processing
routine contains a _game_end subroutine, the BIOS does not operate normally.

2. When processing jumps from the application to the _game_end subroutine, the CHANGE instruction in the
_game_end subroutine moves processing to the game_end subroutine in the ROM program.

3. After processing has changed from the flash memory to the game_end subroutine, the mode selection program
is started.
VMD-185

Visual Memory Unit (VMU) Hardware Manual
VMD-186

VMU Initialization
The VMU is automatically initialized in the following cases.

1) Unit is connected to Dreamcast, and Dreamcast is turned ON.

2) Reset switch on VMU is pressed.

3) Batteries are inserted.

The initialization routine includes the following steps.

Clear RAM

The entire contents of RAM (banks 0 and 1) are set to 00H. The contents of XRAM are not changed.

A hardware reset is applied to all registers, and then software initialization is carried out. For information
on initial register values after a hardware reset, refer to section “Reset” in the “Hardware” part of
this manual.

Set system clock and cycle time

The system clock is set to the quartz oscillator. The cycle time is set to 1/6 of the system clock.

Set base timer

The 14-bit base timer mode is selected, and the base timer clock is set to the quartz oscillator.

The base timer interrupt is enabled and counting starts.

Set master interrupt

The master interrupt is enabled.
VMD-187

 VMU Initialization
Set LCD driver

The LCD controller is activated, and the LCD clock is set to 1/2 of the clock signal input to the LCD driver.

The display start address is set to 00H in XRAM, and the character count register and time division register
are set.

Then the LCD is set to ON.

Set port 1

All bits of port 1 are set to input. Bit 7 of port 1 is set to audio output.

Caution: After initialization, bit 7 of port is in input mode. Therefore it must be again set to output mode by
the application.

Bits 5 to 0 of port 1 (VMU serial interface) are set to function as synchronous serial interface.

Set port 3

All bits of port 3 are pulled up and set to input mode. Port 3 interrupt source generation is enabled, and
interrupt request is enabled.

Initialize Maple bus interface circuit

The Maple bus interface circuit is initialized.

Set work RAM

The work RAM is set to be available to applications.
VMD-188

Subroutine Reference
This section explains the subroutines contained in the system BIOS.

Flash Memory Access Functions
The following subroutines are provided for flash memory access.

Flash memory page data read

Reads 128 bytes of data from the flash memory space.

Flash memory write

Writes 128 bytes of data to the flash memory space.

Flash memory verify

Verifies data written to the flash memory space.

Caution: When performing flash memory access, the application must switch the system clock to the
RC oscillator.

Do not switch the clock within GHEAD.ASM.
VMD-189

 Subroutine Reference
Subroutine Use Precautions
When accessing the flash memory space, observe the following precautions.

The VMU incorporates three system clock types that can be used to synchronize instruction execution cycles.

In standalone operation, the quartz oscillator is used, but for flash memory write access, the clock must be switched
to the RC oscillator with the 1/6 division ratio setting before calling the flash memory access subroutine. For flash
read or verify access, the RC oscillator with any division ratio setting can be used.

When switching to the RC oscillator, inhibit all interrupts including the base timer.

After the subroutine is completed, enable all interrupts and switch back to the previously used clock. The proper
timing for clock switching is shown below.

System clock oscillator source Frequency Instruction cycle time

RC oscillator 879.236 kHz 6.284 ms

Quartz oscillator 32.768 kHz 183.105 ms
VMD-190

 Subroutine Reference
Figure 2.92 Clock Switching Flow for Flash Memory Access

Flash memory space

Application Header

ROM space

OS program

Switch to RC oscillator

Inhibit all interrupt

Switch to quartz oscillator

OS call routine start

Return from OS program

Subroutine execution start

RC oscillator

Quartz oscillator

OS call routine end

Restore application

Enable interrupt

Call OS call routine

OS program call

Subroutine execution end
VMD-191

Visual Memory Unit (VMU) Hardware Manual
Flash memory routines

fm_prd_ex(ORG 0120H)

Flash memory page data read

Arguments

Flash memory read start upper address: fmadd_h (RAM bank 1 07EH)

Flash memory read start lower address: fmadd_l (RAM bank 1 07FH)

Flash memory read bank address: fmbank (RAM bank 1 07DH)

Return values

Read data (128 bytes): RAM bank 1 080H to 0FFH

Broken registers

When this subroutine is called, the following registers are broken.

ACC, TRL, TRH, r0

Function

Reads one continuous page of data (128 bytes) starting at the specified address in flash memory.

Description

By calling this subroutine, one continuous page of data (128 bytes) can be read from the flash memory. For
using the subroutine, the following settings must be made beforehand.

Caution: This subroutine does not return error information. Make sure that arguments are specified correctly.
Call this subroutine only when STAD is set to 00H. If called while STAD is set to a value other than 00H,
a part of the screen will be rewritten.

RAM bank settings

1) Set RAM bank to “1” (set bit 1 of PSW to “1”)

Note: For information on the PSW register, refer to section 3.8 “Program Status Word (PSW)” in the
“Hardware” part of this manual.

Set flash memory read start address

2) Set upper address (8 bits): fmadd_h (RAM bank 1 07EH)

3) Set lower address (8 bits): fmadd_l (RAM bank 1 07FH)
VMD-192

 Subroutine Reference
Set flash memory read bank

4) Set read flash memory bank to bank 0.

Set RAM bank 1 07DH to 00H.

Caution: If another value than the above is set, normal operation is not assured.

The read data are written to RAM bank 1 080H to 0FFH.

Caution: When making the read settings, observe the following points.
• Data spanning two pages cannot be read. The read start address must be set to the start of a page. The
start address of a page can be determined as follows.
Start address value (2 bytes) = 080H x page number (0 to 511)
Because data are read in units of one page, bits 0 - 6 of the lower address must be set to “0”. If set to an
address different from the start address, normal operation is not assured.
• The read data overwrite the original location in RAM.

Note: About pages
The flash memory space is divided into pages of 128 bytes each. The flash memory is managed using
these page units. Because the size of one bank in the flash memory is 64 KB, a bank contains 512 pages.

The operation when fm_prd_ex executes is shown below.

Figure 2.93 Data Transfer With fm_prd_ex

128 bytes

128 bytes

Flash memory

RAM

* When set to

fmadd_h = A0h

fmadd_l = 80h (page no. 321)

Bank 1

Bank 0

00h
0000h

0A080h

0A100h

0FFFFh

80h

0FFh
VMD-193

Visual Memory Unit (VMU) Hardware Manual
fm_wrt_ex(ORG 0100H)

Flash memory data write

Arguments

Flash memory write start upper address: fmadd_h (RAM bank 1 07EH)

Flash memory write start lower address: fmadd_l (RAM bank 1 07FH)

Flash memory write bank address: fmbank (RAM bank 1 07DH)

Flash memory write data (128 bytes): RAM bank 1 080H to 0FFH

Return values

ACC At normal end, 00H is set in the accumulator. At abnormal end, 0FFH is set in the accumulator.

Broken registers

When this subroutine is called, the following registers are broken.

ACC, B, C, TRL, TRH, r0

Function

Writes one continuous page of data (128 bytes) starting at the specified address in flash memory.

Description

By calling this subroutine, one continuous page of data (128 bytes) can be written to the flash memory. For
using the subroutine, the following settings must be made beforehand.

1) Set bit 1 of PSW to “1”, to select RAM bank 1.

2) Store data to write to flash memory in RAM bank 1 080H - 0FFH.

3) Set 07DH of RAM bank 1 to 00H, to set write flash memory to bank 0.

Caution: Flash memory bank 1 may not be accessed by applications. Do not write any data to this bank.

4) Write flash memory upper address (8 bits) to 07EH of RAM bank 1, and write lower address (8 bits) to
07FH of RAM bank 1.

Caution: When making the write settings, observe the following points.
• Data spanning two pages cannot be written. The write start address must be set to the start of a page.
The start address of a page can be determined as follows.
Start address value (2 bytes) = 080H x page number (0 to 511)
Because data are written in units of one page, bits 0 - 6 of the lower address must be set to “0”. If set to
an address different from the start address, normal operation is not assured.
• Call only when STAD is set to 00H. If called while STAD is set to a value other than 00H, a part of the
screen will be rewritten.
• Switch the system clock to RC oscillator with the 1/6 division ratio setting.
VMD-194

 Subroutine Reference
The operation when fm_wrt_ex executes is shown below.

Figure 2.94 Data Transfer With fm_wrt_ex

fm_vrf_ex(ORG 0110H)

Flash memory page data verify

Arguments

Flash memory verify start upper address: fmadd_h (RAM bank 1 07EH)

Flash memory verify start lower address: fmadd_l (RAM bank 1 07FH)

Flash memory verify bank address: fmbank (RAM bank 1 07DH)

Flash memory verify data (128 bytes): RAM bank 1 080H - 0FFH

Return values

The verify result is set in the accumulator. If there was no mismatch, 00H is set. If there was a mismatch, a
value other than 00H is set.

Broken registers

When this subroutine is called, the following registers are broken.

ACC, TRL, TRH, r0

Function

After writing data to flash memory, this function checks whether the data were written correctly. Use the
function after using fm_wrt_ex to write tot flash memory.

* 	When set to

	 fmadd_h = A0h

	 fmadd_l = 80h (page no. 321)

128 bytes

128 bytes

Flash memory

RAM

Bank 1

Bank 0

00h
0000h

0A080h

0A100h

0FFFFh

80h

0FFh
VMD-195

Visual Memory Unit (VMU) Hardware Manual
Description

This subroutine compares the 128 bytes of data specified when calling fm_wrt_ex to the data actually
written to the flash memory.

Caution: Call this subroutine only when STAD is set to 00H. If called while STAD is set to a value other than 00H,
a part of the screen will be rewritten.

This subroutine may therefore only be called immediately after calling the fm_wrt_ex subroutine.

When calling the subroutine, the same arguments as for the fm_wrt_ex subroutine must be supplied. If different
arguments are supplied, data verify will not yield correct results.

After calling the subroutine, 00H is set in the accumulator if all 128 bytes of data were matched. If there was a
mismatch, a value other than 00H is set.

The operation when fm_vrf_ex executes is shown below.
VMD-196

 Subroutine Reference
Figure 2.95 Execution of fm_vrf_ex

* When set to

fmadd_h = A0

fmadd_l = 80 (page no. 321)

fmabank = 01

Data content comparison

Data are not matchedData are matched

00h

ACC

Set 00h in ACC

Value other than 00h

ACC

Set arbitrary value
other than 00h in ACC

128 bytes

128 bytes

Flash memory

RAM

Bank 1

Bank 0

00h
0000h

0A080h

0A100h

0FFFFh

80h

0FFh
VMD-197

Visual Memory Unit (VMU) Hardware Manual
Clock Function

timer_ex

Clock count-up timer

Arguments

None

Return values

Year : year_h (RAM bank 0 017HÅC18H)

Month : mon_h (RAM bank 0 019H)

Day : day_h (RAM bank 0 01AH)

Hour : hour_h (RAM bank 0 01BH)

Minute : min_h (RAM bank 0 01CH)

Second : sec_h (RAM bank 0 01DH)

The year data use 2 bytes. The upper byte is stored in 17H and the lower byte in 18H. RAM bank 0 017H is assigned
to year_h . When accessing address 018H, the address for year_h + 1 must be accessed.

Caution: The time data obtained by this subroutine are all in hexadecimal format. They must be converted to
decimal format by the application.

The work area comprises a BCD date area, but this area is not updated by timer_ex .

Function

Gets current date and time data and places them in the specified area of RAM bank 0.

Description

This subroutine is a timer/counter using the base timer interrupt.

Caution: The base timer interrupt uses timer_ex . For using the base timer interrupt from the application, call
the user-side handler immediately after the label timer_ex_exit in GHEAD.ASM.
Call this subroutine after generating a base timer interrupt source and jumping to the interrupt vector.
At this time, be sure to reset the base timer interrupt source (BTCR1 = 0).

If the interrupt source is not reset, the clock function will not work properly.
VMD-198

Low Battery Voltage
Auto Detection
An automatic low battery voltage detection function which displays a warning message on the LCD is incorporated
in the system BIOS.

Actions which cause high power consumption such as flash memory data write or data transfer to another VMU
may falsely trigger the warning. Therefore the detection function should be disabled before carrying out
such actions.

Low battery voltage auto detection flag

This flag specifies whether low battery voltage auto detection is performed or not. Applications can
manipulate this flag.

Caution: Be sure to set the low battery voltage auto detection flag to 0FFH (off) before having an application
perform one of the following functions. Otherwise the high current consumption caused by these
functions may falsely trigger the low battery voltage auto detection.
• Communication with other VMU via serial interface
• Writing to flash memory

Address

06EH (RAM bank 0) Low battery voltage auto detection flag

When set to 00H, low battery voltage auto detection is carried out. When set to 0FFH, low battery voltage
auto detection is not carried out.

Caution: Do not set the flag to values other than 00H or 0FFH.
VMD-199

 Low Battery Voltage Auto Detection
Operation

The low battery voltage auto detection function monitors the battery voltage. When it falls below a certain
threshold, the function interrupts the currently running program and displays a warning message for 3
seconds on the LCD.

Description

The low battery voltage auto detection function comprises code for both voltage detection and message
display. When the low battery voltage auto detection flag is set to 00H, these functions are carried out
automatically, regardless of the operation status of the VMU. When the low battery voltage auto detection
flag is set to 0FFH, all functions related to automatic low battery voltage detection are turned off.

Caution: Programs to save data in flash memory when low voltage is detected should monitor the low voltage
detection flag (bit 1 of port 7) rather than using the low voltage interrupt.
If the low voltage interrupt is used, triggering may occur while writing to flash memory or during serial
communication, although the battery voltage is still sufficient.

Note: For information on the low voltage detection flag, refer to section on “Port 7" in the “Hardware”
part of this manual.
VMD-200

List of Defined Variables
The following variables are required for using the OS program BIOS.

Time data variables

Symbol Address (RAM bank) Contents Comment

year 010H (Bank 0) Year (BCD 4 digits) Not updated by timer_ex

mon 012H (Bank 0) Month (BCD 2 digits) Not updated by timer_ex

day 013H (Bank 0) Day (BCD 2 digits) Not updated by timer_ex

hour 014H (Bank 0) Hours (BCD 2 digits) Not updated by timer_ex

min 015H (Bank 0) Minutes (BCD 2 digits) Not updated by timer_ex

sec 016H (Bank 0) Seconds (BCD 2 digits) Not updated by timer_ex

year_h 017H (Bank 0) Year (HEX 4 digits)

mon_h 019H (Bank 0) Month (HEX 2 digits)

day_h 01AH (Bank 0) Day (HEX 2 digits)

hour_h 01BH (Bank 0) Hours (HEX 2 digits)

min_h 01CH (Bank 0) Minutes (HEX 2 digits)

sec_h 01DH (Bank 0) Seconds (HEX 2 digits)

sec_f 01EH (Bank 0) Work area Use prohibited

leaf_f 01FH (Bank 0) Work area Use prohibited
VMD-201

 List of Defined Variables
Caution: The BCD data fields year, mon, day, hour, min, sec are a work area for applications accessing the clock
function. Because timer_ex does not perform BCD conversion, this work area is not updated.

Low battery voltage detection variables

To perform low-battery checking from the application without using auto detect, check bit 1 of port 7.

Flash memory variables

Symbol Address (RAM bank) Content

None 06EH (Bank 0) Low battery auto detect flag

00: Auto detect on

FFH: Auto detect off

Symbol Address (RAM bank) Content

Fmbank

fmadd_h

fmadd_l 07DH (bank 1)

07EH (bank 1)

07FH (bank 1) Specify flash memory bank

Flash memory address (upper 8 bits)

Flash memory address (lower 8 bit)
VMD-202

Sound Output Method
This section describes the VMU sound output method. The sound output uses timer 1.

Timer 1 Outline
This section describes the timer 1 used for VMU sound output. The timer 1 incorporated in the VMU is a 16-bit timer
with the following four functions.

Mode 0: 8 bit reload timer x 2 channels

Mode 1: 8 bit reload timer + 8 bit pulse generator

Mode 2: 16 bit reload timer

Mode 3: Variable bit length pulse generator (9 to 16 bits)

VMU uses mode 1 for producing sound. For information on use of the other modes, refer to section on “Timer 1
(T1)” in the “Hardware” part of this manual.

Timer 1 Block Configuration

The timer 1 used for VMU sound output has the following block configuration.

Timer 1 low (T1L)... ➋

This is an 8 bit reload timer which uses the cycle clock or 1/2 the cycle clock as clock.

At T1L overflow, the T1LR data are reloaded, and sent to T1L if T1LRUN (T1CNT bit 6) is set to “0”.

Timer 1 low comparator (T1LC)... ➧

This comparator consists of the 8 bit timer 1 low comparison data register (T1LC) and an 8 bit data comparison
circuit. It serves to compare the T1L and T1LC data.

Timer 1 high (T1H)...➥

This is an 8 bit reload timer which uses the cycle clock or the T1L overflow as clock.

At T1H overflow, T1HR data are reloaded, regardless of whether T1HRUN (T1CNT bit 7) is reset.
VMD-203

 Sound Output Method
Timer 1 high comparator (T1HC)... ➌

This comparator consists of the 8 bit timer 1 high comparison data register (T1HC) and an 8 bit data
comparison circuit. It serves to compare the T1H and T1HC data.

Timer 1 control register (T1CNT)... ❨

Controls timer 1 mode setting and interrupt control.

Figure 2.96 Timer 1 Block Diagram

Related Registers

To control timer 1, the following registers must be controlled.

For details on the above registers, refer to the “Hardware” part of this manual.

Symbol Address Function

T1L 11BH Timer 1 lower counter register

T1LR 11BH Timer 1 lower reload register

T1LC 11AH Timer 1 lower comparison data register

T1CNT 118H Timer 1 control register

P1 114H Port 1 latch register

P1DDR 145H Port 1 data direction register

P1FCR 146H Port 1 control register

OCR 10EH Oscillation control register

8-bit counter (T1L)

T1LOVF

T1LONG

T1HOVF

T1LOVF

T1CNT(118h)

7 6 5 4 3 2 1 0

8 (T1H)

(T1HR)

(T1HC)

1/2
c

P1FCR

7 6 5 4 3 2 1 0

P1DDR

7 6 5 4 3 2 1 0

1

VMD-204

 Sound Output Method
Mode Setting

This section explains how to set timer 1 to the mode required for sound output (mode 1). The following four
registers are required for the setting.

T1CNT (bit 5: T1LONG)

P1 (bit7: P17)

P1DDR (bit 7: P17DDR)

P1FCR (bit 7: P17FCR)

The register values for each mode are shown below. The available cycle clock setting for each mode is also shown.

Tcyc in the table indicates the clock cycle.

To use the VMU sound output function, be sure to set the system clock to the quartz oscillator. At other settings,
correct sound output may not be obtained.

The cycle clock is as follows.

System clock 32.768 kHz (Tcyc = 183.105 ms)

For information on setting the system clock, refer to the “Hardware” part of this manual.

Caution: Problems when using other system clock settings
If the sound output function is used while the system clock is set to the RC oscillator, the tolerances of
the RC oscillator will adversely affect the sound output. Be sure to use the quartz oscillator.

Mode Clock frequency T1LONG P17FCR P17DDR P17

1 Tcyc 0 1 1 0
VMD-205

Visual Memory Unit (VMU) Hardware Manual
8 Bit Counter Mode
This section explains VMU sound output using the 8 bit counter mode. For information on basic operation, refer to
the “Hardware” part of this manual.

Output Waveform and Parameter Setting

This section describes the waveform of the signal that can be output in 8 bit counter mode and the
available parameters.

Figure 2.97 Output Waveform

255

[T1LC] setting value

8-bit counter value (T1L)

[T1LR] setting value

Audio output signal

Time (t)

Buzzer output

T1LC-T1LR

256-T1LR
VMD-206

 Sound Output Method
8 Bit Counter Mode Setting

This section describes sound output in 8 bit counter mode. To use sound output in 8 bit counter mode, make the
following settings.

1 Output waveform setting

Set the parameters (T1LR, T1LC) to obtain the desired waveform. Use equations (1) and (2) shown below
to determine the waveform.
Audio output signal "Low" level pulse width (decimal) = (T1LC setting value ~ T1LR setting value) x
Tcyc... (1)

Output signal frequency (decimal) = (256 - T1LR setting value) x Tcyc... (2)

Tcyc: cycle clock

For details in output waveform parameter settings, refer to section 15.2.1 “Output Waveform and
Parameter Setting”.

Timer 1 mode setting

Set timer 1 to mode 1. The following four registers are required for mode setting.
T1CNT (bit 5: T1LONG)

P1 (bit 7: P17)

P1DDR (bit 7: P17DDR)

P1FCR (bit 7: P17FCR)

The register values for mode 1 are shown below.

Sound start

Timer 1 (lower 8 bit) starts to count, and sound is output. To control timer 1 count start/stop, make the
following setting.

1) Waveform parameter update

Set T1CNT bit 4 (ELDT1C)to “1”. If this setting is not made, the waveform parameter set with T1LR, T1LC
does not become effective.

If the waveform parameter is changed while T1CNT bit4 is “1”, the new parameter setting becomes
effective immediately.

2) Timer 1 count start

Set T1CNT bit 6 (T1LRUN) to “1”.

Sound stop

To stop sound output in 8 bit counter mode, make the following settings.
Set timer 1 (T1L) count stop flag (T1CNT bit 6) to “0”.
The waveform parameter can be changed also during sound output (while timer 1 operates). To
continuously output a different frequency, change the output waveform parameter without stopping timer
1. T1CNT bit 4 (ELDT1C) should always be “1” in this case.

Mode T1LONG P17FCR P17DDR P17

1 0 1 1 0
VMD-207

Visual Memory Unit (VMU) Hardware Manual
Frequency Characteristics

The frequency characteristics of VMU sound output are shown below.

The T1LR value indicates the setting value for the available frequency range. For details on the correlation between
the value of T1LR and the output frequency, refer to section 15.2.4 “Output Frequency Table”

Figure 2.98 Frequency Response Characteristics

Output Frequency Table

The following table shows the frequencies (theoretical values) available with the 32.768 kHz system clock.

Due to buzzer characteristics, not all frequencies can actually be output. Use the recommended frequencies
indicated in the table.

The sound output signal "Low" level pulse width is set to 1/2 (duty cycle 50%) of the output signal cycle.

e0 e2 e4 e6 e8 ea ec ee f0 f2 f4 f6 f8 fa fc fe

56

58

60

62

64

66

68

70

72

74

VMU frequency response

T1LR

Vo
lu

m
e

(d
B)
VMD-208

 Sound Output Method
Figure 2.99 Waveform Parameters and Output Frequencies

T1LR(hex) T1LC(hex) Frequency (Hz)

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

80

80

81

81

82

82

83

83

84

84

85

85

86

86

87

87

21.346

21.429

21.514

21.599

21.684

21.771

21.858

21.946

22.034

22.123

22.213

22.304

22.395

22.488

22.580

22.674
10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

88

88

89

89

8A

8A

8B

8B

8C

8C

8D

8D

8E

8E

8F

8F

22.769

22.864

22.960

23.057

23.155

23.253

23.352

23.453

23.554

23.656

23.759

23.862

23.967

24.073

24.179

24.287
20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

90

90

91

91

92

92

93

93

94

94

95

95

96

96

97

97

24.395

24.504

24.615

24.726

24.839

24.952

25.066

25.182

25.299

25.416

25.535

25.655

25.776

25.898

26.021

26.146
30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

98

98

99

99

9A

9A

9B

9B

9C

9C

9D

9D

9E

9E

9F

9F

26.272

26.398

26.527

26.656

26.787

26.919

27.052

27.186

27.322

27.460

27.598

27.738

27.880

28.023

28.167

28.313

T1LR(hex) T1LC(hex) Frequency (Hz)

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

94

A0

A1

A1

A2

A2

A3

A3

A4

A4

A5

A5

A6

A6

A7

A7

28.461

28.610

28.760

28.913

29.066

29.222

29.379

29.538

29.698

29.861

30.025

30.191

30.358

30.528

30.699

30.873
50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

A8

A8

A9

A9

AA

AA

AB

AB

AC

AC

AD

AD

AE

AE

AF

AF

31.048

31.226

31.405

31.587

31.770

31.956

32.144

32.334

32.527

32.721

32.919

33.118

33.320

33.524

33.731

33.941
60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

B0

B0

B1

B1

B2

B2

B3

B3

B4

B4

B5

B5

B6

B6

B7

B7

34.153

34.368

34.585

34.806

35.029

35.255

35.484

35.716

35.951

36.189

36.430

36.674

36.922

37.173

37.428

37.686
70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

B8

B8

B9

B9

BA

BA

BB

BB

BC

BC

BD

BD

BE

BE

BF

BF

37.948

38.213

38.482

38.755

39.032

39.313

39.598

39.887

40.180

40.478

40.780

41.086

41.398

41.714

42.034

42.360

T1LR(hex) T1LC(hex) Frequency (Hz)

80

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

A8

C0

C1

C1

C2

C2

C3

C3

C4

C4

C5

C5

C6

C6

C7

C7

42.691

43.027

43.369

43.716

44.068

44.427

44.791

45.161

45.537

45.920

46.309

46.705

47.108

47.517

47.934

48.358
90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

C8

C8

C9

C9

CA

CA

CB

CB

CC

CC

CD

CD

CE

CE

CF

CF

48.790

49.230

49.677

50.133

50.597

51.070

51.552

52.043

52.543

53.053

53.573

54.104

54.645

55.197

55.760

56.335
A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

AC

AD

AE

AF

D0

D0

D1

D1

D2

D2

D3

D3

D4

D4

D5

D5

D6

D6

D7

D7

56.922

57.521

58.133

58.758

59.397

60.049

60.716

61.399

62.096

62.810

63.540

64.288

65.053

65.837

66.640

67.463
B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

D8

D8

D9

D9

DA

DA

DB

DB

DC

DC

DD

DD

DE

DE

DF

DF

68.306

69.171

70.057

70.967

71.901

72.860

73.844

74.856

75.896

76.965

78.064

79.195

80.360

81.559

82.795

84.069

T1LR(hex) T1LC(hex) Frequency (Hz)

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

CD

CE

CF

E0

E0

E1

E1

E2

E2

E3

E3

E4

E4

E5

E5

E6

E6

E7

E7

85.383

86.738

88.137

89.582

91.075

92.618

94.215

95.868

97.580

99.354

101.194

103.103

105.086

107.147

109.290

111.520
D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

DF

E8

E8

E9

E9

EA

EA

EB

EB

EC

EC

ED

ED

EE

EE

EF

EF

113.843

116.266

118.793

121.433

124.193

127.081

130.107

133.280

136.612

140.115

143.802

147.689

151.791

156.128

160.720

165.590
E0

E1

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

F0

F0

F1

F1

F2

F2

F3

F3

F4

F4

F5

F5

F6

F6

F7

F7

170.765

176.274

182.149

188.430

195.160

202.388

210.172

218.579

227.687

237.586

248.385

260.213

273.224

287.604

303.582

321.440
F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

F8

F8

F9

F9

FA

FA

FB

FB

FC

FC

FD

FD

FE

FE

FF

FF

:Recommended settings

341.530

364.299

390.320

420.345

455.373

496.771

546.448

607.165

683.060

780.640

910.747

1092.896

1366.120

1821.494

2732.240

5464.481
VMD-209

Visual Memory Unit (VMU) Hardware Manual
VMD-210

Sample Program
VMD-211

 Sample Program
Figure 2.100 Flow Chart and Program

Start

Audio output

mov #A3h, ocr ; Set system clock to 32 kHz

; Set clock frequency division ratio to 1/6

mov #000h,

mov #080h,

T1LR

T1LC

; T1LR = 0 → 256 - 0 = 256

; T1LC = 128 → 256 - 128 = 128

;	 "L" level pulse width: 128 Tcyc

;	 Audio signal frequency: 256 Tcyc

mov #040h, T1LC ; T1LC = 64 → 256 - 64 = 192

;	 "L" level pulse width: 192 Tcyc

;	 Audio signal frequency: 256 Tcyc

mov #80h,

mov #80h,

clr1 P1,

P1FCR

P1DDR

7

; Set P17 to audio signal output mode

; Set audio output port

mov #0D4h, T1CNT ; Change waveform parameter

; Start count (audio output starts)

mov #000h, T1CNT ; Prohibit waveform parameter update

; End count (audio output ends)

; Set P17 to output

Stop audio output

Initialize timer 1

Set audio output signal

 Set signal frequency
 Set "L" level width

256 x Tcyc

192 x Tcyc

Output
waveform

Output
waveform

256 x Tcyc

128 x Tcyc

Change audio output
signal setting

(Change "L" level width)

Set timer 1

Timer 1 operation start
VMD-212

Variable Bit Length
Pulse Generator
This section provides additional information about the equation shown in “Mode 3: Variable bit length pulse
generator (9 to 16 bits)” of section 4.3 “Timer 1 (T1)” in the “Hardware” part of this manual.

• Large interval P cycle Tp

Tp = 2[BIT] x Ttc

• Total "L" level pulse width <sigma>TL of large interval P

STL = (2[BIT] x T1LC]/256 + [T1HC]) x Ttc

• T1HC, T1LC are decimal.

• [T1HC] is the effective number of bits.

[BIT] is the bit length to be set. The number of small intervals T in the large interval P is determined by the
bit length. It is set by the timer 1 high reload register (T1HR) and timer 1 low reload register (T1LR). Set the
T1LR to 00H. For a 9-bit pulse generator, the setting is [BIT] = 9, large interval P cycle Tp = 29 x Ttc = 512
Ttc. Since the small interval T is 256 Ttc (Ttc: pulse signal clock cycle), T is repeated 2 times in the large
interval P.
VMD-213

 Variable Bit Length Pulse Generator
Table 2.34

(X: 0 or 1) indicates effective bits

[T1LR] specifies the timer 1 low comparison data register (T1LC) value. It sets the "Low" level pulse width common
to all small intervals. If [T1LC] = 3, a "Low" level pulse of 3 Ttc is applied to all small intervals, and the "Low" level
pulse width of the large interval is 6 Ttc (if [T1HC] = 0).

Figure 2.101 "L" Level Width for T1LC = 3

Bit length Small interval T
repeat count

Pulse generator bit
length setting (binary)

"L" level pulse width
setting (binary)

T1HR value T1LR value T1HR value (upper
bits)

T1LR value (lower
bits)

16 256 0000 0000 0000 0000 XXXX XXXX XXXX XXXX

15 238 1000 0000 0000 0000 XXXX XXXX XXXX XXX0

14 64 1100 0000 0000 0000 XXXX XXXX XXXX XX00

13 32 1110 0000 0000 0000 XXXX XXXX XXXX X000

12 16 1111 0000 0000 0000 XXXX XXXX XXXX 0000

11 8 1111 1000 0000 0000 XXXX XXXX XXX0 0000

10 4 1111 1100 0000 0000 XXXX XXXX XX00 0000

9 2 1111 1110 0000 0000 XXXX XXXX X000 0000

Large interval P

"L" level width 3 Ttc

Small interval T 256 Ttc

Small
interval 2561

2

4

8

128

9 bits

10 bits

11 bits

12 bits

16 bits

1

2

4

64

2

4

6

128

1

2

32

4

8

128

2

4

64

4

8

128

1

16

8

128

4

64

8

128

2

32

8

...

4

32

8

128 32 128 64 128

Small
interval 256

Small
interval 256

Small
interval 256

Small
interval 256
VMD-214

 Variable Bit Length Pulse Generator
[T1HC] specifies the effective value of the timer 1 high comparison data register (T1HC), determining the number
of "Low" level pulses to be added in the large interval P.

The position of the small intervals to which "Low" level pulses are added by [T1HC] is shown in the illustration
below. If [T1HC] = 1, a "Low" level pulse of 1 Ttc is added to the intervals marked “1”. If [T1HC] = 6, a "Low" level
pulse of 1 Ttc is added to the intervals marked “2” and “4”.

In the above example, [T2HC] = 0 applies. If [T2HC] = 1, the situation is as follows, with the "Low" level pulse width
in the large interval P being 7 Ttc. For a 9-bit pulse generator, the effective bit is 1.

Figure 2.102 "L" Level Width (7 Ttc) for T1HC = 1

Next, consider the 11-bit pulse generator.

[BIT] = 11, large interval P cycle TP = 211 x Ttc = 2048 Ttc. Since the small interval T is 256 Ttc (Ttc: pulse signal clock
cycle), T is repeated 8 times in the large interval P.

Fig. 17-3 shows the change in output waveform caused by T1HC when T1LC is constant.

For [T1LC] = 10 (0AH), [T1HC] = 0, a "Low" level pulse of 10 Ttc is output for all small intervals.

For [T1HC] = 3, three small intervals with a "Low" level pulse width of 11 Ttc will be generated in the large interval,
as shown by (B). For [T1HC] = 4, four small intervals with a "Low" level pulse width of 11 Ttc will be generated in
the large interval, as shown by (C). For [T1HC] = 5, five small intervals with a "Low" level pulse width of 11 Ttc will
be generated in the large interval, as shown by (D).

Large interval P

"L" level width 4 Ttc "L" level width 3 Ttc

Small interval T 256 Ttc
VMD-215

Visual Memory Unit (VMU) Hardware Manual
Figure 2.103 T1HC Value and 11 Ttc "L" Level Pulse Count

10Ttc 10Ttc

Large interval

Small interval T = 256 Ttc
T1LC = 10
[T1HC] =0
Case (A)

10Ttc 11Ttc 10Ttc 11Ttc 10Ttc 11Ttc 10Ttc 10Ttc

T1LC = 10
[T1HC] =3
Case (B)

11Ttc 10Ttc 11Ttc 10Ttc 11Ttc 10Ttc 11Ttc 10Ttc

T1LC = 10
[T1HC] =4
Case (C)

11Ttc 10Ttc 11Ttc 11Ttc 11Ttc 10Ttc 11Ttc 10Ttc

T1LC = 10
[T1HC] =5
Case (D)
VMD-216

Symbol Table
Caution: The initial values are the values established by the BIOS after a reset.

Symbol Address R/W Designation Default value See page

RAM
(bank 0)

000H-0FFH R/W Data memory XXXXXXXX (stored at reset) 43

RAM
(bank 1)

000H-0FFH R/W Data memory XXXXXXXX (stored at reset) 43

ACC 100H R/W Accumulator 00000000 50

PSW 101H R/W Program status word 00H00000 52

B 102H R/W B register 00000000 51

C 103H R/W C register 00000000 51

TRL 104H R/W Table reference register lower byte 00000000 54

TRH 105H R/W Table reference register upper byte 00000000 54

SP 106H R/W Stack pointer XXXXXXXX 53

PCON 107H R/W Power control register HHHHHH00 158

IE 108H R/W Master interrupt enable control register 0HHHHH00 138

IP 109H R/W Interrupt priority control register 00000000 151

EXT 10DH R/W External memory control register HHHH0000 _

OCR 10EH R/W Oscillation control register 0H00HH00 156

T0CNT 110H R/W Timer 0 control register 00000000 67

T0PRR 111H R/W Timer 0 prescaler data 00000000 71
VMD-217

 Symbol Table
T0L 112H R Timer 0 low 00000000 71

T0LR 113H R/W Timer 0 low reload data 00000000 71

T0H 114H R Timer 0 high 00000000 72

T0HR 115H R/W Timer 0 high reload data 00000000 72

T1CNT 118H R/W Timer 1 control register 00000000 83

T1LC 11AH R/W Timer 1 low comparison data 00000000 86

T1L 11BH R Timer 1 low 00000000 85

T1LR W Timer 1 low reload data 00000000 85

T1HC 11CH R/W Timer 1 high comparison data 00000000 87

T1H 11DH R Timer 1 high 00000000 86

T1HR W Timer 1 high reload data 00000000 86

MCR 120H W Mode control register 00000000 127

STAD 122H R/W Start address register 00000000 129

CNR 123H W Character count register H0000000 130

TDR 124H W Time division register HH000000 130

XBNK 125H R/W Bank address register HHHHHH00 130

VCCR 127H W LCD contrast control register 00000000 131

SCON0 130H R/W SIO0 control register 00H00000 108

SBUF0 131H R/W SIO0 buffer 00000000 113

SBR 132H R/W SIO0 baud rate generator 00000000 113

SCON1 134H R/W SIO1 control register 00000000 111

SBUF1 135H R/W SIO1 buffer 00000000 113

P1 144H R/W Port 1 latch 00000000 58

P1DDR 145H W Port 1 data direction register 00000000 58

P1FCR 146H W Port 1 function control register 10111111 59

P3DDR 14DH W Port 3 data direction register 00000000 62

P3INT 14EH R/W Port 3 interrupt function control register 11111101 62

P7 15CH R Port 7 latch HHHHXXXX 64

I01CR 15DH R/W External interrupt 0, 1 control 00000000 135

I23CR 15EH R/W External interrupt 2, 3 control 00000000 137
VMD-218

 Symbol Table
ISL 15FH R/W Input signal select 11000000 138

VSEL 163H R/W Control register 11111100 143

VRMAD1 164H R/W System address register 1 00000000 144

VRMAD2 165H R/W System address register 2 HHHHHHH0 144

VTRBF 166H R/W Send/receive buffer XXXXXXXX 144

BTCR 17FH R/W Base timer control 01000001 101

RAM
(XRAM)
(Bank 0)

180H-1FBH R/W LCD memory XXXXXXXX (stored at reset) 126

RAM
(XRAM)
(Bank 1)

180H-1FBH R/W

RAM
(XRAM)
(Bank 2)

180H-185H R/W
VMD-219

Visual Memory Unit (VMU) Hardware Manual
VMD-220

VMU Mode Selection
The operation modes available for the VMU and the selection principles are shown in the illustration below.

Figure 2.104 Mode Select Transition Diagram

Mode selection screen

The mode selection screen serves to select and execute one of the three modes of the VMU.

With each push of the MODE button, the mode is switched. During selection, the corresponding LCD icon
flashes. Pressing the A button then executes the selected mode.

Reset or power-on

Time data
adjustment mode

MODE button pushed

A button pushed

Mode selection screen

File mode
select

File mode

Game mode
select

Game mode

Clock mode
select

Clock mode
VMD-221

 VMU Mode Selection
File mode

This mode serves for managing and editing game data and applications stored on the VMU.

While the file mode is active, pressing the MODE button switches to the mode selection screen.

Game mode

This mode serves for running an application transferred to the VMU.

The application must be programmed to restore the mode selection screen when the MODE button
is pressed.

Caution: The return to the mode selection screen from the game mode is not supported by the BIOS. It must be
incorporated in the application.

Clock mode

In this mode, the current date and time are shown.

While the clock mode is active, pressing the MODE button switches to the mode selection screen. Keeping
the A button depressed while pressing a direction key activates the time set mode.
VMD-222

Calculation of Battery Life
Because the VMU incorporates two system clocks with different current consumption, battery life will differ with
different applications. Another important factor that influences battery life is whether a program is designed only
for standalone operation or for use in conjunction with another VMU.

The instruction manual of the VMU therefore contains only the specification “With new lithium batteries, the built-
in clock will operate continuously for about 130 days if only the OS is used.”

This section contains information about how to calculate expected battery life based on the source code of an
application. Developers should use these data to determine expected battery life, and this information should be
conveyed to the user. Since the price of a lithium battery of the type used in the VMU is approximately 280 Japanese
yen (as of November 1998 in Japan), each replacement will cost the user about 560 yen for the two batteries.
Programs should therefore be designed so as to consume as little power as possible.

Methods for Enhancing Battery Life
The VMU incorporates two system clocks, an RC oscillator (879.236 kHz; tolerance range 600 to 1200 kHz), and a
quartz oscillator (32.768 kHz).

The RC oscillator increases processing speed compared to the quartz oscillator, but it also consumes more power.
An important consideration when programming an application is therefore how to use the RC oscillator as little as
possible without impairing playability.

Writing to XRAM or flash memory always requires use of the RC oscillator, which will increase the RC oscillator
load. When two VMU units are connected for serial transfer, the load will also increase. Depending on the circuit
configuration, not only the transfer but also the connection process itself can consume considerable power.

With regard to power consumption, take the following points into account when coding an application.

• Use the RC oscillator as little as possible.

• Avoid frequent writing accesses to flash memory.

• Keep communication sessions short.

• Clearly specify the connect/disconnect timing for communication applications.

• Do not redraw the LCD frequently.
VMD-223

 Calculation of Battery Life
Oscillator Circuit and Current Consumption
The following table shows the current consumption of the two oscillator circuits.

Caution: An RC oscillator inherently is subject to frequency tolerances. The oscillator used in the VMU has a
tolerance range of 600 - 1200 kHz. Consequently, there will also be differences in current consumption.
The battery life calculations in this section assume a frequency of 1000 kHz.
The tolerance of the quartz oscillator is 50 ppm - 30 ppm from the center frequency of 32.768 kHz.

When using the RC oscillator, select a cycle time of 1/12 the system clock, except when writing to the flash memory.

Oscillation Control Register
The oscillation control register (OCR) serves for selecting the oscillator circuit, start/stop control, and setting the
system clock division ratio. By effectively managing these settings, battery life can be extended.

System Clock Division Ratio Setting

The OCR7 bit serves for setting the cycle time to 1/12 or 1/6 of the system clock.

When set to "1", the cycle time is 1/12 of the system clock. For drawing the LCD image, use the RC oscillator with
the 1/12 setting.

When reset to "0", the cycle time is 1/6 of the system clock. At this setting, current consumption is about 1.2 times
higher than at the 1/12 setting. For writing to the flash memory, use the RC oscillator with the 1/6 setting.

Oscillator Circuit Selection

The OCR5 and OCR4 bits serve for selecting the oscillator circuit.

When set to OCR5 = 0, OCR4 = 0, the RC oscillator is used for the system clock.

When set to OCR5 = 1, OCR4 = 0, the quartz oscillator is used for the system clock.

Caution: OCR5 and OCR4 only select the oscillator circuit to be used for the system clock. To reduce power
consumption, it is also necessary to perform start/stop control of the RC oscillator.

When switching the system clock to the stopped oscillator circuit, insert a wait of at least 300 microseconds.

Oscillator circuit Clock frequency Current consumption

RC oscillator 879.236 kHz 2.600 mA

Quartz oscillator 32.768 kHz 0.610 mA

Division ratio Quartz oscillator cycle time RC oscillator cycle time

1/12 (OCR7 = 0) 366.210 ms 12.568 ms

1/6 (OCR7 = 1) 183.105 ms 6.284 ms
VMD-224

 Calculation of Battery Life
Oscillator Circuit Start/Stop

The OCR1 bit serves for starting and stopping the RC oscillator.

When set to "1", the RC oscillator is stopped.

When reset to "0", the RC oscillator starts or continues to operate.

The RC oscillator should be stopped while using the quartz oscillator. When the RC oscillator operates, current
consumption is about 1.1 times higher.

Caution: The quartz oscillator is used by the clock and therefore should not be stopped.

Calculating Battery Life
Use the “Battery Life Calculation Chart” at the end of this section to calculate expected battery life, as follows.

The lithium battery (CR2032) used in the VMU has a capacity of 210 mAh. 82% (174 mAh) of this can be used by
the VMU.

Before performing the calculation, the source code of the application under development must be available. Main
processing parts should be extracted as model programs.

Calculate total number of instruction cycles where quartz oscillator is operating

Enter this value at position A in the chart.

Calculate total number of instruction cycles where RC oscillator is operating

Enter this value at position B in the chart.

Reference: For information on instruction cycles used by the various instructions, refer to the “VMU
Programmer's Guide”.

Calculating Continuous Operating Time

Calculate division ratio

Calculate RC oscillator operation time at 1/12 ratio setting (OCR7 = 0) and 1/6 setting (OCR7 = 1)

Enter these values at positions C and D in the chart.

Calculate total operation time of quartz oscillator

There are two C positions in the chart. Add up the two values, multiply by 30.5 ms, and enter the result at
position E in the chart.

Calculate total operation time of RC oscillator

There are two D positions in the chart. Add up the two values, multiply by 1 ms, and enter the result at
position F in the chart.
VMD-225

Visual Memory Unit (VMU) Hardware Manual
Calculate average current consumption of quartz oscillator

Multiply the value in E by 0.610 mA, and enter the result at position G in the chart.

Calculate average current consumption of RC oscillator

Multiply the value in F by 2.600 mA, and enter the result at position H in the chart.

Calculate combined average current consumption of quartz oscillator and RC oscillator

Calculate (G + H) ∏ (E + F), and enter the result at position I in the chart.

Calculate battery life (hours) from effective battery capacity (190 mA)

174 mAh ∏ I yields battery life J (hours).

Provide a 10% safety margin.

Possible factors influencing the actual battery life are sub-processing cycles, flash memory write access, load
during data transfer, temperature influences, etc.

J x 0.9 = K (battery life in hours, with margin)

This value can be included in product documentation. It should be defined as the expected life of one set of
batteries for continuous operation of the software.

Calculating Battery Life in Days

The following steps show how to calculate expected battery life in days, assuming a certain number of hours of use
every day, and assuming that the unit is in sleep mode (0.060 mA) at other times.

Calculate current consumption during play hours

Calculate I x number of play hours per day L (hours), and enter the result at position M in the chart.

Calculate daily current consumption in sleep mode

Calculate 0.060 mA x (24 hours - L), and enter the result at position N in the chart.

Calculate daily average current consumption

Calculate (M + N) ∏ 24, and enter the result at position O in the chart.

Calculate effective battery life in days

Calculate (174 ∏ 24) ∏ O, and enter the result at position O in the chart.

Provide a 10% safety margin.

P x 0.9 = Q (battery life in days, with margin)

This value can be included in product documentation. It should be defined as the expected life of one set of
batteries when using the software for n hours per day.
VMD-226

 Calculation of Battery Life
Figure 2.105

Select model program that is used frequently during play

Provide source code of model program

Total number of instruction cycles in commands that use the quartz oscillator =

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

A

B

C

C

D

D

E

F

G

H

I

J

K

M

N

O

P

Q

Total number of instruction cycles in commands that use the RC oscillator

Expressing battery life in days

Quartz oscillator active and OCR7 = 0

Quartz oscillator active and OCR7 = 1

RC oscillator active and OCR7 = 0

RC oscillator active and OCR7 = 1

A x 12

A x 6

B x 12

B x 6

C x 30.5 x 10-6

D x 1 x 10-6

E x 0.610

F x 2.600

(G + H) ÷ (E + F)

174 ÷ I

J x 0.9

0.060 x Number of non-play hours per day

(M + N)÷ 24

(174 + 24) ÷ O

P x 0.9

The expected life of one set of batteries when operating

The expected life of one set of batteries
when operating the software continuously is K hours.

I x Number of play hours per day L

the software for hours per day is days.QL
VMD-227

Visual Memory Unit (VMU) Hardware Manual
VMD-228

Serial Communication
Precautions
This chapter describes points to be observed regarding serial communication between two connected VMU units.
Techniques for ensuring proper communication are also explained.

Serial Communication Timing Chart
A timing chart for connecting two VMU units and performing serial communication is shown below.

When data are sent while the receive side is in the receive wait condition, the data will be received correctly.
Otherwise, data overrun may occur, as shown in the next illustration.

When the send wait time is longer than the receive processing time, data transfer will be carried out correctly.
However, the base timer interrupt is generated also during receive processing, and the processing time will be
longer than the actual time required for all receive processing handler steps.

Correct sequence diagram

Send

Receive

Sending
1 byte

Sending
1 byte

Data receive
wait

Data
overrun

Send wait time

Receive processing time

Base timer
interrupt etc

Receive
interrupt

Base timer
interrupt processing
etc.

Data overrun diagram

Send

Receive

Sending
1 byte

Sending
1 byte

Data receive
wait

Data receive wait

Send wait time

Receive interrupt Receive interrupt

Receive processing time
VMD-229

 Serial Communication Precautions
Measures to Ensure Problem-Free Serial Transfer
The following measures for ensuring smooth serial transfer are possible.

1) Mask all interrupts except those needed for serial transfer.

2) Give highest priority to receive interrupt.

3) Make send wait time longer than sum of receive wait time and time required for other processing steps.

Method (1) will result in a slow-down of the built-in clock of the VMU, because the clock uses the base timer
interrupt, and interrupts cannot be counted while masking is active.

If method (2) were adopted, the receive interrupt handler located in the flash memory space would not be called,
because the base timer interrupt handler (clock processing routine) is located in the ROM space.

When a base timer interrupt is generated, the CHANGE instruction causes the CPU to start program fetch from
ROM. When a receive interrupt occurs while the base timer interrupt of the ROM BIOS is being processed, the CPU
references the interrupt table (equivalent address) in the ROM space and jumps to that address. Because the CPU
is carrying out ROM fetch, jumping to the appropriate receive interrupt handler is not possible. Therefore method
(2) is not suitable and cannot be used.

For method (3), the processing time required for all interrupts with higher priority than the receive interrupt is
calculated and added to the receive processing time, and the result is taken as the send wait time. This ensures
correct data transfer but increases the time required for sending.

The decision of whether to adopt method (1) or (3) must be made by the application designer, while taking into
account the advantages and disadvantages of either approach. These are described in more detail below.

Mask All Interrupts

When all interrupts except those needed for serial transfer are masked, the clock which uses the base timer interrupt
will be slowed down. But compared to method (3), method (1) will result in higher transfer speed and simplified
programming logic.

For transfer of only a few bytes, the clock slow-down will be within the tolerance specifications. But for frequent
data transfer or transfer of a larger amount of data, method (3) should be adopted.

The send wait time is calculated as follows.

1) Count the total number of steps required for receive processing.

In addition to the number of steps in the interrupt processing handler, also include the steps immediately before
and immediately after the interrupt.

2) Check the system clock and division ratio used during execution of these steps.

3) Calculate the send wait time from the total number of steps, system clock, and division ratio.

4) Incorporate the wait time calculated in (3) into the NOP or similar for send side processing.
VMD-230

 Serial Communication Precautions
Set Maximum Send Wait Time

Compared to masking all interrupts, this method results in a considerable decrease of transfer speed. When coding
an application using this method, the send wait time calculation and priority assignment must be carried out with
care. The advantage of this method is that there will be no clock slow-down.

For calculating the send wait time, it is assumed that all interrupts with higher priority than the receive interrupt
have been generated. The processing time required for these is added to the receive processing time, and the result
is taken as the send wait time.

Note: Because the port 3 interrupt is a level interrupt, it will be generated continuously for as long as the
user presses a button. If this happens during a transfer, data overrun may occur regardless of how long
the send wait time is set.

For checking the button press status during a serial transfer, inhibit the port 3 interrupt and use timer 0 or other
means for monitoring port 3 latch data.

1) Check whether there is an interrupt with equal priority to the receive interrupt. If there is such an
interrupt, set the interrupt to a higher or lower priority than the receive interrupt.

2) Count the total number of steps required for receive processing. In addition to the number of steps in
the interrupt processing handler, also include the steps immediately before and immediately after
the interrupt.

3) Check the system clock and division ratio used during execution of these steps.

4) Calculate the processing time from the total number of steps, the system clock and division ratio.

5) Pick up interrupts with higher priority than the receive interrupt, except the base timer interrupt.

6) Count the total number of steps for the interrupt handlers of these interrupts.

7) Calculate the processing time for each handler, according to the method of steps (2) to (4).

8) Calculate the base timer interrupt processing time. Because the base timer interrupt handler is processed
within the BIOS, the number of steps can be assumed as shown below. These figures apply only if
GHEAD.ASM was not changed. If GHEAD.ASM was changed, count the actual number of steps.

Shortest case

Second count processing only

5 steps (until CHANGE instruction in GHEAD.ASM)

+ 48 steps (in BIOS)

+ 3 steps (until return to user program in GHEAD.ASM)

Total 56 steps
VMD-231

Visual Memory Unit (VMU) Hardware Manual
Longest case

Year increment processing necessary

5 steps (until CHANGE instruction in GHEAD.ASM)

+ 145 steps (in BIOS)

+ 3 steps (until return to user program in GHEAD.ASM)

Total 153 steps

Caution: Because the longest case shown above will occur only once per year, it is not necessary to always
provide for this number of steps.
The system clock and division ratio are derived from the settings established by the application.

9) Calculate the base timer interrupt processing time from the system clock and division ratio.

10) Add up the receive interrupt handler processing time and the time required for all calculated interrupts.

11) Incorporate the wait time calculated in (10) into the NOP or similar for send side processing.
VMD-232

Visual Memory Unit (VMU)
Programing Manual

Table of Contents
Setup. VMC–1
Executing the Setup Program ..VMC–1
Post-Installation Overview ..VMC–7

Setting Environment Variables . VMC–9
Environment Variables for the Development Tools ..VMC–9

Environment Variable Settings ...VMC–10

Specifying Files for Assembly . VMC–11
Specifying File Names ..VMC–11
Specifying Parameters on the Command Line ...VMC–12
Specifying Parameters at the Prompts ...VMC–13

Option Switches . VMC–15

Environment Variables and Reserved Word File . VMC–17
Environment Variables ...VMC–18
Reserved Word File ...VMC–19

Errors . VMC–21
Warnings ..VMC–22
Non-Fatal Errors ..VMC–25
Fatal Errors ...VMC–31

Listing Format . VMC–35

Specifying Files for Linking . VMC–39

Specifying File Names .. VMC–40
Specifying Parameters on the Command Line ... VMC–41
Specifying Parameters at the Prompts ... VMC–42
Files Referenced During Linking .. VMC–44

Option Switches. VMC–45

Object Alignment . VMC–49

-A option .. VMC–50
-A -F options .. VMC–51
-A -O options ... VMC–52
-A -R options .. VMC–53

Errors . VMC–55

Fatal Errors ... VMC–55
Non-Fatal Errors ... VMC–56

Starting the Program . VMC–57

Specifying File Names .. VMC–57
Specifying Parameters on the Command Line ... VMC–58

Option .. VMC–59
Examples of Command Line Execution .. VMC–59

Operation with the Prompts ... VMC–60
Prompt Line Extension .. VMC–60
Default Responses .. VMC–60

Error Messages . VMC–61

Cross-Reference. VMC–63

Starting the Program . VMC–65

Specifying File Names .. VMC–66
Specifying Parameters .. VMC–67
Option Specification ... VMC–68

Error Messages . VMC–69

Fatal Errors ... VMC–69

Starting the Program . VMC–71

Specifying File Names .. VMC–71
Specifying Parameters .. VMC–72

Error Messages . VMC–73

Fatal Errors .. VMC–73

Overview of MAKE. VMC–75

Running MAKE .. VMC–76
Build Priority Sequence ... VMC–76
Command Line Options .. VMC–76

Makefile Syntax ... VMC–78
Generation Rules .. VMC–78
Macros .. VMC–80
Directives ... VMC–81

Implicit Rules .. VMC–82
Makerule file ... VMC–82

Assembler Syntax . VMC–85

Statements .. VMC–85
Label and Symbol Names .. VMC–86
Comments .. VMC–86
Operators ... VMC–86
Numeric Constants ... VMC–87
Character Constants ... VMC–88
Character String Constants ... VMC–89
Special Symbols ... VMC–89

Assembler Pseudoinstructions . VMC–91

LC86K Instruction Summary . VMC–147

Instruction Summary ... VMC–147
Arithmetic Instructions ... VMC–147
Logical Instructions .. VMC–148
Data Transfer Instructions .. VMC–148
Jump Instruction ... VMC–148
Conditional Branch Instructions .. VMC–149
Subroutine Instruction ... VMC–149
Bit Manipulation Instructions .. VMC–149
Other Instructions .. VMC–149
Macro Instruction ... VMC–149
Addressing .. VMC–149
Program Memory Addressing ... VMC–150
RAM and Special Function Register (SFR) Addressing ... VMC–152

Instruction Set Reference . VMC–155

Arithmetic Instructions .. VMC–156
Logical Instructions .. VMC–173
Data Transfer Instructions .. VMC–186

Jump Instructions ... VMC–197
Conditional Branch Instructions ... VMC–201
Subroutine Instructions .. VMC–214
Bit Manipulation Instructions ... VMC–219
Miscellaneous Instruction .. VMC–222
Macro Instruction .. VMC–223

LC86K Instruction Set Summary . VMC–225

Assembler Pseudoinstructions . VMC–227

Setup
This installs the Visual Memory tools supplied with the Dreamcast SDK.

Caution: This description assumes Version 1.3J of the Dreamcast SDK.

Executing the Setup Program

1) Insert the Dreamcast SDK CD-ROM into the drive, and using Explorer or another tool, open the
VM_SDK directory.

Caution: There may be last-minute changes which do not appear in the manual. Be sure to check the
README.TXT file.

2) For automatic setup, including environment variables, double-click on VMSETUP2.EXE.

3) When the next dialog box appears, click the Yes button.

4) When the next dialog box appears, wait until the progress indicator reaches 100_. Two dialog boxes
are shown.
VMC-1

 Setup

5) The installer has now started. Click the Next button in the dialog box.

6) When the next dialog box appears, enter your name and your company name. When these are complete,
click Next.

7) When the next dialog box appears, enter the drive and path specification of where you want to install
the Visual Memory SDK. After you have entered this, click Next.
VMC-2

 Setup

To install with a different path specification, click Browse, and enter the drive and path specification.

8) When the next dialog box appears, select the internal components of the Visual Memory SDK to
be installed.
VMC-3

Visual Memory Unit (VMU) Programing Manual

Select Typical to install all SDK components.

Select Compact to install the whole SDK except for sample programs.

Select Custom to select individual components in the next dialog box.

Select Visual Memory SDK to install the assembler, linker, and other tools, and the Memory Card Utility
for application transfer.

Select Visual Memory Simulator to install the Visual Memory simulator.

Select Sample Programs to install the sample programs.

9) Add the program to the start menu. Enter the name, then click Next.
VMC-4

 Setup

Caution: Only the Visual Memory simulator can be added to the Start menu.
Other tools are MS-DOS programs, and cannot be added to the Start menu.

10) Copying of the files now starts. Wait until this finishes.

11) A restart confirmation dialog box appears. Select Yes, I want to restart my computer now and click
Finish to restart the computer immediately.

12) If the following dialog box appears, click Next.
VMC-5

Visual Memory Unit (VMU) Programing Manual

Note: The setup program adds the following to the AUTOEXEC.BAT file.
SET PATH=%PATH%;C:\VM_SDK\LC86K
SET CHIPNAME=LC868700
SET M86KRSVDFILE=c:\VM_SDK\lc86k\m86krsvd.rwd
SET TOOL86=c:\VM_SDK\lc86k
VMC-6

 Setup

Post-Installation Overview
Installing the Visual Memory SDK creates the following directories.

Name Meaning

Utility Contains the utility for transfers PC_Dev. Box_Visual Memory, This program is a Dev. Box executable file. Run it using
CodeScape or similar.

Doc Contains documents relating to Visual Memory.

lc86k Contains the assembler, linker, and other development tools. Also includes header files, libraries, and the GHEAD.ASM file.

Sample Contains sample programs.

VMUSimulator Contains the Visual Memory simulator.
VMC-7

Visual Memory Unit (VMU) Programing Manual
VMC-8

Setting Environment
Variables
Environment Variables for the Development Tools
The following environment variables are used with the L86K series development tools.

PATH

Defines the search path, by adding to the existing PATH definition.

CHIPNAME

This defines the chip name (or series name) on which the software will run.

For developing Visual Memory applications, specify LC868700.

Name Search file

M86K Searches for the reserved word file M86KRSVD.RWD in the directories specified by the PATH variable.

L86K Searches for the reserved word defined symbol file LC86L.LIB in the directories specified by the PATH variable.

CGR86K Searches for the default character generator data file DEFAULT.CGR in the directories specified by the PATH variable.

Name Meaning

M86K Defines the chip name for the assembly. This is ignored if there is a CHIP pseudoinstruction (see Chapter 21, “Assembler
Pseudoinstructions”) in the source program; it is referenced at assemble time if there is no CHIP pseudoinstruction. If the ROM
size of the chip (the last two digits) is set to "00", then no ROM size check is carried out, and the assembly proceeds as though
with 64K installed.

SU86K Defines the chip name for option data creation. The ROM size specification (the last two digits of the chip name) is ignored.

CGR86K Defines the chip name for character generator data file creation. The ROM size specification (the last two digits of the chip
name) is ignored.
VMC-9

 Setting Environment Variables

If the last two digits of the chip name are "00", this does not indicate a specific chip. It is a generic label for
a series, but is given the maximum ROM capacity in the series. Such a chip name can be used in order to
determine the size of an assembled program.

M86KRSVDFILE

Defines the name of the reserved word file.

M86KWORKFILE

Defines the name of the work file.

TOOL86K

Defines the directory holding the assembler, linker, LC86K.LIB, and so on.

Caution: This environment variable must be set.

TMP

Defines the directory for temporary workfiles.

Environment Variable Settings

Use the SET command to set environment variables in MS-DOS. For details of the SET command, refer to the
documentation and help files supplied with MS-DOS.

Example: To set the default chip name to LC868700

C> SET CHIPNAME=LC868700ø

Name Search file

M86K Defines the directory in which the reserved word file is stored, and the file name. If this
environment variable is not defined, the default file name is M86KRSVD.RWD, and the
directories in the PATH specification are searched in sequence for the file
M86KRSVD.RWD.

Name Search file

M86K Specifies the name of the file which will be used as a kind of expansion memory for work
space when the working memory dynamically allocated during the assembly process of the
M86K compiler will not fit into main memory, and EMS memory is not installed, or is not
available. It is possible to specify a drive and path name.

Name Search file

M86K When M86K needs to create a work file (see "M86KWORKFILE"), if the environment
variable M86KWORKFILE is not defined, then a work file is created in the directory
specified by this environment variable. If this environment variable is not defined, the work
file is created in the current directory. In either case, the file name is fixed, and is always
M86KWORK.TMP.
VMC-10

Specifying Files for Assembly
There are two ways of specifying the parameters when starting M86K.

1) Specifying all parameters on the M86K command line

2) Specifying parameters by responding to the prompts displayed by M86K

To force an exit from M86K, press the following key combinations.

Specifying File Names
When specifying file names to M86K, either in the command line, or in response to the prompts, case is ignored. For
example, the following file names all refer to the same file.

sample.asm

SAmplE.ASM

SAMPLE.asM

If a file name is specified without an extension, M86K supplies the following default extensions.

Computer type Keys

PC/AT compatible Ctrl + C or Ctrl + Pause/Break

NEC PC-9800 series CTRL + C or Ctrl + Stop

File format Default extension

Source file .ASM

Object file .OBJ

Listing file .LST

Cross-reference file .CRF

Error file .ERR
VMC-11

 Specifying Files for Assembly

Specifying Parameters on the Command Line
M86K _options_ _msource_,_mobject_ ,_mlist_ ,_mcross_ ,_merror_↵

options

Specify assembler options as listed in Chapter 4, “Option Switches.” If options are specified they must come
before other parameters.

source

Specify the source file to be assembled. If the file extension is omitted, the default extension .ASM is added.
If a file extension is specified, it takes precedence. In either case, a drive name and full path specification
is possible.

object

Specify the object file name for the assembler output. A drive name and full path specification is possible.
If this file specification is omitted, the object file name is the source file name, with the extension changed
to .OBJ. If the file already exists, it is overwritten.

list

Specify a file name for the assembly listing output. A drive name and full path specification is possible. If
this file specification is omitted, no listing file is created. If the listing file already exists, it is overwritten.

cross

Specify a file name for the assembly symbol cross-reference output. A drive name and full path
specification is possible. If this file specification is omitted, no cross-reference is output. If the
cross-reference file already exists, it is overwritten.

error

Specify a file name for the output of assembly error messages. A drive name and full path specification is
possible. If this file specification is omitted, no error file is created. If the error file already exists, it
is overwritten.

Example

C> M86K MAIN.ASM,MAIN,,TEST.CXX ø

This begins assembly of the MAIN.ASM source file in the current directory. The object file MAIN.OBJ is
created; no listing file is output, but a cross-reference is written to file TEST.CXX,
VMC-12

 Specifying Files for Assembly

Specifying Parameters at the Prompts
Enter the following command to start the assembler without specifying any file names. Then follow the prompts
from the assembler to enter the file names.

prompt M86K [options]ø

SANYO (R) LC86K series Macro Assembler Version X.XX

Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.

Source filename[.ASM]:

Object filename[.OBJ]:

Source listing [NUL.LST]:

Cross reference[NUL.CRF]:

Error messages [NUL.ERR]:

options

Specify assembler options as listed in Chapter 4, “Option Switches.”

Source filename

Specify the source file to be assembled. If the file extension is omitted, the default extension .ASM is added.
If a file extension is specified, it takes precedence. In either case, a drive name and full path specification is
possible. This file name may not be omitted. Pressing the Enter key alone results in a reprompt for the
source file name. To cancel the operation at this point, use the following keys.

Object filename

Specify the object file name for the assembler output. A drive name and full path specification is possible.
If this file specification is omitted (by pressing the Enter key alone), the object file name is the source file
name, with the extension changed to .OBJ. If the file already exists, it is overwritten.

Source listing

Specify a file name for the assembly listing output. A drive name and full path specification is possible. If
this file specification is omitted (by pressing the Enter key alone), no listing file is created. If the listing file
already exists, it is overwritten.

Cross reference

Specify a file name for the assembly symbol cross-reference output. A drive name and full path
specification is possible. If this file specification is omitted (by pressing the Enter key alone), no
cross-reference is output. If the cross-reference file already exists, it is overwritten.

Error messages

Specify a file name for the output of assembly error messages. A drive name and full path specification is
possible. If this file specification is omitted (by pressing the Enter key alone), no error file is created. If the
error file already exists, it is overwritten.

Computer type Keys

PC/AT compatible Ctrl + C or Ctrl + Pause/Break

NEC PC-9800 series Ctrl + C or Ctrl + Stop
VMC-13

Visual Memory Unit (VMU) Programing Manual
VMC-14

Option Switches
This chapter describes the assembler options which can be used to control the operation of M86K itself. All options
are indicated by a prefixed minus sign or slash. The options are not case dependent. Thus, for example, -i, -I, /i, and
/I all mean the same.

-I

Do not distinguish case in identifiers

When this switch is specified, the assembler ignores case in treating user-defined identifiers (labels, macro
names, and symbols). If this switch is not specified, then uppercase and lowercase letters are distinguished.
This applies only to user-defined identifiers, and not to mnemonics, SFR names and so forth.

-D

Do not output debugging information

When this switch is specified, the assembler does not include symbol information and source line numbers
in the object file. If this information is not present in the object file, source line mode debugging is not
possible. If this switch is not specified, symbol information and source line numbers are both included, and
source line mode debugging is possible.

-J

Do not optimize jump instructions

If this switch is specified when assembling a source including pseudoinstructions (JMPO, CALLO, BRO)
which require optimization, the optimization is suppressed. The result is that each of these
pseudoinstructions is interpreted as a three-byte instruction, regardless of the jump destination. If this
switch is not specified when assembling a source including pseudoinstructions which require optimization,
then the optimization is carried out. If the source does not include pseudoinstructions which require
optimization, this switch has no effect.
VMC-15

 Option Switches
-N

Suppress copyright notice

When this switch is specified, the copyright notice displayed when the assembler starts up is suppressed.
This is convenient when starting the assembler from make or another utility, so that error messages are not
obscured by other unnecessary messages.

-R

Specify reserved word file

The character string immediately following this switch until the next space indicates the name of the
reserved word file to the assembler. The following example shows this:

m86k -rm86krsvd.rwd source.asm,,source.lst

In this example the name of the reserved word file name is M86KRSVD.RWD. This specification
takes precedence over a setting of the M86KRSVDFILE environment variable.

-P

Specify working buffer size

The numerical value immediately following this switch is used as the size of the assembler's internal
working buffer. The working buffer is a memory area used by the assembler for increasing the speed of
macro registration and expansion, and is reserved in main memory when the assembler is started. The
default size is 4096 bytes, and this is normally sufficient for most source programs. If the assembler runs
out of working buffer, however, the following error message is issued.

no more PARAMETER buffer (123) 45

The assembler issues this message, then abandons processing (the two digits at the end of the message are
an internal value, and may change). If this message should appear, use this switch to specify a large buffer
size, and repeat the assembly. For example, use the following specification:

m86k -p8192 source.asm

In this case, the working buffer size is set to 8192 bytes. The value must be in decimal, and immediately
follow the switch letter 'p'. If the switch letter only is specified, or the numeric value cannot be found, the
buffer size reverts to the default 4096 bytes.

-?

Show options

If this switch is specified, the assembler displays the following list of options, then immediately terminates.
Note that any other option specifications are ignored.

Usage: m86k [option] source,[object],[list],[xref]

option:

/D do not make local symbol table and source line

attributes in object file

/I ignore case for user defined symbol

/J do not try to optimize

/N skip displaying copyright message

/Psize parameter buffer size in decimal

/Rfile read ̀ file' as reserved word file
VMC-16

Environment Variables and
Reserved Word File
VMC-17

 Environment Variables and Reserved Word File
Environment Variables
In MS-DOS, to set environment variables use the SET command. For details of the SET command, refer to your
MS-DOS documentation and help files.

Example: set the default chip name to LC868700.

C> SET CHIPNAME=LC868700ø

M86K refers to the following environment variables as required.

PATH

This is used as the search path for the reserved word file. For details of the reserved word file and the search
algorithm used to find it, see Section , ”Reserved Word File,”.

CHIPNAME

This defined the chip for which assembly will be carried out. It is ignored if the CHIP pseudoinstruction appears in
the source program. However, if the chip name in the CHIP pseudoinstruction is different from the environment
variable chip name, a warning message is issued. This value is thus used if the CHIP pseudoinstruction does not
appear in the source program.

M86KRSVDFILE

This defines the directory in which the reserved word file is stored, and the file name. Note that there is no default
extension for the file name defined by this environment variable. Specify the drive name and path as required, but
always specify the file name and extension.

M86KWORKFILE

Specifies the name of the file which will be used as a kind of expansion memory for work space when the working
memory dynamically allocated during the assembly process of the M86K assembler will not fit into main memory,
and EMS memory is not installed, or is not available. It is possible to specify a drive and path name.

TMP

When M86K needs to create a work file (see "M86KWORKFILE"), if the environment variable M86KWORKFILE is
not defined, then a work file is created in the directory specified by this environment variable. If this environment
variable is not defined, the work file is created in the current directory. In either case, the file name is fixed, and is
always M86KWORK.TMP.
VMC-18

 Environment Variables and Reserved Word File
Reserved Word File
The reserved word file is always read when M86K starts up, and includes various information specific to the chip
for which the program will be assembled (RAM/ROM size, SFR mnemonics, etc.). M86K will not operate correctly
without the reserved word file. When M86K starts, it searches for the reserved word file in the following sequence.

1) When a file name is explicitly specified by assembler option-R, that file is loaded. If the file is not present
or reads are inhibited, an error occurs.

2) If the environment variable M86KRSVDFILE is defined, the file specified in that variable is loaded. If the
file is not present or a read-only file, an error occurs.

3) If reads are enabled and the file M86KRSVD.RWD is present in the directory containing M86K.EXE, that
file is loaded.

4) If reads are enabled and the file M86KRSVD.RWD is present in the current directory, that file is loaded.

5) Directories specified by the environment variable PATH are accessed in succession a the first readable
nd M86KRSVD.RWD file encountered is read.

If the reserved word file is not found after doing all of the above checks in succession, an error occurs and M86K
operation stops. Ordinarily, reserved word files are stored in the same directory as M86K.EXE. This file's contents
are vital for normal M86K operation, and Sega will not accept any responsibility for problems with M86K operation
if they are deleted or altered. For this reason, it is strongly recommended that this file be write-protected.
VMC-19

Visual Memory Unit (VMU) Programing Manual
VMC-20

Errors
Errors detected by M86K fall into three categories: fatal errors, (non-fatal) errors, and warnings. When a fatal error
is detected, M86K immediately abandons execution. This level includes problems such as the working buffer being
exhausted. When a non-fatal error is detected, the assembler continues to the end of the current pass (pass 1 or pass
2), then aborts. This level includes syntax errors in the source program. Warnings are issued for problems that do
not warrant "error" classification, such as operands with values outside the permitted range; in this case M86K
continues execution.

When a fatal error is detected, all output files which M86K is creating are not produced. When a non-fatal error
occurs in pass 1, the files are not produced, but if a non-fatal error occurs in pass 2 the listing file only is output
(when specified). The following is the format for showing errors.

filename(linenumber): source line

error message

Example

sample.asm(54): LD xyz

xyz: undefine symbol

The symbol xyz is undefined.
VMC-21

 Errors
Warnings
The following are the warning messages which can be detected by M86K. In the list below, question marks indicate
portions which may vary.

???: bit number exceeds limits

In a bit manipulation instruction, the number of bits exceeds the permitted range.

absolute expression expected

The expression must be able to be evaluated at assemble time.

address beyond zero

The value specified for the operand of an ORG instruction is negative.

address exceeds limits

The value specified for the operand of an ORG instruction exceeds the specified ROM capacity.

address exceeds ROM size

An address in assembled instruction exceeds the ROM capacity.

chip name is different from one specified by CHIPNAME (???).

The operand of a CHIP instruction is different from the current environment variable setting.

END in included file

An END pseudoinstruction was encountered in a source file specified by an INCLUDE pseudoinstruction.

ENDF without FUNCTION

ENDF was encountered while not in a function definition.

ENDM without MACRO

ENDM was encountered while not in a macro definition.

EXITM outside MACRO

EXITM was encountered while not in a macro definition.

function code buffer overflow

A function definition is too large, and will not fit in the buffer.
VMC-22

 Errors
illegal combination of attributes: ???

The two sides of an arithmetic operator have incompatible attributes (bank or segment values).

illegal style expression

The operand expression of a SET or EQU is illegal.

JMP/CALL placed at the end of memory block (FREE)

A JMP or CALL instruction was encountered at an address with the bottom 12 bits equal to 0FFEH or
0FFFH. Since the segment alignment mode is "FREE" there may be no problem with the result of linking,
but when the segment is aligned from the beginning of a memory boundary, the linker will give errors.

Jump address is out of range (FREE)

The destination address of a jump is outside a memory boundary. Since the segment alignment mode is
"FREE" there may be no problem with the result of linking, but when the segment is aligned from the
beginning of a memory boundary, the linker will give errors.

LOCAL outside MACRO

LOCAL was encountered while not in a macro definition.

macro name in expression

A symbol defined as a macro was encountered in an expression.

macro name required

The macro name is missing from a macro definition.

no character in string

Character was not found in a string constant.

page width must be 72 ~ 132: ???

The operand of a WIDTH instruction must be in the range 72 to 132.

public ??? not defined

A symbol declared as public is not defined.

SET conflicts with PUBLIC

An attempt has been made to reset a symbol declared as public with a SET.
VMC-23

Visual Memory Unit (VMU) Programing Manual
symbol name required

There is no symbol as the operand of a PUBLIC, EXTERN, or OTHER_SIDE_SYMBOL declaration.

undefined symbol in expression

An undefined symbol occurs in an expression (only detected on pass 2).

value is out of range

A value is outside the permitted range (the range depends on the operand).

zero divide: ??? modulo 0

The right-hand operand of a MOD operator is zero.

zero divide: ??? / 0

The right-hand operand of a division operator is zero.
VMC-24

 Errors
Non-Fatal Errors
The following are the non-fatal error messages which can be detected by M86K. In the list below, question marks
indicate portions which may vary.

???: 2, 8, 10 or 16 required

The operand of a RADIX pseudoinstruction must be 2, 8, 10, or 16.

???: constant required

A numeric constant is missing.

???: duplicated label

A duplicate label occurred.

???: duplicated symbol

A duplicate symbol occurred.

???: illegal character in numeric constant

A numeric constant includes an illegal character.

???: no such chip in the table

A symbol specified in a CHIP instruction cannot be found in the reserved word file.

???: open error

An error occurred when opening a file.

???: undefined symbol

An undefined symbol has been referenced.

???: radix violation

A character in a numeric constant is improper for the base being used.

???H, ???: out of internal RAM area

The address allocation in a data segment is outside the permitted range.

' not seen

The closing single quote of a character constant is missing.
VMC-25

Visual Memory Unit (VMU) Programing Manual
':' not seen

In the explicit segment format of an EXTERN operand, the colon separating the segment and symbol is
missing.

0x???: RAM address exceeds limits

The address allocation of a data segment is outside the permitted range.

address duplicated

There is a RAM address conflict specified by a DS pseudoinstruction.

address exceeds absolute limits

The address of an assembled instruction exceeds 65535.

bank number should be 0~15

The bank number must be in the range 0 to 15.

Branch address beyond zero

The destination address of a branch is below zero (the start address of the current code segment).

Branch address exceeds limits

The destination address of a branch exceeds the ROM capacity.

CSEG conflicts with WORLD EXTERNAL_DATA

It is not possible to have WORLD EXTERNAL_DATA and a pseudoinstruction specifying a segment in the
same source file.

CSEG isn't allowed in macro

It is not possible to have a pseudoinstruction specifying a segment in a macro definition.

DS must be in DSEG

A DS pseudoinstruction can only appear in a data segment.

DSEG conflicts with WORLD EXTERNAL_DATA

It is not possible to have WORLD EXTERNAL_DATA and a pseudoinstruction specifying a segment in the
same source file.

DSEG isn't allowed in macro

It is not possible to have a pseudoinstruction specifying a segment in a macro definition.
VMC-26

 Errors
ELSE without IFxxx

The conditional assembly IFxxx pseudoinstruction corresponding to an ELSE is missing.

ENDF not seen

The ENDF pseudoinstruction ending a function definition is missing.

ENDIF without IFxxx

The conditional assembly IFxxx pseudoinstruction corresponding to an ENDIF is missing.

ENDM not seen

The ENDM pseudoinstruction ending a macro definition is missing.

external symbol can't be public

An external symbol has been declared as public_B

Hardware configuration violation

An instruction (such as CHANGE) corresponds to a function not implemented on the specified chip.

identifier expected

Something other than an identifier was encountered in a macro definition formal parameter list or
EXTERN operand.

illegal character in ??? constant

A numerical constant includes a character illegal for the specified base.

illegal character in binary constant

A numerical constant includes a character illegal for the specified base.

illegal symbol type

A symbol type is improper for a PUBLIC declaration.

illegal word in external list

A syntax error occurred in an EXTERN operand.

instructions can't be in DSEG

Instructions other than DS cannot be included in a data segment.
VMC-27

Visual Memory Unit (VMU) Programing Manual
JMP/CALL placed at the end of memory block (INBLOCK)

A JMP or CALL instruction was encountered at an address with the bottom 12 bits equal to 0FFEH or
0FFFH. Since the segment alignment mode is "INBLOCK" the linker will give errors.

Jump address beyond zero

The destination address of a jump is below zero (the start address of the current code segment).

Jump address exceeds limits

The destination address of a jump exceeds the ROM capacity.

Jump address is out of range (INBLOCK)

The destination address of a jump is outside a memory boundary. Since the segment alignment mode is
"INBLOCK", the linker will give errors.

local symbol can't be public

A local symbol has been given a public declaration.

lost SET symbol

a symbol defined in a SET pseudoinstruction could not be found in pass 2. This may be an assembler
internal error.

macro can't be public

A macro has been given a public declaration.

maximum nesting of macro is 10

Macros cannot be nested more than 10 deep.

Multiple WORLD specified

More than one WORLD pseudoinstruction appears in the same source file.

name required for macro

The name is missing from a macro definition.

no room for source line attribute object

There is insufficient memory to store source line information (for debugging).

no value for EXT

Even though a CHANGE instruction is used, a register EXT for an SFR is missing.
VMC-28

 Errors
not the symbol defined by SET

An attempt was made to reset a value using SET, even though the symbol was not defined with SET.

operand exceeds limits

The repeat count in an REPT macro pseudoinstruction is not in the range 1 to 65535.

ORG isn't allowed in macro

The ORG pseudoinstruction may not appear in a macro.

other-side symbol isn't allowed

A symbol declared with OTHER_SIDE_SYMBOL cannot be specified here.

other-side symbol isn't allowed here

A symbol declared with OTHER_SIDE_SYMBOL cannot be specified here.

other-side symbol or absolute constant is required

A symbol declared with OTHER_SIDE_SYMBOL or constant is required.

positive value required

A negative value cannot be used.

public ??? not defined

A symbol declared as PUBLIC is not defined. This error is at the warning level when a PUBLIC symbol is
neither given a value nor referenced, and at the (non-fatal) error level when the symbol is not given a value
but is referenced.

string is too long

The length of a character string constant exceeds the limit (255 characters).

symbol name required

There is no symbol on the left-hand side of a SET or EQU.

symbol not defined

In pass 2, a symbol specified as a PUBLIC, EXTERN, or OTHER_SIDE_SYMBOL operand is missing. This
may be an assembler internal error.

syntax error

A syntax error was detected.
VMC-29

Visual Memory Unit (VMU) Programing Manual
syntax error near ???

A syntax error was detected near ???.

too complexed expression for an operand

An expression for an operand is too complex to be parsed.

too many CHIP pseudo operation

There is more than one CHIP pseudoinstruction in a single source file.

too nested if-statements

The nesting level of conditional assembly pseudoinstructions exceeds 10.

unbalanced conditional assembling controllers

The source file ended while skipping in a conditional assembly.

unbalanced IF statement

The source file ended while skipping in a conditional assembly.

unexpected end of file in string

The source file ended while reading a character string constant.

unexpected end of line in string

A line end was encountered while reading a character string constant.

unexpected EOF in conditional assembling

The source file ended while skipping in a conditional assembly.

unexpected terminator ??? in conditional assembling

The parser produced a fault while skipping in a conditional assembly. This may be an assembler
internal error.

unmatched ELSE in skipping

The source file ended while skipping in a conditional assembly.

unmatched ENDIF

The source file ended while skipping in a conditional assembly.

WORLD conflicts xSEG

It is not possible to have WORLD EXTERNAL_DATA and a pseudoinstruction specifying a segment in the
same source file.
VMC-30

 Errors
Fatal Errors
The following are the fatal error messages which can be detected by M86K. In the list below, question marks indicate
portions which may vary.

???(???): chip name not seen

???(???): chip name not seen.

???(???): decimal value required

???(???): hex-value and reserved-word are required

???(???): no chip name list

???(???): no reserved word seen

???(???): ROM size not seen

???(???): too many chip names

???(???): ???: unknown chip name

???(???): ???: unknown flag

There is a syntax error in the reserved word file.

???: illegal file name

The specified file name contains an illegal character.

???: no such chip in the table

The chip name specified by the environment variable CHIPNAME was not found in the reserved word file.

???: no such user

The user name specified by ~user is missing.

???: open error

An attempt to open the specified file failed.

???: unknown flag

An unknown assembler option was specified.
VMC-31

Visual Memory Unit (VMU) Programing Manual
???: unreadable

The specified file cannot be read.

EMM v3.2 or later is required (v???.??? found)

The EMS driver version is too old to support the application. Version 3.2 or later is required.

EMS allocation (??? pages) was failed

An attempt to allocate EMS memory failed.

EMS deallocation was failed

An error was detected when deallocating EMS memory.

flushing error in workfile

An error was detected when flushing a workfile (no disk space left, or similar errors).

Getting EMM version was failed

Getting EMS status was failed

Getting free page count on EMS is failed

Getting physical page frame address was failed

An error was detected during the initialization of EMS memory, such as while checking the EMS
driver version.

making temp. name for ??? failed

An error was detected while giving the output file a temporary name.

Neither CHIP pseudo operation nor CHIPNAME environment variable were defined. Further

execution aborted.

Neither the CHIP pseudoinstruction nor the environment variable CHIPNAME specify a chip, so assemble
cannot continue.

no more MAIN memory (???) ???

Although there is a region which must be allocated to main memory, there is no more main memory left.

no more memory (???)

There is no dynamically allocatable memory (main memory, EMS memory, or work file).
VMC-32

 Errors
no more NODE buffer (???) ???

The working space used for parsing expressions is used up.

no more PARAMETER buffer (???) ???

The working space used for macro definitions and calling argument list processing is used up.

no reserved word file available.

An attempt to read in the reserved word file failed.

no room for file: ???

A file cannot be written because the disk is full.

Pxxxx must be less than 65536

The parameter buffer size must be specified to be 65535 or less.

read error in workfile (???)

An error occurred when reading a workfile.

removing ??? failed

After an error was detected, an attempt to delete a partially created file failed.

renaming ??? ==_ ??? failed

An error occurred at the point of attempting to rename a file created with a temporary name with its real
name. This can occur if a file with the new name already exists, and is read-only.

too many file names

Five or more file names are specified on the command.

too many nested include files

The nesting level of include files exceeds 10.

unlinking work file is failed

An error was detected attempting to delete a workfile.

workfile ???: already exist

workfile ???: open error

An error was detected creating a new workfile.
VMC-33

Visual Memory Unit (VMU) Programing Manual
VMC-34

Listing Format
The format of the listing file created by M86K is shown below. This basically reproduces the content of the source
file, with line numbers and machine code on the left. The arrangement of rows and columns is also designed to fit
the page size. That is, a page is 60 lines (including header), and each line consists of 132 character positions (source
lines exceeding this limit are folded), and the left part has fixed character columns. Tab characters in the source are
converted to spaces, to preserve layout.
VMC-35

 Listing Format
Header

This appears at the top of each page, and includes a blank margin, the page number, source file name, and
headings for the columns of the listing.

Page number

The pages are numbered from 1.

page: 1 <sample.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS
 0001 ; a sample for source listing
 0002
 0003 chip LC866032
 0004
 0005 include macros.asm
 1/0001 ; a header file that contains shared macro definitions
 1/0002
 1/0003 clr_reg macro xxx
 1/0004 mov #0, xxx
 1/0005 endm
 0006
 0007 cseg
 0008 0000007B PARAM1 equ 123
 0009
 0010 clr_reg acc
 0010+1 C 0000 230000 mov #0, acc
 0011 C 0003 23407B mov #PARAM1, p0
 0012
 0013 rept 10
 0015 endm
 0015+1 C 0006 00 nop
 0015+2 C 0007 00 nop
 0015+3 C 0008 00 nop
 0015+4 C 0009 00 nop
 0015+5 C 000A 00 nop
 0015+6 C 000B 00 nop
 0015+7 C 000C 00 nop
 0015+8 C 000D 00 nop
 0015+9 C 000E 00 nop
 0015+10 C 000F 00 nop
 0016
 0017 C 0010 73616D mess0: dc "sample message #00ÉHn"
 0017 C 0013 706C65
 0017 C 0016 206D65
 0017 C 0019 737361
 0017 C 001C 676520
 0017 C 001F 233030
 0017 C 0022 0A
 0018
 0019 end

Assembly language statementsSource file namePage number

Line numbers

Symbol value

Include level

Segment identifier

Address

Codes

Expanded line number
VMC-36

 Listing Format
Source file name

This is the name of the source file specified for assembly. If the specification includes a drive name or path,
this is also shown.

Assembly language statements

This shows the text of the source file, macro expansions (when their output is not suppressed), and
include files.

Line numbers

These are line numbers (in decimal) in the source file. When the code section occupies more than one line
in the listing the source file line numbers are repeated.

Include level

This shows the nesting level of include files. Lines from the source file itself have no include depth shown.
Then the contents of an included file are shown as depth 1, and nested includes as 2, and so forth. The slash
separates the include level from the line number.

Symbol value

When a symbol is given a value, if that value is explicit at assemble time it is shown here, as an 8-digit
hexadecimal value. If the value is not known, it is not shown.

Expanded line number

This indicates a line not present in the source file, which has been produced by a macro expansion. The
extra lines are numbered from 1 for each macro expansion.

Segment identifier

This character indicates whether the corresponding line is assembled as CSEG or DSEG code. Uppercase
'C' indicates CSEG INBLOCK, lowercase 'c' indicates CSEG FREE, and D indicates DSEG.

Address

When a line generates CSEG or DSEG code, this shows the address of the first byte as a four-digit
hexadecimal value. This address is an offset from the beginning of the segment.

Codes

When code to be written to ROM is generated by assembling a source line, it is shown here, as two
hexadecimal digits for each byte. A maximum of three bytes are shown on each line, in order of increasing
address. When more than three bytes are assembled, they are shown on subsequent lines with the same
source line number.
VMC-37

Visual Memory Unit (VMU) Programing Manual
VMC-38

Specifying Files for Linking
There are two ways of specifying the parameters when starting L86K.

1) Specifying all parameters on the L86K command line

2) Specifying parameters by responding to the prompts displayed by L86K

To force an exit from L86K, press the following key combinations.

Computer type Keys

PC/AT compatible Ctrl + C or Ctrl + Pause/Break

NEC PC-9800 series CTRL + C or Stop
VMC-39

 Specifying Files for Linking
Specifying File Names
When specifying file names to L86K, either in the command line, or in response to the prompts, case is ignored. For
example, the following three file names all refer to the same file.

sample.obj

SAmplE.OBJ

SAMPLE.OBJ

If a file name is specified without an extension, L86K supplies the following default extensions.

The number nn is that specified by the -B option.

File format Default extension

Object file .OBJ

Executable file .EVA

Library file .LIB

Option file .OPT

Font file .CGR

Flash memory data file .Hnn
VMC-40

 Specifying Files for Linking
Specifying Parameters on the Command Line

L86K_options_objectfiles_,_evafile__,_libraryfile____;_

options

Specify linkage loader options as listed in Chapter, “Option Switches.” If options are specified they must come
before other parameters.

objectfiles

Specify the object files to be linked, the linking start address, and library file names. At least one file name is
required. When specifying multiple files, separate them by space characters. If the file names do not fit into one line,
add a plus sign (+) to the end of the line to indicate a continuation. If the object file extension is omitted, the default
extension .OBJ is added. If a file extension is specified, it takes precedence. In either case, a drive name and full path
specification is possible. If .LIB is specified as the file name extension, the library is linked as well.

evafile

Specify a file name for execution on (downloading to) EVA86K. If no name is specified, the first file name specified
in objectfiles is used, with the file name extension changed to .EVA.

Caution: EVA86K is a device for emulating the LC86K series on the computer.
For Visual Memory, the EVA86K data is converted to HEX format, and run on the Visual
Memory simulator.

libraryfile

Specify a library name. If no library is required, the specification can be omitted.

Caution: If a DUMMY.OBJ file is attached to the Visual Memory SDK, link this file in as well.

Example

C> L86K MAIN SUB0 SUB1,TEST,TEST.LIB ø

This links the object modules MAIN.OBJ, SUB0.OBJ, SUB1.OBJ, MAIN.OPT , and MAIN.CGR. If there
are any symbols remaining undefined after linking MAIN.OBJ""SUB0.OBJ , and SUB1.OBJ, the linker
searches TEST.LIB for these symbols, and links the appropriate modules.
VMC-41

Visual Memory Unit (VMU) Programing Manual
Specifying Parameters at the Prompts
Enter the following command to start the linkage loader without specifying any file names.

L86K_moptions_n

L86K produces the following prompts, one line at a time. Enter the parameters as required.

SANYO (R) LC86K series Linkage Loader Version 4.00

Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.

Object modules.OBJ]:

EVA filenamebasefilename.EVA]:

Libraries.LIB]:

Option filenamebasefilename.OPT]:

Font filenamebasefilename.CGR]:

L86K waits for a response before displaying the next prompt. Section 3.1, “Specifying File Name” describes the
conventions for responding to the prompts.

The responses to the L86K command correspond to the parameters on the L86K command line, except for Option
filename and Font filename. These are described below.

Reference: For details of the L86K command line, see Section, “Specifying Parameters on the Command Line.”

When using the L86K prompts, enter the above four items, then the following two items.

Option filename

Enter the name of the option file for the chip for which the EVA file will be created.

Font filename

Enter the font file name.

If the last character typed on the response line is a plus sign (+), the prompt returns another line, so the input
can be continued. In this case the plus sign must come at the end of a complete file or library name, path
name, or drive name.

Caution: This file specification is not necessary for Visual Memory. This file specification is not necessary for
Visual Memory.

Prompt Command line argument

Object modules objectfiles

EVA filename evafile

Libraries libraryfiles
VMC-42

 Specifying Files for Linking
Default Responses

To select the default response to the current prompt, press the Enter key, without entering a file name. The
next prompt appears.

To select the default response to the current prompt and all of the remaining prompts, enter a semicolon (;)
and press the Enter key. This disables input to the rest of the prompts for this linking session, and saves
time when using the default settings. Since, however, there is no default for the Object modules prompt, it
is not possible to enter a semicolon for this prompt.

The following table shows the defaults for the L86K prompts.

Prompt Default

EVA filename The name of the first file in the response to “Object modules,” with the file extension changed from .OBJ to .EVA.

Libraries No libraries are searched.

Option filename The file name specified in response to the “EVA filename” prompt, with the file extension changed from .EVA to .OPT.

Font filename The file name specified in response to the “Option filename” prompt, with the file extension changed from .OPT to .CGR.
VMC-43

Visual Memory Unit (VMU) Programing Manual
Files Referenced During Linking
L86K always references the following files during linking.

Caution: For Visual Memory, the system BIOS used for reading and writing flash memory is in ROM, and
therefore the following do not necessarily apply.

LC86K.LIB

System information is stored in LC86K.LIB. At linking time, L86K gets system information for the target CPU from
LC86K.LIB, and stores it in the EVA file.

It also references the following option file during linking.

LCnn00.OPT ... nn is a two-digit value corresponding to the device type

LC86K.LIB and LIBnn00.OPT must be present in the same directory as L86K.EXE or in a directory to be found in the
PATH environment variable.
VMC-44

Option Switches
This chapter describes how to use the linkage loader options to control the operation of L86K. The options are all
introduced with the linkage loader option character, which is slash or minus.

-B=bank number

Creating a flash memory HEX file for the LC86800 series

The -B option specifies the bank number for LC86800 series flash memory (WORLD EXTERNAL_DATA). The
bank number is written as a hexadecimal value from 1 to FF. Here the bank number is the data file extension.

Caution: Only bank 0 of flash memory is available to applications in Visual Memory.
Do not specify this option.

Example

C> L86K /B=1 SAMPLE;

In this case the data file created is SAMPLE.H01.

-C=address

Specifying a CSEG loading address

The -C option applies to the immediately following object module, and specifies a code segment loading
address. The address is written in hexadecimal.

If this option is omitted, L86K may load the object module code segment at any address.

-D=address

Specifying a DSEG loading address

The -D option applies to the immediately following object module, and specifies a data segment loading
address. The address is written in hexadecimal.

If this option is omitted, L86K may load the object module data segment at any address.
VMC-45

 Option Switches
-E

Allowing DSEG address overlaps

If the -E option, more than one symbol can be defined in data segments at the same address, without
causing an error.

-I

Do not distinguish case

By default, L86K treats lowercase and uppercase letters as distinct. If the -I option is specified, case is
ignored.

-P

Create a loading map

Specifying the -P option creates a file containing a listing of the linker mappings (the linking state of each
segment, and public symbol locations). This map file has the file name specified on the command line or in
the prompts for the EVA file, with the extension changed to.MAP. If, however, a fatal error prevents linking
from continuing, the map file is not created.

Note: A map file will be necessary when using the reverse assembly function of the Visual Memory
simulator to display address labels.

-L

Create a local symbol listing

The -L option is only valid in combination with the -P option, and adds a listing of local symbols for each
module in the map file.

Note: A map file will be necessary when using the reverse assembly function of the Visual Memory
simulator to display address labels.
VMC-46

 Option Switches
-W

Issue warning messages for operand values

When the -W option is specified, operands of JMP instructions and so forth are checked to be in range (for
a JMP, the low 12 bits of the operand are allowed, and the value must thus be in the range 0 to 4095). If not,
a warning message is issued (only for the number of valid bits stored in the instruction code; overflow bits
are discarded).

-A, -F, -O, -R

Optimizing loading of CSEG FREE blocks

Normally L86K links the code segments in the order in the object modules and following the order of
specification on the command line, and at this point L86K aligns the executable file segment data (code
segments) on 4096-byte boundaries. For this reason, gap may appear between code segments.

To minimize this wasted space, there are four types of optimization of segment block positioning to use
memory more efficiently.

The following are the loading methods.

LC86K series Linkage map list PAGE 1
 Linkage date: Wed Dec 09 13:28:02 1992

sample1.EVA loading map

 sample1 CSEG-I 0000 0004 0004
 sample2 CSEG-F 1 0004 0005 0009
 sample2 CSEG-F 2 0009 0003 000C

public symbol list
 symbol segment address
 ACC DSEG 0:0100 [EQU]
 ADCR DSEG 0:0160 [EQU]
 ADRR DSEG 0:0161 [EQU]

local symbol list
 symbol segment address
** sample1 **
 l1 CSEG 0000

** sample2 **
 l2 CSEG 0004

CSEG-I means segment attribute is INBLOCK; CSEG-F means FREE

Start address of segment block

Segment block size (bytes)Module name

End address of
segment block + 1

Outputs bank number and address for DSEG symbols

Sequence numbers of segment blocks in order within a module,
when there is more than one

Output for each module when there are local symbols

VMC-47

Visual Memory Unit (VMU) Programing Manual
-A option

With the -A option all code segment blocks to be linked are loaded in decreasing order of size. If a segment
block that crosses a 4096-byte boundary has the INBLOCK attribute, it is aligned on a boundary; if it has the
FREE attribute it is not repositioned.

-F option

The -F option is only valid in combination with -A. After code segment blocks with the INBLOCK attribute
are linked in the order specified on the command line, code segment blocks with the FREE attribute are
located in gaps occurring as described above (if there are no regions to locate code segment blocks with the
FREE attribute, they are located from the last address, in decreasing order of size).

-O option

The -O option is only valid in combination with -A. After first linking code segment blocks with the
INBLOCK attribute in decreasing order of size, code segment blocks with the FREE attribute are located in
empty regions (if there are no regions to locate code segment blocks with the FREE attribute, they are
located from the last address, in decreasing order of size).

-R option

The -R option is only valid in combination with -A. After first linking code segment blocks with the
INBLOCK attribute in decreasing order of size, code segment blocks with the FREE attribute are located in
empty regions. At this stage, if two consecutive 4096-byte regions include empty space, the later code
segment block with the INBLOCK attribute is repositioned at the end of the region, and a code segment
with the FREE attribute is located in the empty region (if there are no regions to locate code segment blocks
with the FREE attribute, they are located from the last address, in decreasing order of size).

-S

Specify symbol sorting

If the number of public symbol definitions in the linked object files (including SFR definitions in the file
LC86K.LIB) exceeds 8192, or the number of local symbol definitions in the linked object files exceeds 8192,
then because of the drop in processing speed for symbol sorting, the following messages appear, showing
the progress of the sorting.

Public(Local) symbol table: Sorting. nn / nn blocks

Public(Local) symbol table: Sorting(merge).. nn %

However, if the -S option is specified, in this case symbol sorting is not carried out and linking is abandoned,
with the following error message.
VMC-48

Object Alignment
As described under “Optimizing loading of CSEG FREE blocks” in Chapter 9, “Option Switches” (the -A, -F, -O, and
-R options), when optimization is specified for linking, objects are aligned differently from the normal case. The are
four types of optimization, and the corresponding object alignment for each of the types is described below.
VMC-49

 Object Alignment
-A option
There are two alignment specifications for code segments: CSEG INBLOCK (aligned within a 4096-byte block) and
CSEG FREE (align regardless of 4096-byte boundaries). When the -A option is specified segments are placed in the
best positions in order of decreasing size, taking the INBLOCK and FREE segments together (the INBLOCK
segment are located within 4096-byte blocks, but the FREE segments are aligned freely).

Consider, for example, the following objects:

If the -A option is specified for linking, then the segments with INBLOCK/FREE specifications are located in
decreasing order of size as follows.

L86K -A A B C D;

In this example, the segment straddling a 4096-byte boundary is object D, which has the FREE attribute, thus not
requiring alignment. If object D has the INBLOCK attribute, the following is the result.

in
bl

oc
k

1K bytes

fr
ee

2K bytes

in
bl

oc
k

2.5K bytes
in

bl
oc

k
1.5K bytes

A C DB

in
bl

oc
k

fr
ee

in
bl

oc
k

in
bl

oc
k

4K bytes

C B AD

4K bytes

B

in
bl

oc
k

in
bl

oc
k

C AD

4Kbytes 4Kbytes

in
bl

oc
k

in
bl

oc
k

VMC-50

 Object Alignment
-A -F options
When -A-F is specified, the segments with the INBLOCK attribute are located in their order on the command line,
then segments with the FREE attribute are located in decreasing order of size, in the best available positions.

Consider the following set of objects.

When these are linked with -A-F specified, A, C, and D are located in the command line order (with D aligned to a
4096-byte boundary), then E and B in sequence in the best available positions.

L86K -A-F A B C D E;

fr
ee

1Kbytes

B

in
bl

oc
k

1Kbytes

C

in
bl

oc
k

3Kbytes

D

in
bl

oc
k

1.5Kbytes

A

1.5Kbytes

E

fr
ee

fre
e

B

in
bl

oc
k

C

in
bl

oc
k

D

in
bl

oc
k

A E
fr

ee

4KKbytes 4KKbytes
VMC-51

Visual Memory Unit (VMU) Programing Manual
-A -O options
When -A-O is specified, the segments with the INBLOCK attribute are located in decreasing order of size, then
segments with the FREE attribute are located in decreasing order of size, in the best available positions.

Consider the following set of objects.

When these are linked with -A-O specified, D, A, and C are located in the best available positions in order of
decreasing size, then B is located in the best available position.

1Kbytes

B

in
bl

oc
k

2Kbytes

A

in
bl

oc
k

3Kbytes

D

1.5Kbytes

C

fr
ee

in
bl

oc
k

B
in

bl
oc

k
A

in
bl

oc
k

D C

fr
ee

in
bl

oc
k

4Kbytes 4Kbytes
VMC-52

 Object Alignment
-A -R options
When -A-R is specified, the segments with the INBLOCK attribute are located in decreasing order of size, then if
two consecutive 4096-byte regions include empty space, the segments in the second of the two regions are realigned
to bring the empty space together, and segments with the FREE attribute are inserted in this space. alignment the
later code segment block with the INBLOCK attribute is repositioned at the end of the region, and a code segment
with the FREE attribute is located in the empty region (if there are no regions to locate code segment blocks with
the FREE attribute, they are located from the last address, in decreasing order of size).

Consider the following set of objects.

When these are linked with -A-R specified, after locating D, A, and C, segments A and C are realigned with the end
boundary of their 4096-byte block, to open up a space, in which B can be located.

In all optimization operations, if an object module includes a space created by use of an ORG pseudoinstruction,
this space is made available for optimized segment alignment.

The following is an example of this.

Consider the following set of objects.

in
bl

oc
k

2Kbytes

A

in
bl

oc
k

3Kbytes

D

1.5Kbytes

C

in
bl

oc
k

1.5Kbytes

B

fr
ee

in
bl

oc
k

A

in
bl

oc
k

D C

in
bl

oc
k

B

fr
ee

4Kbytes 4Kbytes

CA

fr
ee

B

in
bl

oc
k

in
bl

oc
k

3Kbytes+1Kbytes

1K space created by ORG

1.5Kbytes 1Kbytes
VMC-53

Visual Memory Unit (VMU) Programing Manual
If these are linked without optimization the following is the result.

When these are linked with optimization, the space created within segment A by the ORG pseudoinstruction is
filled as follows.

If a loading address (-C option) is specified together with the optimization specification, then if the first segment of
the file has a FREE attribute, the loading address specification is followed for this segment only (subsequent FREE
blocks are optimized).

CA B

4Kbytes 4Kbytes

CA B

4Kbytes 4Kbytes
VMC-54

Errors
Fatal Errors
When a fatal error is detected during linking, L86K displays a message, and aborts processing. The following are
the L86K error messages.

Chip name unmatched

An attempt was made to link object modules for different chips.

Data file specified

A data file was specified for EVA file creation.

Data segment size exceeds

An attempt was made to link a DSEG object exceeding the RAM size.

External undefine symbol

An external symbol is undefined.

Illegal bank number specifed

The specified flash memory bank number is incorrect.

Illegal file format

The specified file is not for the LC86K series.

Illegal option specified

An illegal option was specified.
VMC-55

 Errors
Internal module not specified

In linking an internal program file was not specified.

Loading address multiple assignment

More than one object has been allocated to the same address.

No such file or directory

The specified file does not exist.

Program file specified

A program file was specified when creating a flash memory data file (bank 1).

Public symbol multiple define

A public symbol is multiply defined._

Segment size exceeds

An attempt was made to link when exceeding the segment size.

WORLD attribute unmatched

A program file with the WORLD INTERNAL or WORLD EXTERNAL attribute and a data file with the
WORLD EXTERNAL_DATA attribute are combined.

Non-Fatal Errors
If a non-fatal error is detected during linking, a message appears, but linking continues. L86K produces the
following warning messages.

Cannot access file: LC86K.LIB

The library file LC86K.LIB containing the reserved words does not exist. LC86K.LIB contains the reserved
words for each chip, and must be present in the current directory or a directory specified in the PATH
environment variable.

Module not in library

A reserved word for the target chip is not present in the file LC86K.LIB.

Operand data overflow

The value specified in the operand field exceeds the designated range. (Range varies according
to statement.)

Operand data type mismatch

An illegal segment symbol was specified in the operand field.
VMC-56

Starting the Program
There are two ways of starting LIB86K and specifying the parameters.

1) Specifying all parameters on the LIB86K command line

2) Specifying parameters by responding to the prompts displayed by LIB86K

To force an exit from M86K, press the following key combinations.

Specifying File Names
When specifying file names to LIB86K, either in the command line, or in response to the prompts, case is ignored.
For example, the following file names all refer to the same file.

sample.obj

SAmplE.OBJ

SAMPLE.OBJ

If a file name is specified without an extension, LIB86K supplies the following default extensions.

Computer type Keys

PC/AT compatible Ctrl + C or Ctrl + Pause/Break

NEC PC-9800 series CTRL + C or Stop

File format Default extension

Library file .LIB

Object file .OBJ

Listing file None
VMC-57

 Starting the Program
Specifying Parameters on the Command Line

LIB86K_option_ oldlibrary_commands__,_listfile__,_newlibrary____;_

option

The only option which can be specified is /?.

oldlibrary

Specify the library file to be processed. This parameter cannot be omitted. If the library file extension is .LIB,
it can be omitted. However, if the user's library file extension is other than .LIB, it cannot be omitted. There
is no default for the library file, so if this parameter is missing an error message results. If the specified
library file does not exist, the following prompt appears.

Library file does not exist. Create? (y/n)

To create a new library, enter "Y". If any character other than "Y" is entered, the library manager terminates.

Entering an existing library file with just a semicolon carries out a consistency check on the library. This
checks whether all of the modules within the library can be used. If an error is found, an error message is
produced.

commands

The commands parameter includes symbols such as +, -, -+, *, and -*, which are used to control the program
operation. One object file name or module name can be specified for each command, to carry out a number
of operations. If the commands are omitted, no changes are made to the library file.

listfile

In listfile, specify a file for output of a list of the public symbols, external reference symbols, and module
names in the library. If omitted the listing is sent to standard output.

newlibrary

The newlibrary parameter specifies an output library name. If this is omitted, the existing version of the
oldlibrary file has the extension changed to .BAK, and the new library is written to the file oldlibrary.

Command Meaning

+ Add a module. The module in the object file specified following the command is added at the end of oldlibrary.
This command cannot be used to merge libraries.

- Delete a module. The module specified following the command is deleted from oldlibrary.

-+ Replace a module. The module in the object file specified following the command is added at the end of oldlibrary,
and the existing module of the same name is deleted.

* Copy a module. A search is made in oldlibrary for the module specified following the command, and this is written
to an object file of the same name. The copied module is left in oldlibrary.

-* Move a module. A search is made in oldlibrary for the module specified following the command, and this is
written to an object file of the same name, but the module is deleted from oldlibrary.
VMC-58

 Starting the Program
Option

Specify the /? option to display a help message.

Examples of Command Line Execution

Example 1

LIB86K HOME-+ROM;↵

This example deletes the module ROM from the library HOME, and adds the object file ROM.OBJ at the
end of the library.

Example 2

LIB86K HOME-ROM+ROM;↵
LIB86K HOME+ROM-ROM;↵

In the first version, the module ROM is deleted from the library HOME, and then the object file ROM.OBJ
is added at the end of the library. In the second version, the ROM.OBJ object file is added to the library
HOME first, and then the ROM module is deleted. Therefore, in the first version, the ROM module remains
in the library, but in the second version it does not. This is because the command symbols are executed in
the order they are specified.

Example 3

LIB86K HOME,LCROSS.PUB ↵

After carrying out a consistency check on HOME.LIB, a cross-reference listing is written to the file
LCROSS.PUB.

Example 4

LIB86K FIRST -*STUFF*MORE,,SECOND ↵

The module STUFF is extracted from the library FIRST.LIB and written to the file STUFF.OBJ, and then
the module STUFF is deleted from the library. The module MORE is written from the library to the file
MORE.OBJ, but remains in the library. The rewritten library is named SECOND.LIB, and corresponds to
FIRST.LIB , with the STUFF module deleted.
VMC-59

Visual Memory Unit (VMU) Programing Manual
Operation with the Prompts
Enter the following command to start LIB86K without specifying any parameters. Then follow the prompts from
the assembler to enter the parameters.

LIB86K_moption_n ↵

LIB86K displays the following prompts, one at a time.

Library name:

Operations:

List file:

Output library:

After displaying each prompt, LIB86K waits for user input. After user input, it displays the next prompt, and
waits again.

The responses to the prompts correspond to the parameters entered on the command line, as shown in the
following table.

Prompt Line Extension

In response to the Operations prompt, entering an ampersand (&) at the end of the line produces another Operations
prompt, so that the specification can be continued.

Default Responses

Except for the Library name prompt, there are default values, which are used when the response to the prompt is a
semicolon or the Enter key. The following table shows the prompt default values.

Prompt Corresponding command line parameter

Library name Corresponds to the oldlibrary parameter. If the library name is followed by a semicolon, LIB86K
carries out a consistency check.

Operations Corresponds to the commands parameter.

List file Corresponds to the listfile parameter.

Output library Corresponds to the newlibrary parameter.

Prompt Default value

Operations Make no changes to the library file.

List file Select standard output for the listing. No list file is created.

Output library The output library name is the same as the original library name.
VMC-60

Error Messages
This chapter lists error message and their meanings.

cannot access file

LIB86K cannot open the specified file.

cannot create new library

The disk or root directory is full, or the library file already exists and is read-only.

cannot rename old library

The .BAK version is read-only, and LIB86K cannot rename the old library with the .BAK extension.

comma or newline missing

A comma or newline is missing on the command line.

error reading from library

LIB86K cannot read data from the specified library file.

error writing to new library

The disk or root directory is full

insufficient memory

There is insufficient memory for LIB86K to run.
VMC-61

 Error Messages
interrupted by user

LIB86K execution was interrupted by the user.

invalid library header

The input library file is in an invalid format.

module not in library_ ignored

The specified module to be replaced was not found in the library.

output-library specification ignored

In the case of a new library name, an output library was also specified.

syntax error : illegal file specification

A command operator such as a minus sign (-) is not followed by a module name.
VMC-62

Cross-Reference
This chapter describes the cross-reference listing format.

LC86K series Library Analysis List PAGE 1

Tue Feb 18 13:56:12 1992

Number of Module count: 2 Library create date: Wed Oct 16 15:34:53 1991

Library update date: Tue Feb 18 10:55:23 1992

Including Modules: 1 2

Module name: 1 Source name: 1.ASM

Assembler name: SASM 1.0 Assembly date:Tue Oct 22 15:54:43 1991

Target chip name: LC868700

Including Public symbols:

Including External symbols:

Test sample label1

Module name: 2 Source name: 2.ASM

Assembler name: SASM 1.0 Assembly date:Tue Oct 22 15:54:43 1991

Target chip name: LC868700

Including Public symbols:

Including External symbols:

label1 label2 label3
VMC-63

 Cross-Reference
VMC-64

Starting the Program
Using E2H86K to convert an EVA format file into a HEX format file produces files with the extensions .HEX
and .H00.

The file with the extension .HEX is a 64K-byte flash memory file in HEX format. The region not used for the program
is filled with zeros. This file is not normally required.

The file with the extension .H00 is a HEX format file including only the program itself. This file can be read into the
Visual Memory simulator, or converted to a BIN format file with H2BIN.EXE, for reading into a Visual
Memory device.
VMC-65

 Starting the Program
Specifying File Names
When specifying file names to E2H86K, case is ignored. For example, the following three file names all refer to the
same file.

sample.eva

SAmplE.EVA

SAMPLE.EVA

If a file name is specified without an extension, E2H86K supplies the following default extensions.

File format Default extension

EVA file .EVA

HEX file .HEX
VMC-66

 Starting the Program
Specifying Parameters

E2H86K_option_ EVA_filename _HEX_filename_

option

Specify the option as described in Section , ”Option Specification,”.This must immediately follow the
command name.

EVA_filename

Specify the debugged file (with the extension .EVA). This is referred to as the EVA file.

HEX_filename

Specify the name of an Intellec HEX format file. If HEX_filename is omitted, the same file name as the
EVA_filename is used. When a flash memory data file is converted the extension is .H00.

Caution: There is no prompt option.

Example 1

C>E2H86K PROG012

EVA file _____HEX file, _flash memory HEX file

PROG012.EVA___PROG012.HEX, PROG012.H00

Example 2

C>E2H86K ø

This displays the following help message.

SANYO LC86000 Series EVA-file to HEX-file generator V1.00A

Copyright (C) SANYO Electric Co.,Ltd. 1992

Usage: e2h86k options] EVA_filename HEX_filename]

Options: /I ... information on/off (default: on)
VMC-67

Visual Memory Unit (VMU) Programing Manual
Option Specification
The option must be introduced with a slash (/).

Caution: It is not possible to use a minus sign (-).

/I

Suppress information display during conversion

The /I option suppresses the display of information during conversion of the EVA file to the HEX file. If this
option is not specified, the progress of the conversion is indicated.

Example display

SANYO LC86000 Series EVA-file to HEX-file generator V1.00A
Copyright (C) SANYO Electric Co.,Ltd. 1992

EVA file name: A.eva
ROM data packed: FF(hex)
Chip name: LC868016

Module name: A Internal CSEG(In) 0000 - 0063 records: 0007
Module name: B Internal CSEG(In) 0064 - 00DB records: 0008
Module name: C Internal CSEG(In) 00DC - 02DD records: 0033
CGROM data block records: 00256
Option data block records: 00016

EVA file name

Names of programs
linked in above

EVA file Record length of data

Addresses allocated to specified
programs, and record lengths

 Default Data
Device type

Progress of conversion
VMC-68

Error Messages
Fatal Errors
If E2H86K detects a fatal error during operation, it displays one of the messages listed below, and terminates.

Error message: Fatal error : ... message ...

‘efilename' File not close.

The file 'filename' cannot be closed.

‘efilename' File not create.

The file 'filename' cannot be created.

‘efilename' File not open.

The file 'filename' cannot be found.

‘efilename' not EVA file format.

The file 'filename' is not in EVA format.

‘efilename' user disk full.

The disk became full while writing the file 'filename.'

Chipname undefined.

The chip name in the EVA file is not known.

ROM size over. (ROM size: XXXX)

The program size exceeds the ROM size.

Tablename allocation error.

There is insufficient memory to reserve space for tablename.
VMC-69

 Error Messages
VMC-70

Starting the Program
Using H2BIN, a BIN format file for reading into the Visual Memory device can be created. The BIN format file can
be transferred to Visual Memory using a development computer, Dev. Box, and the Memory Card Utility
special-purpose transfer utility.

Alternatively, using the Shinobi library backup functions, the BIN format file can be transferred to Visual Memory.

Reference: For the method of transfer using a development computer, Dev. Box, and the special-purpose transfer
utility, see “Visual Memory Tutorial.”
For the method of transfer using the Shinobi library, refer to the buSaveExecFile () function under
“Backup Functions” in the SEGA library manual, Vol. 2.

Specifying File Names
When specifying file names to H2BIN, case is ignored. For example, the following three file names all refer to the
same file.

sample.H00

SAmplE.H00

SAMPLE.H00
VMC-71

 Starting the Program
Specifying Parameters

H2BIN _HEX_filename_ _BIN_filename_ ↵

Note: H2BIN has no command line options.

HEX_filename

Specify the file created with E2H86K with the extension .H00.

Starting H2BIN without specifying a file name produces a brief help message.

Note: This file must be in the Intellec HEX format.

BIN_filename

Specify the name for the BIN format file. If BIN_filename is omitted, the same file name as the
HEX_filename is used, with the extension .BIN.

Caution: H2BIN does not run in the full screen mode of MS-DOS. If started in the full screen mode, it forcibly
switches to the window mode.

This is important when using MAKE or a batch operation.

Example 1

C>H2BIN PROG012.H00 ↵
HEX file _____BINfile_

PROG012.H00___PROG012.BIN

Example 2

C>H2BIN ↵

The following message (brief help) appears.

INTELLEC HEX to binary converter Version 0.10 SEGA SYSTEM R&D

Usage: H2BIN <HEX file name > [<binary file name>]

HEX file name is the source file

Binary file name is the output file (can be omitted)

Function: converts INTELLEC HEX format file to binary.

If the output file name is omitted, it is the source file name with the
extension changed to .BIN.

Example: C:\VM_SDK\LC86K\H2BIN.EXE lcd_puu3.hex lcd_puu3.bin
VMC-72

Error Messages
Fatal Errors
If H2BIN detects a fatal error during operation, it displays one of the messages listed below, and terminates.

file 'filename' not found.

The specified HEX format file cannot be found. Check the path and file name. Do not omit the
extension .H00.

file 'filename' cannot be created.

A write to the specified BIN format file failed. Check the available disk space, and whether other
applications have the file open.

Conversion failed.

The HEX format file CRC is bad. The HEX file may be corrupted. Run E2H86K.EXE to recreate the HEX
format file.

Not an INTELLEC HEX format file.

The HEX format file is of a different type. Run E2H86K.EXE to recreate the HEX format file.

error: extended address code detected - not currently supported.

The HEX format file is of a different type. Run E2H86K.EXE to recreate the HEX format file.

error: unknown record type detected.

The HEX file may be corrupted. Run E2H86K.EXE to recreate the HEX format file.
VMC-73

 Error Messages
VMC-74

Overview of MAKE
MAKE automates program development. It automatically updates an executable file (EVA) when a source file
(ASM), object file (OBJ), option file (OPT), CGROM file (CGR), and so on is updated.

To run MAKE requires a file, the makefile, including the necessary information. This is a text file, of the instruction
used to build the program. These instructions include generation rules, macros, directives, and implicit rules. A
generation rule consists of a target, and files it depends on, together with commands for building the target. MAKE
compares the time stamp of the target with the time stamp of the files on which it depends, and if any of these have
been updated more recently than the target, uses the specified command to rebuild the target.
VMC-75

 Overview of MAKE
Running MAKE
To start MAKE, enter the following command.

MAKE [options] [/f makefile] [/x errorfile] [targets]

options

Enter any MAKE options. For details, see Section 19.1.2, “Command Line Options.”

makefile

Specify the name of the makefile. Note that a space is required between '/f' and 'makefile'. The makefile
name may be omitted if it is 'MAKEFILE.'

errorfile

Specify a file for output of errors. Note that a space is required between '/x' and 'errorfile'. The error output
is normally to the display, but with this option can be to a file.

targets

Specify the target or targets to be built. If this specification is omitted, and there is no .TARGET directive,
the first target in the makefile is built.

Build Priority Sequence

MAKE looks for the rules for a build in the following priority sequence.

1) If the /f option is specified, MAKE looks for the specified makefile in the current directory or specified
directory. If the file is not found, MAKE terminates.

2) If the /f option is not specified, MAKE assumes the file name is 'MAKEFILE,' and looks in the
current directory.

3) Unless the /r option is specified, MAKE looks for a makerule file in the current directory. If not found
in the current directory, MAKE looks in the directory containing MAKE itself. If the makerule file cannot
be found, MAKE terminates.

Command Line Options

The following options control the operation of MAKE. The option letters are not case-dependent, but are always
preceded by a slash (/).

/E

Give priority to external macros

When referencing a macro, give priority to an external macro. The default is to give priority to an
internal macro.
VMC-76

 Overview of MAKE
/I

Ignore result codes, and continue processing

This ignores the result code from a command specified in the makefile. MAKE continues processing to the
end of the makefile, even if errors occur. To ignore result codes in a particular part of the makefile only, use
the hyphen (-) command modifier or .IGNORE directive.

/N

Show sequence of build without executing commands

This just displays the commands which would be executed in the makefile build, without actually carrying
them out. This is useful for makefile debugging, and for checking which target files should be updated.

/R

Do not read rule file

When this option is specified, MAKE will not read a makerule file. The default is to allow the makerule file
to be read.

/S

Suppress command display

Do not echo commands in the makefile. To suppress command display for parts of the makefile only, use
the at sign (@) command modifier or .SILENT directive.

/?

Show help

Display the MAKE command line syntax.
VMC-77

Visual Memory Unit (VMU) Programing Manual
Makefile Syntax
The makefile is a text file: create it using a text editor. Normally the makefile is called "MAKEFILE," but if there are
a number of different makefiles, they can have distinct names. The makefile contains generation rules, macros,
implicit rules, and directives.

Generation Rules

The generation rules are the core of the makefile. They are written as follows.

Target : dependent_files

sample.eva : sample.obj sample.opt sample.cgr _dependency rule

 l86k/p sample; _generating command

 copy sample.eva c:\myprog\ _generating command

Dependency rules

Each generation rule starts with a dependency rule. This is in two parts, separated by a colon. The item
before the colon is the target, which is the file which MAKE is going to update. The items after the colon are
the files on which the target is dependent (also referred to as the source files). In the above example,
sample.eva is the target, depending on the files sample.obj, sample.opt, and sample.cgr. There must be no
spaces or tabs at the beginning of the dependency rule. There can be more than one target or dependent file,
separated by spaces.

The dependency rule means that the target must be updated if it either does not exist, or is older than any
of the files on which it depends. As an exception, if there are no files to the right of the colon, the target is
always updated. If there are multiple dependency rules in the makefile, by default the first is the final target,
so it is best to make the dependency rule for the EVA file the first in the makefile (it is also possible to specify
the target explicitly when running MAKE). For the final target, the default target file extension can be set
using the .TARGET directive. If a dependency rule is long, it can be broken into a number of lines, by ending
all but the last line with a backslash character.

Example of continued lines

sample.eva : sample.obj \

sample.opt \

sample.cgr

l86k/p sample;

sample.obj : sample.asm

m86k sample;

Commands

The commands immediately follow a dependency rule. Each of the command lines must begin with a space
or tab character. MAKE uses the existence or not of space or tab characters to distinguish dependency rules
from commands. The commands, one on each line, are the DOS commands required to update the target.
These commands can include DOS internal commands (such as dir). If a command is long, it can be broken
into a number of lines, by ending all but the last line with a backslash character. The commands are passed
to DOS by MAKE, so are subject to the line length restriction for DOS (maximum 127 characters).
VMC-78

 Overview of MAKE
Caution: During execution of MAKE, about 100 KB is required for MAKE itself and work areas. It is therefore
possible to run out of memory when by starting make.

Command modifiers

Command modifiers provide more detailed control of command execution. The command modifiers
precede the command, and more than one can be attached to a single command.

_command

Do not echo this command to the display when executing it. This does not affect output to the display by
the command itself. See the related functions, the /S option switch, and .SILENT directive.

Note: The /S option suppresses command echoing for the whole makefile.
The .SILENT directive switches the mode on and off through the text of the makefile.

-command

Ignore the command result code. MAKE normally terminates if the result code from a command is other
than zero, but if the - modifier is used, MAKE continues regardless of the result code. See the related
functions, the /I option switch, and .IGNORE directive.

Note: The /I option causes result codes to be ignored for the whole makefile.
The .IGNORE directive switches the mode on and off through the text of the makefile.

Examples of command modifiers

sample.eva : sample.obj subr.obj sample.opt sample.cgr

 @echo Now creating sample.eva _Echo progress

 l86k/p sample+subr;

sample.obj : sample.asm

 -m86k sample; _Ignore assembly errors

subr.obj : subr.asm

 -m86k subr; _Ignore assembly errors

Phantom targets

By deliberately specifying as a target a file which does not exist, it is possible to force MAKE to execute
particular commands. This can be referred to as "phantom target." Obviously, when using a particular name
for a phantom target, it is necessary to check that this file does not actually exist in the current directory.
VMC-79

Visual Memory Unit (VMU) Programing Manual
Example using a phantom target

all : copy sample1.eva sample2.eva
sample1.eva : sample1.obj sample1.opt sample1.cgr

m86k/p sample1;
sample2.eva : sample2.obj sample2.opt sample2.cgr

m86k/p sample2;
copy : copy sampl?.eva c:\old_prog\

In the above makefile, if the "all" target is specified to MAKE, or no target specified, the phantom target all
causes bother the sampe1.eva and sample2.eva targets to be built, and also, before this, the phantom target
"copy" causes sample1.exa and sample2.eva to be copied to the directory c:\old_prog.

Macros

A macro allows one character string appearing in the makefile to be replaced by a different character string. Its
function is very similar to a "#define" preprocessor statement in C. There are two types of macro: user-defined
macros, and built-in macros.

User macro definition

To define a new macro, use the following syntax.

macroname=string

Here, macroname can be any combination of alphanumeric characters and underscores, up to a maximum
of 255 characters. The characters in the macro name are not case dependent, so for example MacroName
and MACRONAME are regarded as the same macro. Another macro can be referenced within macroname,
as long as it has already been defined in the makefile.
The right hand string specifies a character string of any length. It must be contained within a single logical
line, but can be continued over line breaks by using a backslash character immediately before the line break.
It is also possible to specify an empty string of zero length. In this case, when the macro is referenced, since
it is replaced by an empty string, this can be used to delete a character string. If the same macro is defined
more than once, the latest definition is the one which is used.

Internal macros and external macros

There are two types of user definition macro: "internal macros", which are defined and referenced in the
makefile, and "external macros," which are supported by the MS-DOS shell function using environment
variables. The format of the two is the same. By default the internal macros take precedence over external
macros, but if the /E option is specified, external macros take precedence.

Referencing user macros

To reference a macro, enter a dollar sign followed by the macro name in parentheses. If the macro name is
a single character, the parentheses can be omitted.
$(macroname) or $c

If an undefined macro is referenced, it is replaced by an empty string.

Referencing built-in macros

MAKE provides the following built-in macros for file names.
VMC-80

 Overview of MAKE
Example of macro setting and reference

ASM = m86k # LC86000 series assembler
LINK = l86k/p # LC86000 series linker

all : sample.eva _uses phantom target
sample.obj : $*.asm _references base name of target
 $ (ASM) $*; _references assembler command
sample.eva : $*.obj $*.opt $*.cgr _references target base name

$ (LINK) $*; _references linker command

Directives

The following directives can appear in the makefile. Each directive is written on a line with no space (or tab)
characters at the start; it must not be within the body of a generation rule.

.IGNORE: {+|-}

This switches on and off the mode for ignoring the result codes from programs. When followed by a plus
sign, this directive switches to the mode in which the result codes are ignored; when followed by a minus
sign, it switches to the mode in which the result codes affect MAKE execution. By default, if a result code
is other than zero, MAKE terminates. To ignore the result code from a single command only, use the minus
sign modifier. To ignore result codes for the whole makefile, use the /I option.

.SILENT: {+|-}

This switches on and off the mode for echoing programs run from the makefile. When followed by a plus
sign, this directive switches to the mode in which commands are not echoed; when followed by a minus
sign, it switches to the mode in which commands are echoed. By default, commands are echoed. Suppress
the echo from a single command only, use the at sign modifier. To ignore suppress echoing for the whole
makefile, use the /S option.

.DEFAULT:

When a generation rule in the makefile consists of a dependency rule with no following commands, MAKE
uses the implicit rules to generate commands. If there are no creation rules, a default set of commands can
be supplied with the .DEFAULT directive on a line followed by the commands.

.DEFAULT

commands

.TARGET: suffixes

The final target to be built can be specified to MAKE on the command line, and if this is omitted, the target
of the first generation rule in the makefile is built, but the .TARGET directive specifies an extension for the
default final target, so that the extension of a file to be built can be specified for the final target. A suffix is
a period followed by up to three characters. More than one suffix can be specified by separating them
with spaces.

$@ Full name of current target file (including path, base, and extension)

$* Name of current target file, excluding extension

$? List of dependent files newer than target
VMC-81

Visual Memory Unit (VMU) Programing Manual
Implicit Rules
The implicit rules define how the general way to make a file of one extension from a file of another extension. MAKE
follows these implicit rules to derive the commands needed to update a target, from the target dependency rules.
Using implicit rules generally makes writing the makefile simpler. The implicit rules can be included in the
makefile, or written in the makerule file MAKERULE.DEF.

For each of the source files in a generation rule, MAKE checks whether there is generation rule with that file as
target, and if not it uses an implicit rule. The conditions for using an implicit rule are thus as follows:

1) There must be no dependency rule for the file in question.

2) There must be a generation rule for making the file.

3) The file or files required for making the file must exist.

If these conditions are met, MAKE adds generation rules as follows.

1) If a generation rule does not exist, it is added.

2) basename.sss is added as the source file (sss: source file extension)

3) The commands from the (implicit) generation rule are used as the commands for creating the target.

Makerule file

The makerule file MAKERULE.DEF contains the rules that MAKE uses to create implicit rules, in the
following format.

.sss.ttt:

commands

The first line specifies two file extensions. The first, "sss," is the extension of the source file, and the second, "ttt," is
the extension of the target file. The extensions are not case-dependent. The first period, before "sss," must come at
the very beginning of a line. The following lines are the commands, written as in the makefile, for creating the target.
For example, to create an object file "basename.obj" from an assembly language source "basename.asm," the
rule is ".asm.obj."
VMC-82

 Overview of MAKE
 Example makerule file

*** ***

*** Implicit rules for EVA86000 utility make. ***

*** Definition for M86K ***

*** ***

ASM = m86k

.ASM.OBJ:

$ (ASM) $*;

.TARGET: .EVA .HEX __default final target

.DEFAULT:

@echo

@echo ??? Undefined build commands ???

@echo

end of makerule.def

Example makefile using a makerule file

ASM = m86k # LC86000 series assembler

LINK = l86k/p # LC86000 series linker

all : sample.eva

sample.obj : $*.asm

_ assembler command omitted

sample.eva : $*.obj $*.opt $*.cgr

$ (LINK) $*;
VMC-83

Visual Memory Unit (VMU) Programing Manual
VMC-84

Assembler Syntax
Each line of the source file is a character string of up to 511 characters (including the terminating CR and LF). Except
for symbols defined in the source program (labels, macros, and so on), uppercase and lowercase letters are not
distinguished. For example, "Nop" and "nop" are both recognized as the mnemonic for the NOP instruction. By
specifying the -I assembler option, it is possible to remove the case distinctions for labels and other symbols as well.

Statements
Statements consist of the instruction mnemonics and operands which define the object code to be created by the
assembly process, and comments. One line of source code corresponds to one instruction mnemonic. A statement
is not allowed to be continued over more than one line. Each statement comprises the following four fields.

[label:] [operation] [operand] [;comment]

Caution: The square brackets [] identify Items which can be omitted.

Field Purpose

label Identifies the location of this statement, so that it can be referenced from another statement. It must
always be followed by the colon.

operation Specifies the function of the statement.

operand Specifies the operand (or operands) on which the function operates.

comment This is for explanatory purposes, and does not directly affect the result of assembly.
VMC-85

 Assembler Syntax
Label and Symbol Names
Label and symbol names consist of character strings of any (nonzero) length, but only the first 32 characters are used
to distinguish names. The following characters can be used:

A to Z, a to z, 0 to 9, $, ?, _(underscore), @, . (period)

Label and symbol names must begin with a letter, underscore, period or '@.' If the -i assembler option is specified,
uppercase and lowercase letter are regarded as the same. Note that a label must be followed by a colon.

Comments
Comments are delimited by a semicolon, and extend to the end of the line.

Operators
The following table lists the operators which can be used in M86K assembly language, and their order of
precedence. For operators such as NOT whose names consist of letters, case is not distinguished, and thus "NOT"
and "not" are both the same operator.

Operator Meaning Precedence order

NOT One's complement logical not 1

HIGH High order byte

LOW Low order byte

* Multiplication 2

/ Division

MOD Modulo (remainder)

+ Addition 3

- Subtraction

SHR Shift right 4

SHL Shift left

LAND Logical AND 5

LOR Logical (inclusive) OR

LXOR Logical exclusive OR

EQ Equals 6

NE Not equals

LT Less than

LE Less than or equals

GT Greater than

GE Greater than or equals
VMC-86

 Assembler Syntax
Numeric Constants
M86K allows numeric constants to be written in binary, octal, decimal, or hexadecimal. Constants can be written
with an explicit indication of the radix, or base, as for example in "123H," or with the default radix defined by the
RADIX pseudoinstruction. Thus a constant "123," for example, with no explicit radix is interpreted according to the
specification of the RADIX pseudoinstruction. By default, if there is no RADIX pseudoinstruction, such numbers
are taken as decimal.

However they are written, constants are handled internally by the assembler as 32-bit values. When the final result
of a numeric expression is evaluated and stored as immediate data as the operand of an instruction, only the
number of bits required for the operand are stored, and any more significant bits are discarded.

Table 2.35 Notation of constants with an explicit radix

Note: The radix letters B, O, D, and H can be uppercase or lowercase. This is not affected by the
assembler -i option.

Caution: These formats are affected by the RADIX setting. See the table below.

Table 2.36 Interpretation of numeric constants without explicit radix notation

Radix Format Examples

2 '%' followed by one or more digits 0, 1 %01111011 %1111111
%0000010000000000

One or more digits 0, 1 followed by 'B' * 01111011B 1111111B
0000010000000000B

One or more digits 0, 1 followed by '.B' * 01111011.B 1111111.B
0000010000000000.B

8 One or more digits 0 to 7 followed by '.O '273.O 377.O 2000.O

10 One or more digits 0 to 9 followed by '.D '123.D 255.D 1024.D

16 '$' followed by one or more digits 0 to 9, a to f, or A to F $7B $FF $0400

One or more digits 0 to 9, a to f, or A to F, followed by 'H' (must start with 0 to 9) 7BH 0FFH 0400H

One or more digits 0 to 9, a to f, or A to F, followed by '.H' (must start with 0 to 9) 7B.H 0FF.H 0400.H

Format Example Values for each RADIX setting (in decimal)

2 8 10 16

One or more 0, 1 0101 510 6510 10110 25710

One or more 0 to 7 123 Error 8310 12310 29110

One or more 0 to 9 789 Error Error 789110 192910

One or more 0, 1 followed by 'B '101B 510 510 510 412310

One or more digits 0 to 9, a to f, or A to F, starting with 0 to 9 0FF Error Error Error 25510
VMC-87

Visual Memory Unit (VMU) Programing Manual
Character Constants
A character enclosed in single quotes (') is treated as a character constant. A character constant is a type of numeric
constant, with the value of the ASCII codes of the specified characters. In addition to all printable ASCII characters,
the following codes can be used to enter other characters. If more than one character is enclosed in the quotes, this
is not a character constant but a character string constant see Section , ”Character String Constants,”.

Table 2.37 Codes for use in character constants and character string constants

Example 1: ADD _'A'

Example 2: DB 'A', '\012', 'C'

Example 3: DB 'ABC'

Caution: In example 3, 'ABC' is a character string constant, and is therefore an error as the operand for DB.

Notation Hexadecimal value Character name

\n 0A Linefeed

\r 0D Carriage return

\t 09 Horizontal tab

\b 08 Backspace

\f 0C Form feed

\ "22 Double quote

\ '27 Single quote

\\ 5C Backslash

\ooo Octal value ooo

\xhh Hexadecimal value hh
VMC-88

 Assembler Syntax
Character String Constants
One or more characters enclosed in double quotation marks ("), or two or more characters enclosed in single
quotation marks (') are treated as a character string constant. A character string constant can be used as the operand
of a DC or .PRINTX pseudoinstruction. Within a character string, any printable ASCII characters can be used, and
also the codes listed in Section , ”Character Constants,”.

Example

DC "This is a sample string with special codes \007\r\n"

Special Symbols
In an operand, an asterisk represents the address of the current location.

Example 1

The following represents the address 6 bytes before the current address.

BR *-6

Example 2

The following represents the address 12 bytes after the current address.

BR *+12
VMC-89

Visual Memory Unit (VMU) Programing Manual
VMC-90

Assembler
Pseudoinstructions
A pseudoinstruction differs from an ordinary instruction (such as ADD or MOV in the LC86K instruction set); it
gives directives or definitions to the assemble, and a pseudoinstruction of itself does not generate a machine
instruction. (This does not apply to JMPO and other optimization pseudoinstructions, or to the CHANGE
pseudoinstruction.) Pseudoinstructions are often used in combination with ordinary instructions.

Group Pseudoinstruction Function

Linking control ORG

WORLD

CSEG

DSEG

END

PUBLIC

EXTERN

OTHER_SIDE_SYMBOL

Specify origin

Select the ROM to hold code

Declare the beginning of a code segment

Declare the beginning of a data segment

End program

Declare public symbol

Declare external symbol

Declare CHANGE instruction jump label

Symbol definitions EQU

SET

Assign a fixed value

Assign temporary value

Data definitions DB

DW

DC

DS

Define byte data

Define word data

Define character string data

Define byte area

Macro control MACRO

REPT

IRP

IRPC

ENDM

EXITM

LOCAL

Define macro

Repeat macro

Iteration macro

Character string macro

End macro definition

End macro expansion

Define local label
VMC-91

 Assembler Pseudoinstructions
Conditional assembly IFDEF

IFNDEF

IFB

IFNB

IFE

IFNE

IFIDN

IFDIF

ELSE

ENDIF

.PRINTX

.LIST

.XLIST

.MACRO

.XMACRO

.IF

.XIF

Assemble if defined

Assemble if undefined

Assemble if operand empty

Assemble if operand nonempty

Assemble if zero

Assemble if nonzero

Assemble if identical

Assemble if different

Else case of conditional assembly

End conditional assembly

Display message during assembly

Resume listing

Suppress listing

List macro expansions

End macro expansion listing

List skipped statements in conditional assembly

End listing of skipped statements

Assemble if operand empty

Miscellaneous INCLUDE

TITLE

PAGE

CHIP

COMMENT

WIDTH

BANK

CHANGE

RADIX

Include file

Set listing title

New page

Specify chip for assembly

Add comment to object file

Specify columns in listing file

Specify RAM bank

Jump between flash memory and ROM

Specify default radix
VMC-92

 Assembler Pseudoinstructions
ORG

Specify origin

Syntax

ORG expression

Description

The ORG pseudoinstruction specifies the start address in program memory (flash memory) as expression.
Expression must be a numeric constant, or an expression which can be evaluated at assembly time.

Optimization JMPO

BRO

CALLO

BZO

BNZO

BPO

BPCO

BNO

DBNZO

BEO

BNEO

Optimized JMP instruction

Optimized BR instruction

Optimized CALL instruction

BZ instruction guaranteeing no address error

BNZ instruction guaranteeing no address error

BP instruction guaranteeing no address error

BPC instruction guaranteeing no address error

BN instruction guaranteeing no address error

DBNZ instruction guaranteeing no address error

BE instruction guaranteeing no address error

BNE instruction guaranteeing no address error

Optimized BR instruction

Optimized CALL instruction

BZ instruction guaranteeing no address error

BNZ instruction guaranteeing no address error

BP instruction guaranteeing no address error

BPC instruction guaranteeing no address error

BN instruction guaranteeing no address error

DBNZ instruction guaranteeing no address error
VMC-93

Visual Memory Unit (VMU) Programing Manual
Example

WORLD

Select the ROM to hold code

Syntax

WORLD selection

Description

This specifies the ROM which will hold the assembled code. This pseudoinstruction is only valid when the
target chip is the LC86800 series. There are three values which can be specified for selection.

INTERNAL Store in the on-chip ROM.

EXTERNAL Store in flash memory bank 0.

EXTERNAL_DATA Store in flash memory bank 1.

page: 1 <org.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ;a sample program for ORG

 0002 chip lc866032

 0003 extern wait1s

 0004 dseg

 0005 D 0000 min1: ds 1

 0006 D 0001 min0: ds 1

 0007 cseg

 0008 org 0h

 0009 C 0000 6201' label1: inc min0

 0010 C 0002 0201' ld min0

 0011 C 0004 A13C sub #60

 0012 C 0006 900311 bzo label2

 0012 C 0009 F600

 0013 C 000B 210200' jmpf label3

 0014 org 100h

 0015 C 0100 6200' label2: inc min1

 0016 C 0102 220100' mov #00,min0

 0017 C 0105 210200' jmpf label3

 0018 org 200h

 0019 C 0200 100000'label3: CALLr wait1s

 0020 C 0203 210000' jmpf label1

 0021 end
VMC-94

 Assembler Pseudoinstructions
Caution: For Visual Memory, always specify EXTERNAL. Other specifications may lead to data corruption
or misoperation.

If there is more than one WORLD pseudoinstruction in a single file, an error results. For chips other than the chips
other than the LC86800 series, if a value other than INTERNAL is selected for the WORLD pseudoinstruction, an
error results.

CSEG

Declare the beginning of a code segment

Syntax

CSEG mode

Description

This indicates to the assembler the beginning of a segment holding program code. When mode is not
specified or is INBLOCK, the segment is aligned within 4K boundaries. If the mode is FREE, this indicates
that the segment can be located regardless of 4K boundaries.
VMC-95

Visual Memory Unit (VMU) Programing Manual
Example

DSEG

Declare the beginning of a data segment

Syntax

DSEG

Description

This indicates to the assembler the beginning of a segment holding data.

Caution: Data segments are copied into RAM. It is not possible to open a data segment in flash memory.

page: 1 <cseg.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for CSEG

 0002 chip lc864024

 0003 extern wait1s

 0004 dseg

 0005 D 0000 min1: ds 1

 0006 D 0001 min0: ds 1

 0007 cseg inblock

 0008 C 0000 6201' label1: inc min0

 0009 C 0002 0201' ld min0

 0010 C 0004 A13C sub #60

 0011 C 0006 900311 bzo label2

 0011 C 0009 0000

 0012 C 000B 210000' jmpf label3

 0013 cseg free

 0014 c 0000 6200' label2: inc min1

 0015 c 0002 220100' mov #00,min0

 0016 c 0005 210000' jmpf label3

 0017 cseg

 0018 C 0000 100000'label3: CALLr wait1s

 0019 C 0003 210000' jmpf label1

 0020 end Independent segments
Local address is reset
to zero at the beginning of each segment.
VMC-96

 Assembler Pseudoinstructions
Example

END

End program

Syntax

END

Description

This indicates the end of the source program. When the assembler encounters this instruction, it ends the
pass currently being executed, so any text beyond this point, even if valid statements, is ignored.

page: 1 <dseg.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for CSEG

 0002 chip lc864024

 0003 extern wait1s

 0004 cseg inblock

 0005 C 0000 6201' label1: inc min0

 0006 C 0002 0201' ld min0

 0007 C 0004 A13C sub #60

 0008 C 0006 900311 bzo label2

 0008 C 0009 0000

 0009 C 000B 210000' jmpf label3

 0010 cseg free

 0011 c 0000 6200' label2: inc min1

 0012 c 0002 220100' mov #00,min0

 0013 c 0005 210000' jmpf label3

 0014 cseg

 0015 C 0000 100000'label3: CALLr wait1s

 0016 C 0003 210000' jmpf label1

 0017

 0018 dseg

 0019 D 0000 min1: ds 1

 0020 D 0001 min0: ds 1

 0021 end

Code segments

Data segment
VMC-97

Visual Memory Unit (VMU) Programing Manual
Example

PUBLIC

Declare public symbol

Syntax

PUBLIC symbol {, symbol}

Description

The PUBLIC pseudoinstruction declares that a symbol defined in the program can be referenced from other
source files.

; a sample program for END

 chip lc866032

 cseg

 mov #20h, 01h

 mov #10h, 00h

 ld 00h

 add 0fh

 end

 inc 00h

 inc 01h

 ld 01h

page: 1 <end.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for END

 0002 chip lc866032

 0003 cseg

 0004 C 0000 220120 mov #20h, 01h

 0005 C 0003 220010 mov #10h, 00h

 0006 C 0006 0200 ld 00h

 0007 C 0008 820F add 0fh

 0008 end

All text after END is ignored
VMC-98

 Assembler Pseudoinstructions
Example

Caution: To reference a symbol defined in another source file, it must be declared EXTERN.
To allow a symbol in this file to be referenced from another file, it must be declared PUBLIC.

page: 1 <extern.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS
 0001 ; a sample program for EXTERN
 0002 chip lc866032
 0003 extern label1, label2
 0004
 0005 cseg inblock
 0006 C 0000 200000' CALLf label1
 0007
 0008 C 0003 200000'start: CALLf label2
 0009 C 0006 0303 ld c
 0010 C 0008 90F9 bnz start
 0011
 0012 C 000A A300 sub a
 0013
 0014 end

To reference a symbol defined in another file, it must be declared EXTERN.

To allow a symbol in this file to be refernced from another file,
it must be declared PUBLIC.

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS
 0001 ; a sample program for PUBLIC
 0002 chip lc866032
 0003 public label1, label2
 0004
 0005 cseg inblock
 0006 C 0000 220000'label1: mov #00, data1
 0007 C 0003 23033C mov #60, c
 0008 C 0006 A0 ret
 0009
 0010 C 0007 6200' label2: inc data1
 0011 C 0009 0200' ld data1
 0012 C 000B 410A05 bne #10, label3
 0013 C 000E 220000' mov #00, data1
 0014 C 0011 6201' inc data2
 0015
 0016 C 0013 7303 label3: dec c
 0017 C 0015 A0 ret
 0018
 0019 dseg
 0020 D 0000 data1: ds 1
 0021 D 0001 data2: ds 1
 0022
 0023 end
VMC-99

Visual Memory Unit (VMU) Programing Manual
page:1 <public.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; sample program for PUBLIC

0002 chip lc866032

0003 public label1, label2

0004

0005 cseg inblock

0006 C 0000 220000' label1: mov #00, data1

0007 C 0003 23033C mov #60, c

0008 C 0006 A0 ret

0009

0010 C 0007 6200' label2: inc data1

0011 C 0009 0200' ld data1

0012 C 000B 410A05 bne #10, label3

0013 C 000E 220000' mov #00, data1

0014 C 0011 6201' inc data2

0015

0016 C 0013 7303 label3: dec c

0017 C 0015 A0 ret

0018

0019 dseg

0020 D 0000 data1: ds 1

0021 D 0001 data2: ds 1

0022

0023 end

Note: The combination of PUBLIC and EXTERN declarations allows a symbol to be referenced even
when it is defined in another file.

EXTERN

Declare external symbol

Syntax

EXTERN [segment:] symbol {, [segment:] symbol}

Description

The EXTERN pseudoinstruction is used when a symbol or symbols are defined in other source program
files. The optional segment parameter is either CSEG or DSEG, indicating the segment type. If this is not
specified, a code segment, CSEG, is the default.

Reference: For examples see the previous item "PUBLIC - Declare public symbol."

OTHER_SIDE_SYMBOL

Declare CHANGE instruction jump label
VMC-100

 Assembler Pseudoinstructions
Syntax

OTHER_SIDE_SYMBOLlabel {, label}

Description

This declares an address label which can be specified as the operand of a CHANGE instruction, which in
the LC86800 series is used for switching between ROM and flash memory. The label declared is a type of
external symbol, but one difference is that in a source file of code to be stored in ROM, a label is declared
in flash memory (or in ROM in a source file of code to be stored in flash memory). This pseudoinstruction
is only valid for the LC86800 series, and in other cases an error results.

Reference: For examples, see under "CHANGE - Jump between flash memory and ROM in this chapter.

EQU

Assign a fixed value

Syntax

Symbolname EQU expression

Description

The EQU pseudoinstruction assigns the value expression to symbolname. A symbol defined with the EQU
pseudoinstruction cannot be redefined. Used appropriately, the EQU pseudoinstruction can aid the visual
identification of constant data, and improve maintenance efficiency.
VMC-101

Visual Memory Unit (VMU) Programing Manual
Example

SET

Assign temporary value

Syntax

Symbolname SET expression

page: 1 <equ.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS
 0001 ; a sample program for EQU
 0002 chip lc866032
 0003
 0004 00000064 loop_max equ 100
 0005 00000001 mode_a equ 1
 0006 00000002 mode_b equ 2
 0007 00000003 mode_c equ 3
 0008
 0009 cseg inblock
 0010 C 0000 220000' mov #00, loop_ctr
 0011
 0012 C 0003 230201 label1: mov #mode_a, b
 0013 C 0006 0818' CALL sub1
 0014 C 0008 230202 mov #mode_b, b
 0015 C 000B 0818' CALL sub1
 0016 C 000D 230303 mov #mode_c, c
 0017 C 0010 6200' inc loop_ctr
 0018 C 0012 0200' ld loop_ctr
 0019 C 0014 4164EC bne #loop_max, label1
 0020 C 0017 A0 ret
 0021
 0022 C 0018 0302 sub1: ld b
 0023 C 001A 310107 be #mode_a, suj10
 0024 C 001D 310208 be #mode_b, suj11
 0025 C 0020 310309 be #mode_c, suj12
 0026 C 0023 A0 suj0: ret
 0027
 0028 C 0024 1201' suj10: st data_a
 0029 C 0026 01FB br suj0
 0030 C 0028 1202' suj11: st data_b
 0031 C 002A 01F7 br suj0
 0032 C 002C 1203' suj12: st data_c
 0033 C 002E 01F3 br suj0
 0034
 0035 dseg
 0036 D 0000 loop_ctr: ds 1
 0037 D 0001 data_a: ds 1
 0038 D 0002 data_b: ds 1
 0039 D 0003 data_c: ds 1
 0040
 0041 end

No colon between the defined symbol and the "EQU"
When the defined value can be computed

it appears here (hexadecimal).

Any expression can be written.
VMC-102

 Assembler Pseudoinstructions
Description

The SET pseudoinstruction assigns the value expression to symbolname. A symbol defined with the SET
pseudoinstruction can be redefined by a subsequent SET. However, a symbol set with this
pseudoinstruction cannot be the subject of a PUBLIC declaration, nor can it be redefined with EQU.

Example

DB

Define byte data

Syntax

Labelname DB expression {, expression}

No colon between the defined
symbol and the "SET"

Any expression can be
written, including the sym
currently being set.

When the defined value can be
computed it appears here

(hexadecimal).

page: 1 <set.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for SEY

 0002 chip lc866032

 0003 cseg inblock

 0004

 0005 00000000 dd set 0

 0006

 0007 C 0000 220000' mov #dd,zz+dd

 0008

 0009 C 0003 6300 inc a

 0010 C 0005 6302 inc b

 0011

 0012 00000001 dd set dd+1

 0013

 0014 C 0007 220101' mov #dd,zz+dd

 0015

 0016 C 000A 7300 dec a

 0017 C 000C 7302 dec b

 0018

 0019 dseg

 0020 D 0000 zz: ds 2

 0021

 0022 end
VMC-103

Visual Memory Unit (VMU) Programing Manual
Description

The DB pseudoinstruction stores the 8-bit data value or values represented by expression in program
memory (ROM). Any number of operands may be specified, separated by commas. When two or more
operands are specified, they are evaluated in order left to right, and stored in successive addresses. If there
are two commas with nothing between them, this is interpreted as a zero value.

Example

In the above example, because the "db area" statement references the symbol "area," which is a 16-bit value,
at assembly time a warning level message, "Value is out of range," is generated. The bottom eight bits of the
value are used in the object code.

DW

Define word data

Syntax

labelname DW expression {, expression}

page: 1 <db.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ;a sample program for DB

 0002 chip lc864032

 0003 00001234 area equ 1234h

 0004 cseg

 0005 C 0000 414243 db 'A','B','C',0

 0005 C 0003 00

V 0006 C 0004 34 db area

 ** Warning, value is out of range

 0007 C 0005 12 db high(area)

 0008 C 0006 34 db low(area)

 0009 end

0x41

0x42

0x43

0x00

0x34

0x12

0x34
VMC-104

 Assembler Pseudoinstructions
Description

The DW pseudoinstruction stores the 16-bit data value or values represented by expression in program
memory (ROM). The more significant byte is stored first, and the less significant byte at the address one
higher. Any number of operands may be specified, separated by commas. When two or more operands are
specified, they are stored in successive addresses. If there are two commas with nothing between them, this
is interpreted as a zero value.

Example

DC

Define character string data

Syntax

labelname DC "string"

page: 1 <dw.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ;a sample program for DW

 0002 chip lc864032

 0003 00001234 area equ 1234h

 0004 cseg

 0005 C 0000 004100 dw 'A','B',0

 0005 C 0003 420000

 0006 C 0006 1234 dw area

 0007 C 0008 0012 dw high(area)

 0008 C 000A 0034 dw low(area)

 0009 end

0x00

0x41

0x00

0x42

0x00

0x00

0x12

0x34

0x00

0x12

0x00

0x34

Ifthe DW pseudoinstruction is used to define 8-bit values, the upper 8 bits of the 16-bit result are always 0.
VMC-105

Visual Memory Unit (VMU) Programing Manual
Description

This stores the ASCII codes of string (a character string constant) in sequence in program memory (ROM).

Reference: For details of character string constants, see Section 20.7, “Character String Constants.”

Example

DS

Define byte area

Syntax

labelname DS absolute_expression

 cseg inblock

 org 1234h

mess0: dc "sample message #00\n"

mess1: dc "sample message #01\0"

table: dw mess0

 dw mess1

73

61

6d

70

6c

65

20

6d

65

73

73

61

67

65

20

23

30

30

0a

73

61

12

34

12

47

6d

70

6c

65

20

6d

65

73

73

61

67

65

20

23

30

30

00

These values assume the segment is

allocated from address 0.
VMC-106

 Assembler Pseudoinstructions
Description

The DS pseudoinstruction allocates any area of data memory (RAM) of the number of bytes specified by
absolute_expression . The absolute_expression must have a value completely determined at
assembly time. This pseudoinstruction can only be used after a DSEG pseudoinstruction.

Caution: A DS pseudoinstruction can only be used to allocate RAM (a data segment). It cannot be used for flash
memory. Use DB or DW statements instead.

Example

MACRO

Define macro

Syntax

name MACRO parameter {, parameter}

Description

The MACRO pseudoinstruction defines a macro. The statements from the MACRO pseudoinstruction to
the following ENDM pseudoinstruction form the body of the macro. The parameter name is the name by
which the macro can be called, which is replaced by the body of the macro, and is therefore mandatory. The
formal parameter list specified by parameter is optional, depending on the macro being defined.

page: 1 <ds.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for DS

 0002 chip lc864032

 0003 dseg

 0004 D 0000 area0: ds 1

 0005 D 0001 area1: ds 2

 0006 cseg inblock

 0007 C 0000 0200' start: ld area0

 0008 C 0002 1201' st area1

 0009 C 0004 1202' st area1+1

 0010 end

 dseg

 area0:

 area1:

The example above defines a 1-byte area named area0 that is immediately followed by a 2-byte area named area1.
VMC-107

Visual Memory Unit (VMU) Programing Manual
Caution: When calling one macro from within another, or when using a pseudoinstruction such as IFB which
requires angle brackets (< >), a sufficient depth of angle brackets to correspond to the nesting level is
required. See the section "EXITM – End macro expansion" in this chapter.

Example

_push macro

 push acc

 push c

 push b

 endm

_shl macro count

 ifne count

 rept count

 rolc

 endm

 else

 .printx "logical shift count is zero !!\007"

 endif

 endm

Push acc, c, and b onto the stack.

_pop macro

 pop b

 pop c

 pop acc

 endm

Pop b, c, and acc off the stack.

Generates code to left shift by the number of positions shown by the parameter.
However, if the parameter is zero, generates no code.

cseg

start: _push

 _shl 0

 _shl 2

 _shl 1

Format of source program.
VMC-108

 Assembler Pseudoinstructions
REPT

Repeat macro

Syntax

REPT count

Description

The REPT pseudoinstruction repeats the statements up to the ENDM instruction, generating the number
of copies specified by count. This value can be any integer from 1 to 65535.

 0027 start: _push

 0027+1 C 0000 6100 push acc

 0027+2 C 0002 6103 push c

 0027+3 C 0004 6102 push b

 0028 _shl 0

 0028+1 ifne 0

 0028+2 rept 0

 0028+3 rolc

 0028+4 endm

 0028+5 else

 0028+6 .printx "logical shift count is ze

 0028+7 endif

 0029 _shl 2

 0029+1 ifne 2

 0029+2 rept 2

 0029+4 endm

 0029+1 C 0006 F0 rolc

 0029+2 C 0007 F0 rolc

 0029+5 else

 0029+6 .printx "logical shift count is ze

 0029+7 endif

 0030 _shl 1

 0030+1 ifne 1

 0030+2 rept 1

 0030+4 endm

 0030+1 C 0008 F0 rolc

 0030+5 else

 0030+6 .printx "logical shift count is ze

 0030+7 endif

 0031 _pop

 0031+1 C 0009 7102 pop b

 0031+2 C 000B 7103 pop c
VMC-109

Visual Memory Unit (VMU) Programing Manual
Example

In the following example, the area not occupied by the program is filled with NOP codes (for a
256-byte boundary).

IRP

Iteration macro

Syntax

IRP parameter, argument {, argument}…

Description

The IRP pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each argument specified. In each copy, parameter is replaced by the corresponding argument.

page: 1 <rept.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for REPT

 0002 chip lc864024

 0003 cseg inblock

 0004 C 0000 230000 start: mov #0,acc

 0005 C 0003 1200 st 00h

 0006 C 0005 6300 inc acc

 0007 C 0007 1201 st 01h

 0008 C 0009 6300 inc acc

 0009 C 000B 1202 st 02h

 0010 C 000D A0 last: ret

 0011 rept 255-(last-start)

 0013 endm

 0013+1 C 000E 00 nop

 0013+2 C 000F 00 nop

 0013+3 C 0010 00 nop

 0013+240 C 00FD 00 nop

 0013+241 C 00FE 00 nop

 0013+242 C 00FF 00 nop

 0014 end

Expanded statements

Body of macro definition
is not shown.
VMC-110

 Assembler Pseudoinstructions
Example

IRPC

Character string macro

Syntax

IRPC parameter, string

_push macro

 irp reg_name,acc,b,psw,c

 push reg_name

 endm

 endm

_pop macro

 irp reg_name,c,psw,b,acc

 push reg_name

 endm

 endm

 0016

 0017 _push

 0017+1 irp reg_name,acc,b,psw,c

 0017+3 endm

 0017+1 C 0000 6100 push acc

 0017+2 C 0002 6102 push b

 0017+3 C 0004 6101 push psw

 0017+4 C 0006 6103 push c

 0018 _pop

 0018+1 irp reg_name,c,psw,b,acc

 0018+3 endm

 0018+1 C 0008 6103 push c

 0018+2 C 000A 6101 push psw

 0018+3 C 000C 6102 push b

 0018+4 C 000E 6100 push acc
VMC-111

Visual Memory Unit (VMU) Programing Manual
Description

The IRPC pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each character in string. As distinct from a character string constant, string is not enclosed in quotation
marks. Codes beginning with a backslash cannot be used. In each copy, parameter is replaced by the
corresponding character in string.

Example

ENDM

End macro definition

Syntax

ENDM

; a sample program for IRPC

 chip lc866032

 dseg

 irpc x,01234567

buf&x: ds 2

 endm

 end

page: 1 <irpc.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for IRPC

 0002 chip lc866032

 0003 dseg

 0004 irpc x,01234567

 0006 endm

 0006+1 D 0000 buf0: ds 2

 0006+2 D 0002 buf1: ds 2

 0006+3 D 0004 buf2: ds 2

 0006+4 D 0006 buf3: ds 2

 0006+5 D 0008 buf4: ds 2

 0006+6 D 000A buf5: ds 2

 0006+7 D 000C buf6: ds 2

 0006+8 D 000E buf7: ds 2

Formal parameter

Argument string

The formal parameter is replaced by successive characters from the argument string.
The ampersand delimits the formal parameter when it appears within an identifier.
VMC-112

 Assembler Pseudoinstructions
Description

This marks the end of a macro definition.

Example

EXITM

End macro expansion

Syntax

EXITM

Description

The EXITM pseudoinstruction ends expansion of a macro. In combination with conditional assembly
pseudoinstructions, this can be used to create different forms of expansion of a macro depending on the
arguments supplied.

These must be correctly nested.

Start of macro definition

Start of macro definition

End of macro definition

End of macro definition

_push macro

irp reg_name,<<acc,b,psw,c>>

push reg_name

endm

endm
VMC-113

Visual Memory Unit (VMU) Programing Manual
Example

LOCAL

Define local label

Syntax

LOCAL name {, name}

Description

The LOCAL pseudoinstruction declares a label which can be used internally to the body of the macro.
During macro expansion, the name declared in the LOCAL pseudoinstruction is replaced by the assembler
with a unique identifier to avoid name conflicts.

page: 1 <exitm.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS
 0001 ; a sample program for EXITM
 0002 chip LC866032
 0003 rpush macro a1,a2,a3,a4
 0004 ifb <<a1>>
 0005 .printx "not enough argument"
 0006 exitm
 0007 endif
 0008 ifnb <<a2>>
 0009 push a1
 0010 push a2
 0011 push a3
 0012 push a4
 0013 endif
 0014 endm
 0015 cseg inblock
 0016 rpush acc,b,psw,c
 0016+1 ifb <acc>
 0016+2 .printx "not enough argument"
 0016+3 exitm
 0016+4 endif
 0016+5 ifnb
 0016+6 C 0000 6100 push acc
 0016+7 C 0002 6102 push b
 0016+8 C 0004 6101 push psw
 0016+9 C 0006 6103 push c
 0016+10 endif
 0017 rpush
 0017+1 ifb <>
 0017+2 .printx "not enough argument"
 0017+3 exitm
 0018 end

The angle brackets must be double,
because one layer is removed in each macro expansion.

When the first argument is applied,
this section is assembled.

Since there is no second argument,
this section is assembled, and the expansion
terminates at EXITM.
VMC-114

 Assembler Pseudoinstructions
Example

; sample program for LOCAL

chip lc864008

b_ne macro val,dst

local skip

be val,skip

bro dst

skip:

endm

cseg

b_ne #0, over

org 200h

over: b_ne #0, under

nop

under: nop

end

In the above example, the BRO pseudoinstruction is used to define the B_NE macro which generates different
instructions depending on the destination of a jump; this is then used in the example. The following is the result
of assembly.

page: 1 <local.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for LOCAL

 0002 chip lc864008

 0003 b_ne macro val,dst

 0004 local skip

 0005 be val,skip

 0006 bro dst

 0007 skip:

 0008 endm

 0009

 0010 cseg

 0011 b_ne #0, over

 0011+1 local _L0000000L_

 0011+2 C 0000 310003 be #0,_L0000000L_

 0011+3 C 0003 11FB01 bro over

 0011+4 _L0000000L_:

 0012

 0013 org 200h

 0014 over: b_ne #0, under

 0014+1 local _L0000001L_

 0014+2 C 0200 310002 be #0,_L0000001L_

 0014+3 C 0203 0101 bro under

 0014+4 _L0000001L_:

 0015 C 0205 00 nop

 0016 C 0206 00 under: nop

 0017 end
The identifier declared as LOCAL is
replaced with different names.

The format of the name generated is_L######L_ (where ###### is a serial number starting w
VMC-115

Visual Memory Unit (VMU) Programing Manual
IFDEF

Assemble if defined

Syntax

IFDEF symbol

Description

If symbol is defined, the statements after the IFDEF pseudoinstruction until the next ELSE or ENDIF
are assembled.

Example

IFNDEF

Assemble if undefined

Syntax

IFNDEF symbol

page: 1 <ifdef.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for IFDEF

 0002 chip lc864024

 0003 00000001 abc equ 1

 0004 dseg

 0005 D 0000 count: ds 1

 0006

 0007 cseg inblock

 0008 C 0000 230010 mov #10h, acc

 0009 ifdef abc

 0010 C 0003 8302 add b

 0011 C 0005 1200' st count

 0012 else

 0013 inc acc

 0014 endif

 0015 C 0007 A303 sub c

 0016 ifdef efg

 0017 add count

 0018 endif

 0019 end

Symbol abc is defined,
so this section is assembled.

Symbol efg is undefined
so this section is not assembled.
VMC-116

 Assembler Pseudoinstructions
Description

If symbol is undefined, the statements after the IFNDEF pseudoinstruction until the next ELSE or ENDIF
are assembled.

Example

IFB

Assemble if operand empty

Syntax

IFB <argument>

Description

If argument is empty, the statements after the IFB pseudoinstruction until the next ELSE or ENDIF are
assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.

page: 1 <ifdef.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for IFDEF

 0002 chip lc864024

 0003 00000001 abc equ 1

 0004 dseg

 0005 D 0000 count: ds 1

 0006

 0007 cseg inblock

 0008 C 0000 230010 mov #10h, acc

 0009 ifdef abc

 0010 C 0003 8302 add b

 0011 C 0005 1200' st count

 0012 else

 0013 inc acc

 0014 endif

 0015 C 0007 A303 sub c

 0016 ifdef efg

 0017 add count

 0018 endif

 0019 end

Symbol abc is defined,
so this section is assembled.

Symbol efg is undefined
so this section is not assembled.
VMC-117

Visual Memory Unit (VMU) Programing Manual
Example

IFNB

Assemble if operand nonempty

Syntax

IFNB <argument>

Description

If argument is nonempty, the statements after the IFNB pseudoinstruction until the next ELSE or ENDIF are
assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.

page: 1 <ifb.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for IFB

 0002 chip lc864016

 0003 tifb macro arg

 0004 ifb <<arg>>

 0005 inc a

 0006 else

 0007 inc b

 0008 endif

 0009 endm

 0010

 0011 tifb xxx

 0011+1 ifb <xxx>

 0011+2 inc a

 0011+3 else

 0011+4 C 0000 6302 inc b

 0011+5 endif

 0012 tifb

 0012+1 ifb <>

 0012+2 C 0002 6300 inc a

 0012+3 else

 0012+4 inc b

 0012+5 endif

 0013 end

This is assembled because the
argument to IFB is nonempty.

This is assembled because the
argument to ifb is empty.

The angle brackets must
be ouble, because one
layer is removed in each
macro expansion.
VMC-118

 Assembler Pseudoinstructions
Example

IFE

Assemble if zero

Syntax

IFE expression

Description

If the value of expression is zero, the statements after the IFE pseudoinstruction until the next ELSE or
ENDIF are assembled.

page: 1 <ifnb.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for IFNB

 0002 chip lc864016

 0003 tifb macro arg

 0004 ifnb <<arg>>

 0005 inc a

 0006 else

 0007 inc b

 0008 endif

 0009 endm

 0010

 0011 tifb xxx

 0011+1 ifnb <xxx>

 0011+2 C 0000 6300 inc a

 0011+3 else

 0011+4 inc b

 0011+5 endif

 0012 tifb

 0012+1 ifnb <>

 0012+2 inc a

 0012+3 else

 0012+4 C 0002 6302 inc b

 0012+5 endif

 0013 end

This is assembled because
the argument to IFB is nonempty.

This is assembled because
the argument to IFB is empty.

The angle brackets must
be double, because one
layer is removed in each
macro expansion.
VMC-119

Visual Memory Unit (VMU) Programing Manual
Example

IFNE

Assemble if nonzero

Syntax

IFNE expression

Description

If the value of expression is nonzero, the statements after the IFNE pseudoinstruction until the next ELSE
or ENDIF are assembled.

page: 1 <ife.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for IFE

 0002 chip lc866032

 0003 cseg

 0004 00000003 aa set 3

 0005 ife aa-2

 0006 inc 70h

 0007 else

 0008 C 0000 7270 dec 70h

 0009 endif

 0010 00000002 aa set aa-1

 0011 ife aa-2

 0012 C 0002 6270 inc 70h

 0013 else

 0014 dec 70h

 0015 endif

 0016 end

The expression value is zero,
so this section is assembled.

The expression value is zero,
so this section is assembled.
VMC-120

 Assembler Pseudoinstructions
Example

IFIDN

Assemble if identical

Syntax

IFIDN <string1>, <string2>

Description

If the two strings string1 and string2 are identical, the statements after the IFIDN pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.

page: 1 <ifne.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for IFNE

 0002 chip lc866032

 0003 cseg

 0004 00000003 aa set 3

 0005 ifne aa-2

 0006 C 0000 6270 inc 70h

 0007 else

 0008 dec 70h

 0009 endif

 0010 00000002 aa set aa-1

 0011 ifne aa-2

 0012 inc 70h

 0013 else

 0014 C 0002 7270 dec 70h

 0015 endif

 0016 end

The expression value is zero,
so this section is assembled.

The expression value is zero,
so this section is assembled.
VMC-121

Visual Memory Unit (VMU) Programing Manual
Example

IFDIF

Assemble if different

Syntax

IFDIF <string1>, <string2>

Description

If the two strings string1 and string2 are different, the statements after the IFDIF pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.

page: 1 <ifidn.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for IFIDN

 0002 chip lc866032

 0003 cseg

 0004 tifidn macro arg1,arg2

 0005 ifidn <<arg1>>,<<arg2>>

 0006 inc a

 0007 else

 0008 dec a

 0009 endif

 0010 endm

 0011

 0012 tifidn same, same

 0012+1 ifidn <same>,<same>

 0012+2 C 0000 6300 inc a

 0012+3 else

 0012+4 dec a

 0012+5 endif

 0013 tifidn same, not_same

 0013+1 ifidn <same>,<not_same>

 0013+2 inc a

 0013+3 else

 0013+4 C 0002 7300 dec a

 0013+5 endif

 0014 end

The strings are the same,
so this section is assembled.

The strings are different,
so this section is assembled.

The angle brackets
must be double,
because one layer is
removed in each
macro expansion.
VMC-122

 Assembler Pseudoinstructions
Example

ELSE

Else case of conditional assembly

Syntax

ELSE

Description

The statements after the ELSE pseudoinstruction until the next ENDIF are assembled when the test
condition of the preceding IF pseudoinstruction fails to hold.

Reference: See under "IFDEF - Assemble if defined" in this section.

page: 1 <ifdif.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for IFDIF

 0002 chip lc866032

 0003 cseg

 0004 tifidn macro arg1,arg2

 0005 ifdif <<arg1>>,<<arg2>>

 0006 inc a

 0007 else

 0008 dec a

 0009 endif

 0010 endm

 0011

 0012 tifidn same, same

 0012+1 ifdif <same>,<same>

 0012+2 inc a

 0012+3 else

 0012+4 C 0000 7300 dec a

 0012+5 endif

 0013 tifidn same, not_same

 0013+1 ifdif <same>,<not_same>

 0013+2 C 0002 6300 inc a

 0013+3 else

 0013+4 dec a

 0013+5 endif

 0014 end

The strings are the same
so this section is assembled.

the strings are different
so this section is assembled.

The angle brackets
must be double,
because one layer is
removed in each
macro expansion.
VMC-123

Visual Memory Unit (VMU) Programing Manual
ENDIF

End conditional assembly

Syntax

ENDIF

Description

Marks the end of a conditional assembly.

Reference: See under "IFDEF - Assemble if defined" in this section.

.PRINTX

Display message during assembly

Syntax

.PRINTX"string"

Description

The .PRINTX pseudoinstruction displays the character string constant string during assembly.

Reference: For details of character string constants, see Section 20.7, “Character String Constants.”
VMC-124

 Assembler Pseudoinstructions
Example

.LIST

Resume listing

Syntax

.LIST

Description

The .LIST pseudoinstruction resumes listing output, when it has been suppressed with the .XLIST
pseudoinstruction.

Source program Screen display

Because of the IFDEF pseudoinstruction, this section is not assembled,
so the corresponding output does not appear.

SANYO (R) LC86K series Macro As

Copyright (c) SANYO Electric Co

Pass 1

Start

..CSEG

Condition#1

..DSEG

End

Source file: pprintx

Chip name: LC866000

ROM size: 64K bytes

RAM size: 384 bytes

XRAM size: 128 bytes

Pass 2

Start

..CSEG

Condition#1

..DSEG

End

; a sample program for .PRINTX

 chip lc866000

switch equ 1

 .printx "Start"

 cseg inblock

 .printx "..CSEG"

 ld count

 add b

 st data1

 ifdef switch

 .printx "Condition#1"

 inc data1

 else

 .printx "Condition#2"

 dec data1

 endif

 dseg

 .printx "..DSEG"

count: ds 1

data1: ds 1

 .printx "End"

 end
VMC-125

Visual Memory Unit (VMU) Programing Manual
Example

.XLIST

Suppress listing

Syntax

.XLIST

Description

The .XLIST pseudoinstruction suppresses output to the listing file.

Reference: See under ".LIST - Resume listing," in this section.

; a sample program for LIST

 chip lc866200

 cseg inblock

 mov #00, count

 ld count

 add #10h

 st b

.xlist

abc equ 10h

 dseg

count: ds 4

.list

 cseg inblock

 ld b

 sub #abc

 st count

 end

page: 1 <plist.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for LIST

 0002 chip lc866200

 0003 cseg inblock

 0004 C 0000 220000' mov #00, count

 0005 C 0003 0200' ld count

 0006 C 0005 8110 add #10h

 0007 C 0007 1302 st b

 0008

 0014 .list

 0015 cseg inblock

 0016 C 0000 0302 ld b

 0017 C 0002 A110' sub #abc

 0018 C 0004 1200' st count

 0019 end

From the .XLIST line onwards, output to the listing file is surpressed.
However, line numbers are still counted, so there is no loss of synch.

From the .LIST line onwards, output to
the listings file is resumed.
VMC-126

 Assembler Pseudoinstructions
.MACRO

List macro expansions

Syntax

.MACRO

Description

The .MACRO pseudoinstruction causes the expanded body of macro calls to be output to the listing file.

Example

; a sample program for .MACRO

 chip lc866200

t.mac macro

 inc a

 inc b

 endm

cseg inblock

 t.mac

 .xmacro

 t.mac

 .macro

 t.mac

 end

page: 1 <pmacro.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for .MACRO

 0002 chip lc866200

 0003 t.mac macro

 0004 inc a

 0005 inc b

 0006 endm

 0007

 0008 cseg inblock

 0009 t.mac

 0009+1 C 0000 6300 inc a

 0009+2 C 0002 6302 inc b

 0010 .xmacro

 0011 t.mac

 0012 .macro

 0013 t.mac

 0013+1 C 0008 6300 inc a

 0013+2 C 000A 6302 inc b

 0014 end

The .XMACRO pseudoinstruction ends the
output of expanded macro calls to the listing.
This means that the generated statements
and code both disappear.

The .XMACRO pseudoinstruction
resumes causes the listing of
expanded macro calls.
VMC-127

Visual Memory Unit (VMU) Programing Manual
.XMACRO

End macro expansion listing

Syntax

.XMACRO

Description

The .XMACRO pseudoinstruction ends the output of expanded macro calls to the listing.

Reference: For an example, see under the previous item, ".MACRO - List macro expansions."

.IF

List skipped statements in conditional assembly

Syntax

.IF

Description

The .IF pseudoinstruction causes source program statements skipped in a conditional assembly to be
output to the listing file.
VMC-128

 Assembler Pseudoinstructions
Example

; a sample program for .IF
 chip lc866200
t.if macro arg1
 ifb <<arg1>>
 inc a
 else
 inc b
 endif
 endm
 cseg inblock
 t.if
 .xif
 t.if abc
 .if
 t.if def
 end

page: 1 <pif.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS
 0001 ; a sample program for .IF
 0002 chip lc866200
 0003
 0004 t.if macro arg1
 0005 ifb <<arg1>>
 0006 inc a
 0007 else
 0008 inc b
 0009 endif
 0010 endm
 0011 cseg inblock
 0012 t.if
 0012+1 ifb <>
 0012+2 C 0000 6300 inc a
 0012+3 else
 0012+4 inc b
 0012+5 endif
 0013 .xif
 0014 t.if abc
 0014+1 ifb <abc>
 0014+3 else
 0014+4 C 0002 6302 inc b
 0014+5 endif
 0015 .if
 0016 t.if def
 0016+1 ifb <def>
 0016+2 inc a
 0016+3 else
 0016+4 C 0004 6302 inc b
 0016+5 endif
 0017 end

The .XIF pseudoinstruction stops source program
statements skipped in a conditional assembly from
being output to the listing file. the part of a conditional
assembly section which is assembled appears in the
listing regardless of this pseudoinstruction.

The .IF pseudoinstruction causes even the source
program statements skipped in a conditional
assembly to be output to the listing file.
VMC-129

Visual Memory Unit (VMU) Programing Manual
.XIF

End listing of skipped statements

Syntax

.XIF

Description

The .XIF pseudoinstruction stops source program statements skipped in a conditional assembly from being
output to the listing file.

Reference: For an example, see under the previous item, ".IF - List skipped statements in conditional assembly."

INCLUDE

Include file

Syntax

INCLUDE filename

Description

The INCLUDE pseudoinstruction causes the source file specified by filename to be read into the current
point in the source program and assembled. The specification of filename must include the extension. The
INCLUDE pseudoinstruction can be nested to a maximum depth of nine. Note that if an END
pseudoinstruction occurs in the included file, this terminates the assembly.
VMC-130

 Assembler Pseudoinstructions
Example

TITLE

Set listing title

Syntax

TITLE string

Description

The TITLE pseudoinstruction specifies string as the title for the listing file. Unlike a character string
constant, string is not enclosed in quotation marks. It is also not possible to include codes with the
backslash (\) symbol.

INCLUDE.ASM

; a sample program for INCLUDE

 INCLUDE INCLUDE1.ASM

 end

Indicates the nesting depth of includes.

INCLUDE2.ASM

chip lc866200

cseg

mov #0, acc

M86K INCLUDE C CINCLUDE G

INCLUDE1.ASM

 INCLUDE INCLUDE2.ASM

page: 1 <include.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for INCLUDE

 0002 INCLUDE INCLUDE1.ASM

 1/0001 INCLUDE INCLUDE2.ASM

 2/0001 chip lc866200

 2/0002 cseg

 2/0003 C 0000 230000 mov #0, acc

 0003
VMC-131

Visual Memory Unit (VMU) Programing Manual
Example

PAGE

New page

Syntax

PAGE

Description

The PAGE pseudoinstruction forces a new page in the listing file. The page break appears immediately after
this pseudoinstruction.

Example

page: 1 <title.ASM> sample program's title for the listing

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for TITLE

 0002 TITLE sample program's title for the listing

 0003 chip lc864024

 0004 cseg

 0005 C 0000 00 nop

 0006 end

This string appears on all pages of the listing.
VMC-132

 Assembler Pseudoinstructions
; a sample program for PAGE

 chip lc866032

 page

 cseg

 page

 nop

 page

 end

page: 1 <page.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for PAGE

 0002 chip lc866032

page: 2 <page.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0003 page

 0004 cseg

page: 3 <page.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0005 page

 0006 C 0000 00 nop

page: 4 <page.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0007 page

 0008 end

Source file

Listing file
VMC-133

Visual Memory Unit (VMU) Programing Manual
CHIP

Specify chip for assembly

Syntax

CHIP chipname

Description

The CHIP pseudoinstruction informs the assembler of the chip for which assembly is to be carried out.
According to the value of chipname, the assembly changes the reserved words, and carries out a memory
size check. This pseudoinstruction must appear at the beginning of the source file, before any other
instructions or pseudoinstructions. If this pseudoinstruction is not found, the environment variable
CHIPNAME is referenced. If the chip name specified by this pseudoinstruction is different from the chip
specified by the CHIPNAME environment variable, a warning level error is issued.

Note: For developing Visual Memory applications, the chip name must be set to LC868700.

COMMENT

Add comment to object file

Syntax

COMMENT comment_string

Description

The COMMENT pseudoinstruction adds a comment directly into the assembled object code. Unlike a
character string constant, comment_string is not enclosed in quotation marks. It is also not possible to
include codes with the backslash (\) symbol. The comment is stored from byte 680 of the object file. A
maximum of 255 characters can be used for the comment.
VMC-134

 Assembler Pseudoinstructions
Example

WIDTH

Specify columns in listing file

Syntax

WIDTH number

Description

The WIDTH pseudoinstruction specifies the number of character columns in the listing file, that is, the
number of characters in each line. The parameter number may be any value from 72 to 132 inclusive, but
the recommended minimum is the number of columns of the source file plus 28. Although this
pseudoinstruction can appear any number of times in a single source file, normally it is specified once only
at the beginning of the file. If this pseudoinstruction is not found, the default listing file has 132 columns.

; a sample program for COMMENT

 chip lc866024

 comment This is a comment string embedded into OBJ file

 cseg

 nop

 end

00000260 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

00000270 00 00 00 00 00 60 00 00-80 01 00 00 80 00 00 00 `..........

00000280 C6 92 40 2B 4D 38 36 4B-20 20 20 20 63 6F 6D 6D **+M86K comm

00000290 65 6E 74 2E 41 53 4D 20-63 6F 6D 6D 65 6E 74 20 ent.ASM comment

000002A0 4C 43 38 36 36 30 32 34-30 54 68 69 73 20 69 73 LC8660240This is

000002B0 20 61 20 63 6F 6D 6D 65-6E 74 20 73 74 72 69 6E a comment strin

000002C0 67 20 65 6D 62 65 64 64-65 64 20 69 6E 74 6F 20 g embedded into

000002D0 4F 42 4A 20 66 69 6C 65-00 00 01 01 00 01 00 05 OBJ file........

000002E0 00 01 00 00 00 00 00 00-00 00 E0 00 00 00 00 C4 *

000002F0 00 00 00 00 C4 00 00 00-00 24 00 00 01 00 04 01 *....$......

00000300 00 00 00 24 ...$

Source file

Dump of object file (part only)
Character count (1 byte)
VMC-135

Visual Memory Unit (VMU) Programing Manual
Example

BANK

Specify RAM bank

Syntax

BANK expression

Description

The BANK pseudoinstruction supplies the bank number for symbols defined by DS pseudoinstructions for
RAM after a DSEG pseudoinstruction.

 1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

page: 1 <width.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for WIDTH

 0002 chip lc866200

 0003 cseg ; this is a long line to indicat

 0003 e WIDTH's effect

 0004 WIDTH 72

 0005 C 0000 00 nop ; this is also a long line

 0005 to indicate WIDTH's effect

 0006 WIDTH 78

 0007 end

WIDTH is evaluated on pass 1 and pass 2, but
the listing output occurs in pass 2 only, so the
last value found in pass 1 is used here, causing
the lines to be folded at 78 characters

Carriage return lines and linefeed is inserted at character position
72, folding the lines here.
VMC-136

 Assembler Pseudoinstructions
Example

CHANGE

Jump between flash memory and ROM

Syntax

CHANGE symbol

Description

For the LC86800 series, this is a special jump instruction for switching between code in flash memory and
code in ROM (system BIOS). The operand symbol must have been declared with the pseudoinstruction
OTHER_SIDE_SYMBOL. Note that this pseudoinstruction is special to the LC86800 series, and in other cases
an error results.

Note: For Visual Memory, use this instruction to call an operating system function.

page: 1 <bank.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for BANK

 0002 chip lc866032

 0003 cseg inblock

 0004

 0005 C 0000 220000' mov #0,data1

 0006

 0007 C 0003 6200' inc data1

 0008 C 0005 0200' ld data1

 0009 C 0007 1201' st data2

 0010

 0011 C 0009 6200' inc dataa

 0012 C 000B 0200' ld dataa

 0013 C 000D 1202' st datac

 0014

 0015 dseg

 0016 bank 0

 0017 D 0000 data1: ds 1

 0018 D 0001 data2: ds 1

 0019 D 0002 data3: ds 1

 0020

 0021 bank 1

 0022 D 0000 dataa: ds 1

 0023 D 0001 datab: ds 1

 0024 D 0002 datac: ds 1

 0025

 0026 end

These symbols are
assigned to bank 0.

These symbols are
assigned to bank 1.
VMC-137

Visual Memory Unit (VMU) Programing Manual
Reference: For details of operating system function calls, refer to the "System BIOS" section of the Visual Memory
Hardware Manual.

Example

RADIX

Specify default radix

Syntax

RADIX expression

Description

The RADIX pseudoinstruction specifies the radix, or base, of a numeric constant with no explicit radix
indication. The value of expression must be a constant value from the set 2, 8, 10, and 16. This specification
takes effect from this statement until a subsequent RADIX pseudoinstruction. If this pseudoinstruction is
not present, the default radix is 10.

Example

Xxx SET 10 _ interpreted by default as 10 decimal.

RADIX 16

Xxx SET 10 _ interpreted as 16 decimal, because of the radix value 16.

RADIX 2

Xxx SET 10 _ interpreted as 2 decimal, because of the radix value 2.

JMPO

Optimized JMP instruction

Syntax

JMPO expression

page: 1 <change.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for CHANGE

 0002 chip lc868032

 0003 other_side_symbol far_away

 0004

 0005 cseg

 0006 C 0000 B80D21' change far_away

 0006 C 0003 0000'
VMC-138

 Assembler Pseudoinstructions
Description

The JMPO pseudoinstruction compares expression with the current location, and if this is a jump within
the same block (only the bottom 12 bits of the addresses are different) generates a JMP instruction.
Otherwise, that is, if the address is in a different block, or if the address cannot be determined because for
example it is an external symbol, then this generates a JMPF instruction.

Example

BRO

Optimized BR instruction

Syntax

BRO expression

Description

BRO pseudoinstruction compares expression with the current location, and if the branch address is within
the range -128 to +127 generates a BR instruction; when outside the range -128 to +127 generates a BRF
instruction.

page: 1 <jmpo.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for JMPO

 0002 chip lc866032

 0003 cseg

 0004 C 0000 2803' jmpo near

 0005 C 0002 00 nop

 0006 C 0003 00 near: nop

 0007 C 0004 211000' jmpo far

 0008

 0009 org 1000h

 0010 C 1000 00 far: nop

 0011 end

JMP instruction when within the same memory block

JMPF instruction when in a different memory block
VMC-139

Visual Memory Unit (VMU) Programing Manual
Example

CALLO

Optimized CALL instruction

Syntax

CALLO expression

Description

The CALLO pseudoinstruction compares expression with the current location, and if this is a call within the
same block (only the bottom 12 bits of the addresses are different) generates a CALL instruction. Otherwise,
that is, if the address is in a different block, or if the address cannot be determined because for example it is
an external symbol, then this generates a CALLF instruction.

page: 1 <bro.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for BRO

 0002 chip lc866032

 0003 cseg

 0004 C 0000 0101 bro near

 0005 C 0002 00 nop

 0006 C 0003 00 near: nop

 0007 C 0004 11FA00 bro far

 0008

 0009 org 100h

 0010 C 0100 00 far: nop

 0011 end

Generates a BR instruction because destination is within the range -128 to +127.

Generates a BRF instruction because destination is outside the range -128 to +127.
VMC-140

 Assembler Pseudoinstructions
Example

BZO

BZ instruction guaranteeing no address error

Syntax

BZO expression

Description

The BZO macro generates code equivalent to the BZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BZO macro uses a BNZ instruction, which is the logical inverse of the BZ instruction, and a BRO
instruction. Enter the branch destination for expression.

Code generation macro

; *** Branch near relative address if accumulator is zero ***

bzo macro r8

local _next_

bnz _next_

bro r8

next:

endm

page: 1 <CALLo.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

 0001 ; a sample program for CALLO

 0002 chip lc866032

 0003 cseg

 0004 C 0000 0805' CALLo near

 0005 C 0002 201000' CALLo far

 0006

 0007 C 0005 00 near: nop

 0008 C 0006 A0 ret

 0009

 0010 org 1000h

 0011 C 1000 00 far: nop

CALL instruction when within the same memory block.

CALLF instruction when in a different memory block.
VMC-141

Visual Memory Unit (VMU) Programing Manual
BNZO

BNZ instruction guaranteeing no address error

Syntax

BNZO expression

Description

The BNZO macro generates code equivalent to the BNZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNZO macro uses a BZ instruction, which is the logical inverse of the BNZ instruction, and a BRO
instruction. Enter the branch destination for expression.

Code generation macro

; *** Branch near relative address if accumulator is not zero ***

bnzo macro r8

local _next_

bz _next_

bro r8

next:

endm

BPO

BP instruction guaranteeing no address error

Syntax

BPO expression

Description

The BPO macro generates code equivalent to the BP instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BPO macro uses a BP instruction, and BR and BRO instructions. Enter the branch destination
for expression.
VMC-142

 Assembler Pseudoinstructions
Code generation macro

; *** Branch near relative address if direct bit is one ***

bpo macro d9,b3,r8

local _next_

local _true_

bp d9,b3,_true_

br _next_

true: bro r8

next:

endm

BPCO

BPC instruction guaranteeing no address error

Syntax

BPCO expression

Description

The BPCO macro generates code equivalent to the BPC instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BPCO macro uses a BPC instruction, and BR and BRO instructions. Enter the branch destination for
expression.

Code generation macro

; *** Branch near relative address if direct bit is one,

; and clear ***

bpco macro d9,b3,r8

local _next_

local _true_

bpc d9,b3,_true_

br _next_

true: bro r8

next:

endm
VMC-143

Visual Memory Unit (VMU) Programing Manual
BNO

BN instruction guaranteeing no address error

Syntax

BNO expression

Description

The BNO macro generates code equivalent to the BN instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNO macro uses a BN instruction, and BR and BRO instructions. Enter the branch destination for
expression.

Code generation macro

; *** Branch near relative address if direct bit is zero ***

bno macro d9,b3,r8

local _next_

local _true_

bn d9,b3,_true_

br _next_

true: bro r8

next:

endm

DBNZO

DBNZ instruction guaranteeing no address error

Syntax

DBNZO expression

Description

The DBNZO macro generates code equivalent to the DBNZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The DBNZO macro uses a DBNZ instruction, and BR and BRO instructions. The function of expression is
the same as in the DBNZ instruction.
VMC-144

 Assembler Pseudoinstructions
Code generation macro

; *** Decrement direct byte and branch near relative address

; if direct byte is not zero ***

dbnzo macro d9,r8

local _next_

local _true_

dbnz d9,_true_

br _next_

true: bro r8

next:

endm

BEO

BE instruction guaranteeing no address error

Syntax

BEO expression

Description

The BEO macro generates code equivalent to the BE instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BEO macro uses a BNE instruction and BRO instruction. The function of expression is the same as in
the BE instruction.

Code generation macro

; *** Compare immediate data or accumulator and branch

; near relative address if equal ***

beo macro arg0,arg1,arg2

local _next_

local _txen_

ifb <<arg2>>

bne arg0,_next_

bro arg1

next:

else

bne arg0,arg1,_txen_

bro arg2

txen:

endif

endm
VMC-145

Visual Memory Unit (VMU) Programing Manual
BNEO

BNE instruction guaranteeing no address error

Syntax

BNEO expression

Description

The BNEO macro generates code equivalent to the BNE instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNEO macro uses a BE instruction and BRO instruction. The function of expression is the same as in
the BNE instruction.

Code generation macro

; *** Compare immediate data or accumulator and branch

; near relative address if equal ***

bneo macro arg0,arg1,arg2

local _next_

local _txen_

ifb <<arg2>>

be arg0,_next_

bro arg1

next:

else

be arg0,arg1,_txen_

bro arg2

txen:

endif

endm
VMC-146

LC86K Instruction Summary
This chapter describes general features of flag handling and addressing, before the complete listing of the
instruction set.

Instruction Summary

Arithmetic Instructions

The arithmetic instructions operate principally on the accumulator, and carry out the four basic operations,
incrementing, and decrementing. The carry, auxiliary carry, and overflow flags are set according to the results of
arithmetic operations, as follows.

Table 2.38 CY (carry flag)

Arithmetic operation Operation result CY

Add instructions When there is a carry from bit 7 (MSB) 1

When there is no carry from bit 7 (MSB) 0

Subtraction and comparison
instructions

When a borrow from bit 7 (MSB) is required 1

When no borrow from bit 7 (MSB) is required 0

Multiplication and division instructions - 0
VMC-147

 LC86K Instruction Summary
Table 2.39 AC (auxiliarycarry flag)

Table 2.40 OV (overflow flag)

Logical Instructions

Logical instructions carry out logical rotates. The RORC and ROLC instructions also affect the carry flag.

Data Transfer Instructions

The data transfer instructions read, write, back up, and exchange data to and from RAM and special function
registers (SFR).

Jump Instruction

A jump instruction is an unconditional transfer to a new instruction.

Arithmetic operation Operation result AC

Add instructions When there is a carry from bit 3 1

When there is no carry from bit 3 0

Subtraction instructions When a borrow from bit 3 is required 1

When no borrow from bit 3 is required 0

Arithmetic operation Operation result OV

Add and subtract instructions When there is a carry from bit 7 but not from bit 6 1

When there is a carry from bit 6 but not from bit 7 1

When an overflow error occurs in a signed variable
addition instruction

1

All other cases 0

Multiplication instructions When the product is 256 or more 1

When the product is 255 or less 0

Division instructions When the divisor is zero 1

When the divisor is nonzero 0
VMC-148

 LC86K Instruction Summary
Conditional Branch Instructions

Conditional branch instructions determine the value of a specified condition as true or false, and transfer to the
specified destination if true. If false, there is no transfer, and control passes to the next instruction.

The BE and BNE instructions branch on the basis of a comparison of two 8-bit data values, and the carry flag is set
or cleared according to the result, as follows.

Operands Carry flag (CY)

#i8, r8 d9, r8 @Rj, #i8, r8

Magnitude relation #i8 > (ACC) (d9) > (ACC) #i8 > ((Rj)) 1

#i8 = (ACC) (d9) = (ACC) #i8 = ((Rj)) 0

(d9) < (ACC) (d9) < (ACC) #i8 < ((Rj)) 0

Subroutine Instruction

The subroutine instruction performs an unconditional branch to another instruction. An address is stored on the
stack In order that, after the branch, a return instruction (RET or RETI) can return to the instruction following the
CALL instruction. The stack is in RAM, and is pointed to by the stack pointer (SP). Enough RAM must be reserved
for the stack to allow for the nesting level of subroutine calls.

Note: The Visual Memory stack is held in bank 0 of RAM. When an application is started, the system
BIOS sets it to 7FH. When a value is pushed onto the stack, the stack pointer is incremented before
storing the data, so the actual values are stored from address 80H. The stack consumes addresses
upwards from 7FH to 0FFH.
The internal clock function also needs 20 bytes on the stack.

Bit Manipulation Instructions

The bit manipulation instructions operate on individual bits of specified RAM or special function registers (SFR).

Other Instructions

The NOP instruction has no effect other than to consume one clock cycle.

Macro Instruction

This is a dedicated standard macro instruction. It switches between the execution of the system BIOS in ROM and
the application program in flash memory.

Addressing

There are a number of different methods of addressing for flash memory, RAM, and special function
registers (SFRs).
VMC-149

Visual Memory Unit (VMU) Programing Manual
Program Memory Addressing

The program ROM address of the destination of a jump, branch, or subroutine instruction is shown by the
instruction code. In this case the address is shown by one of the following addressing methods.

r8 (8-bit relative addressing)

The transfer is to an address in the range -128 to +127 from the start address of the currently executed
instruction. This is shown by a signed 8-bit value.
[80H to 7FH: -128 to +127]

r16 (16-bit relative addressing)

This allows a transfer anywhere within the 64K-byte flash memory address space. It is shown by an
unsigned 16-bit value.
[0000H to FFFFH: +0 to +65535]

a12 (12-bit absolute addressing)

The top four bits PC15 to PC12 (the current page) of the address of the instruction after the current
instruction (PC15 to PC00) are kept the same, and the remaining 12 bits (PC11 to PC00) are replaced by the
address data (000H to FFFH). This allows a jump anywhere within the current page (PC15 to PC12).

Caution: Care is required, because if a JMP instruction or CALL instruction occurs at the final address within a
page, the current page changes.

a16 (16-bit absolute addressing)

This allows a transfer anywhere within the 64K-byte flash memory address space.
The 16-bit value is used unchanged as the address.

[0000H to FFFFH: 0 to 65535]

Table jumps

If the destination address of a jump is on the stack, a RET instruction forces the address into the program
counter (PC), thus achieving a jump.

In Example 1, the first line sets the stack pointer (SP) to 09H. Executing a RET instruction now causes a jump
to the address whose upper byte is the value of byte 08H in RAM, and whose lower byte is the value of byte
07H in RAM; the jump address is set accordingly in lines 2 and 3.

Since the jump destination is PC = 0C13H, in line 2 the lower byte is set to 13H, and in line 3 the upper byte
is set to 0CH. In the fourth line, when the RET instruction is executed, the stack pointer is set to 07H, and a
jump to 0C13H occurs. However, in Example 1, since the stack pointer value must be known explicitly,
normally a PUSH instruction is used as in Example 2.
VMC-150

 LC86K Instruction Summary
Example 1

MOV #09H,SP

MOV #13H,07H

MOV #0CH,08H

RET

Example 2

MOV #13H,ACC

PUSH ACC

MOV #0CH,ACC

PUSH ACC

RET

Example 3 carries out a 128-way branch to 00H to 7FH on the basis of the values of RAM address 70H.

In lines 1 and 2, the lower byte of the branch destination address is set, and in line 4 the upper byte of the
address. The RET instruction in line 6 branches to the jump table in lines 7 and 8, thence to the branch
destination.
This is referred to as a "table jump" and can be used to branch to a number of different
addresses according to conditions.

Example 3

A0: LD 070H

 ROL

 ADD #LOW(A1)

 PUSH ACC

 MOV #HIGH(A1),ACC

 PUSH ACC

 RET

;

 ORG 0C00H

A1: JMP B00 jump table

_

JMP B7F

;

B00: XXXXXX
VMC-151

Visual Memory Unit (VMU) Programing Manual
RAM and Special Function Register (SFR) Addressing

d9 (direct addressing)

Addresses RAM or SFR directly with nine bits d8 to d0.

Addresses 000H to 0FFH . . . specify RAM.

Addresses 100H to 1FFH . . . specify an SFR.

b3 (bit addressing)

In the bit manipulation instructions (SET1, CLR1, NOT1), and the BP, BPC, and BN instructions, 3-bit
bit-address data is used in combination with d9 (direct addressing), to specify individual bits within RAM
or an SFR.

@Rj (indirect addressing)

For indirect addressing the destination RAM or SFR address is stored in a particular location in RAM, and
the access made through specification of this address in RAM.

Reference: For more details of indirect addressing refer to the Visual Memory Hardware Manual.

The particular addresses in RAM are referred to as indirect address registers, and are indicated as @R0, @R1,
@R2, and @R3. The indirect address registers are accessed using a 2-bit indirect addressing value (j1, j0),
allowing a specification from @R0 to @R3.

A bank of four indirect address registers is assigned to the first 16 bytes (addresses 00H to 0FH) of each
RAM bank. The RAM bank is selected with RAMBK0 (bit 1 of PSW). The indirect address register bank is
selected with IRBK1 and 0 (bits 4 and 3 of PSW).

When an indirect addressing instruction is executed, for the indirect address register and the RAM address
specified by the indirect address register, the RAM address used is in the RAM bank specified by IRBK1 and
0 and RAMBK0. On a reset, IRBK0, and 1 are both zero, and RAMBK0 is also set to zero, so the absolute
addresses of @R0, @R1, @R2, and @R3 are respectively 00H, 01H, 02H, and 03H in RAM bank 0.

Indirect address registers . . . @R3 @R2 @R1 @R0
Indirect addressing values (j1, j0) . . . (11) (10) (01) (00)
Indirect addressing register map

2 2 2 2 2 2 2 2

7 6 5 4 3 2 1 0

(111) (110) (101) (100) (011) (010) (001) (000)

7 6 5 4 3 2 1 0

LSBMSB

Bit-address value
VMC-152

 LC86K Instruction Summary
Examples of indirect addressing

The following are examples of calculation using indirect address registers.

In Example 1, in the second line immediate data 68H is stored in RAM (address 00H). Using RAM (address
00H) as an indirect address register, RAM (address 68H) is accessed. For example, in line 3, the indirect
address register (@R0) is specified to store immediate data 10H in RAM (address 68H).

In line 5, by specifying the indirect address register (@R0), the contents of RAM (address 68H) is added to
the accumulator.

Example 1

MOV #055H,ACC

MOV #068H,00H

MOV #010H,@R0

ADD #015H

ADD @R0

The next example uses indirect addressing to access an SFR.

In Example 2, the first two lines clear bits 4 and 3 of the PSW, selecting RAM addresses 00H to 03H for the
indirect address registers. In the fourth line immediate data 02H is stored in RAM address 02H. Then using
RAM (address 02H) as an indirect address register accesses RAM (address 02H). For example, in line 5,
immediate data 12H is stored by specifying the indirect address register (@R2) in an SFR (address 02H: B
register). In line 6, the indirectly addressed B register is incremented.

Indirect address register Function Bank 0 (IRBK1 = 0)
(IRBK0 = 0)

Bank 1 (IRBK1 = 0)
(IRBK0 = 1)

Bank 2 (IRBK1 = 1)
(IRBK0 = 0)

Bank 3 (IRBK1 = 1)
(IRBK0 = 1)

@R0 RAM access RAM 00H RAM 04H RAM 08H RAM 0CH

@R1 RAM access RAM 01H RAM 05H RAM 09H RAM 0DH

@R2 SFR access RAM 02H RAM 06H RAM 0AH RAM 0EH

@R3 SFR access RAM 03H RAM 07H RAM 0BH RAM 0FH

0

RAM bank 0

When RAMBK = 0 (RAM bank 0)

RAM address
referenced by
@RO

@R0
@R0

RAM bank 1

68H

0

RAM bank 0

When RAMBK = 1 (RAM bank 1)

RAM address
referenced by
@RO

RAM bank 1

68H
VMC-153

Visual Memory Unit (VMU) Programing Manual
Example 2

CLR1 PSW,4

CLR1 PSW,3

MOV #0ACH,ACC

MOV #002H,02H

MOV #012H,@R2

INC @R2

The next example uses bank-switching with the PSW, to indirectly address an SFR.

In Example 3, the first two lines set the PSW bank to 2, so that RAM addresses 08H to 0BH are used as
indirect address registers. In line 4, immediate data 02H is stored in RAM address 0BH. Using RAM
(address 0BH) as an indirect address register accesses RAM (address 02H). For example, in line 5 immediate
data 12H is stored in the SFR (address 02H: B register) by specifying the indirect address register (@R2). In
line 6 the indirectly addressed B register is incremented.

Example 3

SET1 PSW,4

CLR1 PSW,3

MOV #0ACH,ACC

MOV #002H,0BH

MOV #012H,@R2

INC @R2
VMC-154

Instruction Set Reference
The comprehensive LC86K instruction set includes some 70 instructions. Identified by some 45 operation codes
these can be grouped into the following eight categories.

Arithmetic instructions ADD, ADDC, SUB, SUBC, INC, DEC, MUL, DIV

Logical instructions AND, OR, XOR, ROL,ROLC,ROR, RORC

Data transfer instructions LD, ST, MOV, LDC, PUSH, POP, XCH

Jump instructions JMP, JMPF, BR, BRF

Conditional branch instructions BZ, BNZ, BP, BPC, BN, DBNZ, BE, BNE

Subroutine instructions CALL, CALLF, CALLR, RET, RETI

Bit manipulation instructions CLR1, SET1, NOT1

Miscellaneous instruction NOP

Macro instruction CHANGE
VMC-155

 Instruction Set Reference
Arithmetic Instructions

ADD _i8

ADD immediate data to accumulator

Instruction code 1 0 0 0 0 0 0 1 i7i6i5i4i3i2i1i0 (81H)

Byte count 2

Cycles 1

Function (ACC) ← (ACC) + #i8

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Adds the contents of the accumulator and immediate data (i7 to i0), and stores the result in the accumulator.

Example

ACC CY AC OV

MOV #055H,ACC 55H - - -

ADD #013H 68H 0 0 0

ADD #00AH 72H 0 1 0

ADD #00FH 81H 0 1 1

ADD #080H 01H 1 0 1
VMC-156

 Instruction Set Reference
ADD d9

ADD direct byte to accumulator

Instruction code 1 0 0 0 0 0 1d8 d7d6d5d4d3d2d1d0 (82H to 83H)

Byte count 2

Cycles 1

Function (ACC) _ (ACC) + (d9)

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Adds the contents of the accumulator and the contents of the RAM address or SFR specified by d8 to d0,
and stores the result in the accumulator.

Example 1

ACC RAM CY AC OV

23H

MOV #055H,ACC 55H - - - -

MOV #068H,023H 55H 68H - - -

ADD #00CH 61H 68H 0 1 0

ADD 023H C9H 68H 0 0 1

Example 2

ACC B CY AC OV

MOV #070H,ACC 70H - - - -

MOV #095H,B 70H 95H - - -

ADD #002H 72H 95H 0 0 0

ADD B 07H 95H 1 0 0
VMC-157

Visual Memory Unit (VMU) Programing Manual
ADD @Rj

ADD indirect byte to accumulator

Instruction code 1 0 0 0 0 1j1j0 (84H to 87H)

Byte count 1

Cycles 1

Function (ACC) ← (ACC) + ((Rj)) j = 0, 1, 2, 3

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Adds the contents of the accumulator and the contents of the RAM address or SFR specified by the indirect
address register specified by j1 to j0, and stores the result in the accumulator.

Example 1

ACC RAM RAM CY AC OV

00H 68H

MOV #055H,ACC 55H - - - - -

MOV #068H,000H 55H 68H - - - -

MOV #010H,@R0 55H 68H 10H - - -

ADD #015H 6AH 68H 10H 0 0 0

ADD @R0 7AH 68H 10H 0 0 0

Example 2

ACC RAM TRL CY AC OV

02H

MOV #0AAH,ACC AAH - - - - -

MOV #004H,002H AAH 04H - - - -

MOV #055H,@R2 AAH 04H 55H - - -

ADD #001H ABH 04H 55H 0 0 0

ADD @R2 00H 04H 55H 1 1 0
VMC-158

 Instruction Set Reference
ADDC _îi8

ADD immediate data and carry flag to accumulator

Instruction code 1 0 0 1 0 0 0 1 i7i6i5i4i3i2i1i0 (91H)

Byte count 2

Cycles 1

Function (ACC) ← (ACC) + (CY) + #i8

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Adds the contents of the accumulator and carry flag to the immediate data (i7 to i0), and stores the result
in the accumulator.

Example

ACC CY AC OV

MOV #055H,ACC 55H - - -

ADD #013H 68H 0 0 0

ADDC #00AH 72H 0 1 0

ADDC #00FH 81H 0 1 1

ADDC #080H 01H 1 0 1

ADDC #001H 03H 0 0 0
VMC-159

Visual Memory Unit (VMU) Programing Manual
ADDC d9

ADD direct byte and carry flag to accumulator

Instruction code 1 0 0 1 0 0 1d8 d7d6d5d4d3d2d1d0 (92H to 93H)

Byte count 2

Cycles 1

Function (ACC) ← (ACC) + (CY) + (d9)

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Adds the contents of the accumulator and carry flag to the contents of the RAM address or SFR specified
by d8 to d0, and stores the result in the accumulator.

Example 1

ACC RAM CY AC OV

23H

MOV #055H,ACC 55H - - - -

MOV #068H,023H 55H 68H - - -

ADD #00CH 61H 68H 0 1 0

ADDC 023H C9H 68H 0 0 1

SET1 PSW,7 C9H 68H 1 0 1

ADDC 023H 32H 68H 1 1 0

Example 2

ACC B CY AC OV

MOV #070H,ACC 70H - - - -

MOV #095H,B 70H 95H - - -

ADD #002H 72H 95H 0 0 0

ADDC B 07H 95H 1 0 0

ADDC B 9DH 95H 0 0 0
VMC-160

 Instruction Set Reference
ADDC @Rj

ADD indirect byte and carry flag to accumulator

Instruction code 1 0 0 1 0 1j1j0 (94H to 97H)

Byte count 1

Cycles 1

Function (ACC) ← (ACC) + (CY) + ((Rj)) j = 0, 1, 2, 3

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Adds the contents of the accumulator and carry flag to the contents of the RAM address or SFR specified
by the indirect address register specified by j1 to j0, and stores the result in the accumulator.

Example 1

ACC RAM RAM CY AC OV

00H 68H

MOV #055H,ACC 55H - - - - -

MOV #068H,000H 55H 68H - - - -

MOV #010H,@R0 55H 68H 10H - - -

ADD #015H 6AH 68H 10H 0 0 0

ADDC @R0 7AH 68H 10H 0 0 0

SET1 PSW,7 7AH 68H 10H 1 0 0

ADDC @R0 8BH 68H 10H 0 0 1

Example 2

ACC RAM TRL CY AC OV

02H

MOV #0AAH,ACC AAH - - - - -

MOV #004H,002H AAH 04H - - - -

MOV #055H,@R2 AAH 04H 55H - - -

ADD #001H ABH 04H 55H 0 0 0

ADDC @R2 00H 04H 55H 1 1 0

ADDC @R2 56H 04H 55H 0 0 0
VMC-161

Visual Memory Unit (VMU) Programing Manual
SUB _i8

Subtract immediate data from accumulator

Instruction code 1 0 1 0 0 0 0 1 i7i6i5i4i3i2i1i0 (A1H)

Byte count 2

Cycles 1

Function (ACC) ← (ACC) - #i8

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Subtracts immediate data (i7 to i0) from the contents of the accumulator, and stores the
result in the accumulator.

Example

ACC CY AC OV

MOV #055H,ACC 55H - - -

SUB #013H 42H 0 0 0

SUB #003H 3FH 0 1 0

SUB #03FH 00H 0 0 0

SUB #002H FEH 1 1 0

SUB d9

Subtract direct byte from accumulator

Instruction code 1 0 1 0 0 0 1d8 d7d6d5d4d3d2d1d0 (A2H to A3H)

Byte count 2

Cycles 1

Function (ACC) ← (ACC) - (d9)

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Subtracts the contents of the RAM address or SFR specified by d8 to d0 from the contents
of the accumulator, and stores the result in the accumulator.

Example 1

ACC RAM CY AC OV

23H

MOV #055H,ACC 55H - - - -

MOV #068H,023H 55H 68H - - -

SUB #00CH 49H 68H 0 1 0

SUB 023H E1H 68H 1 0 0

Example 2

ACC RAM CY AC OV

MOV #080H,ACC 80H - - - -

MOV #095H,B 80H 95H - - -

SUB #002H 7EH 95H 0 1 1

SUB B E9H 95H 1 0 1
VMC-162

 Instruction Set Reference
SUB @Rj

Subtract indirect byte from accumulator

Instruction code 1 0 1 0 0 1j1j0 (A4H to A7H)

Byte count 1

Cycles 1

Function (ACC) ← (ACC) - ((Rj)) j = 0, 1, 2, 3

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Subtracts the contents of the RAM address or SFR specified by the indirect address register specified by j1
to j0 from the contents of the accumulator, and stores the result in the accumulator.

Example 1

ACC RAM RAM CY AC OV

00H 68H

MOV #055H,ACC 55H - - - - -

MOV #068H,00H 55H 68H - - - -

MOV #010H,@R0 55H 68H 10H - - -

SUB #016H 3FH 68H 10H 0 1 0

SUB @R0 2FH 68H 10H 0 0 0

Example 2

ACC RAM TRL CY AC OV

02H

MOV #0AAH,ACC AAH - - - - -

MOV #004H,002H AAH 04H - - - -

MOV #0AAH,@R2 AAH 04H AAH - - -

SUB #001H A9H 04H AAH 0 0 0

SUB @R2 FFH 04H AAH 1 1 0
VMC-163

Visual Memory Unit (VMU) Programing Manual
SUBC _îi8

Subtract immediate data and carry flag from accumulator

Instruction code 1 0 1 1 0 0 0 1 i7i6i5i4i3i2i1i0 (B1H)

Byte count 2

Cycles 1

Function (ACC) ̈ (ACC) - (CY) - #i8

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Subtracts immediate data (i7 to i0) and carry flag from the contents of the accumulator, and stores the result
in the accumulator.

Example

ACC CY AC OV

MOV #055H,ACC 55H - - -

SUB #013H 42H 0 0 0

SUBC #003H 3FH 0 1 0

SUBC #03FH 00H 0 0 0

SUBC #002H FEH 1 1 0

SUBC #03EH BFH 0 1 0
VMC-164

 Instruction Set Reference
SUBC d9

Subtract direct byte and carry flag from accumulator

Instruction code 1 0 1 1 0 0 1d8 d7d6d5d4d3d2d1d0 (B2H to B3H)

Byte count 2

Cycles 1

Function (ACC) ← (ACC) - (CY) - (d9)

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Subtracts the contents of the RAM address or SFR specified by d8 to d0 and carry flag from the contents of
the accumulator, and stores the result in the accumulator.

Example 1

ACC RAM CY AC OV

23H

MOV #055H,ACC 55H- - - -

MOV #068H,023H 55H 68H - - -

SUB #00CH 49H 68H 0 1 0

SUBC 023H E1H 68H 1 0 0

SUBC 023H 78H 68H 0 1 1

Example 2

ACC B CY AC OV

MOV #080H,ACC 80H - - - -

MOV #095H,B 80H 95H - - -

SUB #002H 7EH 95H 0 1 1

SUBC B E9H 95H 1 0 1

SUBC B 53H 95H 0 0 1
VMC-165

Visual Memory Unit (VMU) Programing Manual
SUBC @Rj

Subtract indirect byte and carry flag from accumulator

Instruction code 1 0 1 1 0 1j1j0 (B4H to B7H)

Byte count 1

Cycles 1

Function (ACC) ← (ACC) - (CY) - ((Rj)) j = 0, 1, 2, 3

Flags affected CY, AC, OV

Interrupts enabled Yes

Description

Subtracts the contents of the RAM address or SFR specified by the indirect address register specified by j1
to j0 and carry flag from the contents of the accumulator, and stores the result in the accumulator.

Example 1

ACC RAM RAM CY AC OV

00H 68H

MOV #055H,ACC 55H - - - - -

MOV #068H,00H 55H 68H - - - -

MOV #040H,@R0 55H 68H 40H - - -

SUB #016H 3FH 68H 40H 0 1 0

SUBC @R0 FFH 68H 40H 1 0 0

SUBC @R0 BEH 68H 40H 0 0 0

Example 2

ACC RAM TRL CY AC OV

02H

MOV #0AAH,ACC AAH - - - - -

MOV #004H,002H AAH 04H - - - -

MOV #0AAH,@R2 AAH 04H AAH - - -

SUB #001H A9H 04H AAH 0 0 0

SUBC @R2 FFH 04H AAH 1 1 0

SUBC @R2 54H 04H AAH 0 0 0
VMC-166

 Instruction Set Reference
INC d9

Increment direct byte

Instruction code 0 1 1 0 0 0 1d8 d7d6d5d4d3d2d1d0 (62H to 63H)

Byte count 2

Cycles 1

Function (d9) ← (d9) + 1

Flags affected

Interrupts enabled Yes

Description

Increments the contents of the RAM address or SFR specified by d8 to d0.

Example 1

ACC

MOV #0FDH,ACC FDH

INC ACC FEH

INC ACC FFH

INC ACC 00H

INC ACC 01H

Example 2

RAM

7FH

MOV #0FDH,07FH FDH

INC 07FH FEH

INC 07FH FFH

INC 07FH 00H

INC 07FH 01H

Caution: • The flags, CY, AC, and OV are not changed.
• When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external
signal applied to the port is not selected. Even when applied to port P7, there is no change in status.
VMC-167

Visual Memory Unit (VMU) Programing Manual
INC @Rj

Increment indirect byte

Instruction code 0 1 1 0 0 1j1j0 (64H to 67H)

Byte count 1

Cycles 1

Function ((Rj)) ← ((Rj)) + 1 j = 0, 1, 2, 3

Flags affected

Interrupts enabled Yes

Description

Increments the contents of the RAM address or SFR specified by the indirect address register
specified by j1 to j0.

Example 1

ACC RAM

03H

MOV #000H,003H - 00H

MOV #0FDH,@R3 FDH 00H

INC @R3 FEH 00H

INC @R3 FFH 00H

INC @R3 00H 00H

Example 2

RAM RAM

7FH 01H

MOV #07FH,001H - 7FH

MOV #0FDH,@R1 FDH 7FH

INC @R1 FEH 7FH

INC @R1 FFH 7FH

INC @R1 00H 7FH

Caution: • The flags, CY, AC, and OV are not changed.
• When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external
signal applied to the port is not selected. Even when applied to port P7, there is no change in status.
VMC-168

 Instruction Set Reference
DEC d9

Decrement direct byte

Instruction code 0 1 1 1 0 0 1d8 d7d6d5d4d3d2d1d0 (72H to 73H)

Byte count 2

Cycles 1

Function (d9) ← (d9) - 1

Flags affected

Interrupts enabled Yes

Description

Decrements the contents of the RAM address or SFR specified by d8 to d0.

Example 1

ACC

MOV #002H,ACC 02H

DEC ACC 01H

DEC ACC 00H

DEC ACC FFH

DEC ACC FEH

Example 2

RAM

7FH

MOV #002H,07FH 02H

DEC 07FH 01H

DEC 07FH 00H

DEC 07FH FFH

DEC 07FH FEH

Caution: • The flags, CY, AC, and OV are not changed.
• When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external
signal applied to the port is not selected. Even when applied to port P7, there is no change in status.
VMC-169

Visual Memory Unit (VMU) Programing Manual
DEC @Rj

Decrement indirect byte

Instruction code 0 1 1 1 0 1j1j0 (74H to 77H)

Byte count 1

Cycles 1

Function ((Rj)) ← ((Rj)) - 1 j = 0, 1, 2, 3

Flags affected

Interrupts enabled Yes

Description

Decrements the contents of the RAM address or SFR specified by the indirect address register specified by
j1 to j0.

Example 1

ACC RAM

02H

MOV #000H,002H - 00H

MOV #002H,@R2 02H 00H

DEC @R2 01H 00H

DEC @R2 00H 00H

DEC @R2 FFH 00H

Example 2

RAM RAM

7FH 00H

MOV #07FH,000H - 7FH

MOV #002H,@R0 02H 7FH

DEC @R0 01H 7FH

DEC @R0 00H 7FH

DEC @R0 FFH 7FH

Caution: • The flags, CY, AC, and OV are not changed.
• When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external
signal applied to the port is not selected. Even when applied to port P7, there is no change in status.
VMC-170

 Instruction Set Reference
MUL

Multiply accumulator and C register by B register

Instruction code 0 0 1 1 0 0 0 0 (30H)

Byte count 1

Cycles 7

Function (B)(ACC)(C) ← (ACC)(C) × (B)

Flags affected CY, OV

Interrupts enabled Yes on the 7th cycle

Description

Multiplies the unsigned 16-bit value represented by the accumulator and C register by the unsigned 8-bit
value of the B register. Of the 24-bit calculation result, the bottom 8 bits are stored in C, the middle 8 bits in
the accumulator, and the top 8 bits in B.

As a result of the calculation, if the contents of B are zero, the overflow flag is cleared, and if the contents
of B are nonzero the overflow flag is set. The carry flag is always cleared.

Example 1

ACC C B CY AC OV

MOV #0C4H,PSW - - - 1 1 1

MOV #011H,ACC 11H - - 1 1 1

MOV #023H,C 11H 23H - 1 1 1

MOV #052H,B 11H 23H 52H 1 1 1

MUL 7DH 36H 05H 0 1 1

Example 2

ACC C B CY AC OV

MOV #0C4H,PSW - - - 1 1 1

MOV #007H,ACC 07H - - 1 1 1

MOV #005H,C 07H 05H - 1 1 1

MOV #010H,B 07H 05H 10H 1 1 1

MUL 70H 50H 00H 0 1 0
VMC-171

Visual Memory Unit (VMU) Programing Manual
DIV

Divide accumulator and C register by B register

Instruction code 0 1 0 0 0 0 0 0 (40H)

Byte count 1

Cycles 7

Function (ACC)(C), mod(B) ← (ACC)(C) ÷ (B)

Flags affected CY, OV

Interrupts enabled Yes on the 7th cycle

Description

Divides the 16-bit value represented by the contents of the accumulator (upper byte) and C register (lower
byte) by the contents of the B register (unsigned 8-bit value). The quotient is stored in the accumulator
(upper byte) and C (lower byte), and the remainder is stored in B.

Caution: If this instruction is executed with the contents of the B register zero, the accumulator is set to FFH, and
the overflow flag is set. If the B register is nonzero, then the overflow flag is cleared, and the carry flag
is also always cleared.

Example 1

ACC C B CY AC OV

MOV #0C4H,PSW - - - 1 1 1

MOV #078H,ACC 79H - - 1 1 1

MOV #005H,C 79H 05H - 1 1 1

MOV #007H,B 79H 05H 07H 1 1 1

DIV 11H 49H 06H 0 1 0

Example 2

ACC C B CY AC OV

MOV #0C0H,PSW - - - 1 1 0

MOV #007H,ACC 07H - - 1 1 0

MOV #010H,C 07H 10H - 1 1 0

MOV #000H,B 07H 10H 00H 1 1 0

DIV FFH 10H 00H 0 1 1 error
VMC-172

 Instruction Set Reference
Logical Instructions

AND _i8

AND immediate data to accumulator

Instruction code 1 1 1 0 0 0 0 1 i7i6i5i4i3i2i1i0 (E1H)

Byte count 2

Cycles 1

Function (ACC) ← (ACC) ⊥ #i8

Flags affected

Interrupts enabled Yes

Description

Logical ANDs the contents of the accumulator and immediate data (i7 to i0), and stores the result in the
accumulator.

Example 1

ACC

MOV #0FFH,ACC FFH

AND #0FAH FAH

AND #0AFH AAH

AND #00FH 0AH

AND #0F0H 00H

Example 2

ACC

MOV #0FFH,ACC FFH

AND #0FEH FEH

AND #0FDH FCH

AND #0FBH F8H

AND #0F7H F0H

AND #0EFH E0H

AND #0DFH C9H

AND #0BFH 80H

AND #07FH 00H
VMC-173

Visual Memory Unit (VMU) Programing Manual
AND d9

AND direct byte to accumulator

Instruction code 1 1 1 0 0 0 1d8 d7d6d5d4d3d2d1d0 (E2H to E3H)

Byte count 2

Cycles 1

Function (ACC) ← (ACC) ⊥ (d9)

Flags affected

Interrupts enabled Yes

Description

Logical ANDs the contents of the accumulator and the contents of the RAM address or SFR specified by d8
to d0, and stores the result in the accumulator.

Example 1

ACC RAM

23H

MOV #0FFH,ACC FFH -

MOV #055H,023H FFH 55H

AND 023H 55H 55H

MOV #0AAH,023H 55H AAH

AND 023H 00H AAH

Example 2

ACC B

MOV #0FFH,ACC FFH -

MOV #0FEH,B FFH FEH

AND B FEH FEH

MOV #0FDH,B FEH FDH

AND B FCH FDH

MOV #0FBH,B FCH FBH

AND B F8H FBH

MOV #0F7H,B F8H F7H

AND B F0H F7H
VMC-174

 Instruction Set Reference
AND @Rj

AND indirect byte to accumulator

Instruction code 1 1 1 0 0 1j1j0 (E4H to E7H)

Byte count 1

Cycles 1

Function (ACC) ← (ACC) ⊥ ((Rj)) j = 0, 1, 2, 3

Flags affected

Interrupts enabled Yes

Description

Logical ANDs the contents of the accumulator and the contents of the RAM address or SFR specified by the
indirect address register specified by j1 to j0, and stores the result in the accumulator.

Example 1

ACC RAM RAM

00H 68H

MOV #0FFH,ACC FFH - -

MOV #068H,000H FFH 68H -

MOV #0F0H,@R0 FFH 68H F0H

AND @R0 F0H 68H F0H

MOV #00FH,@R0 F0H 68H 0FH

AND @R0 00H 68H 0FH

Example 2

ACC RAM

02H TRL

MOV #0FFH,ACC FFH - -

MOV #004H,002H FFH 04H -

MOV #0EFH,@R2 FFH 04H EFH

AND @R2 EFH 04H EFH

MOV #0DFH,@R2 EFH 04H DFH

AND @R2 CFH 04H DFH
VMC-175

Visual Memory Unit (VMU) Programing Manual
OR _i8

OR immediate data to accumulator

Instruction code 1 1 0 1 0 0 0 1 i7i6i5i4i3i2i1i0 (D1H)

Byte count 2

Cycles 1

Function (ACC) ← (ACC) ϖ #i8

Flags affected

Interrupts enabled Yes

Description

Logical ORs the contents of the accumulator and immediate data (i7 to i0), and stores the result in the
accumulator.

Example 1

ACC

MOV #000H,ACC 00H

OR #003H 03H

OR #00CH 0FH

OR #030H 3FH

OR #0C0H FFH

Example 2

ACC

MOV #000H,ACC 00H

OR #001H 01H

OR #002H 03H

OR #004H 07H

OR #008H 0FH

OR #010H 1FH

OR #020H 3FH

OR #040H 7FH

OR #080H FFH
VMC-176

 Instruction Set Reference
OR d9

OR direct byte to accumulator

Instruction code 1 1 0 1 0 0 1d8 d7d6d5d4d3d2d1d0 (D2H to D3H)

Byte count 2

Cycles 1

Function (ACC) ← (ACC) ϖ (d9)

Flags affected

Interrupts enabled Yes

Description

Logical ORs the contents of the accumulator and the contents of the RAM address or SFR specified by d8
to d0, and stores the result in the accumulator.

Example 1

ACC RAM
23H

MOV #000H,ACC 00H -
MOV #055H,023H 00H 55H
OR 023H 55H 55H
MOV #0AAH,023H 55H AAH
OR 023H FFH AAH

Example 2

ACC B

MOV #000H,ACC 00H -

MOV #001H,B 00H 01H

OR B 01H 01H

MOV #002H,B 01H 02H

OR B 03H 02H

MOV #004H,B 03H 04H

OR B 07H 04H

MOV #008H,B 07H 08H

OR B 0FH 08H
VMC-177

Visual Memory Unit (VMU) Programing Manual
OR @Rj

OR indirect byte to accumulator

Instruction code 1 1 0 1 0 1j1j0 (D4H to D7H)

Byte count 1

Cycles 1

Function (ACC) ← (ACC) ϖ ((Rj)) j = 0, 1, 2, 3

Flags affected

Interrupts enabled Yes

Description

Logical ORs the contents of the accumulator and the contents of the RAM address or SFR specified by the
indirect address register specified by j1 to j0, and stores the result in the accumulator.

Example 1

ACC RAM RAM

00H 68H

MOV #000H,ACC 00H - -

MOV #068H,000H 00H 68H -

MOV #0F0H,@R0 00H 68H F0H

OR @R0 F0H 68H F0H

MOV #000FH,@R0 F0H 68H 0FH

OR @R0 FFH 68H 0FH

Example 2

ACC RAM TRL

02H

MOV #0AAH,ACC AAH - -

MOV #004H,002H AAH 04H -

MOV #005H,@R2 AAH 04H 05H

OR @R2 AFH 04H 05H

MOV #050H,@R2 AFH 04H 50H

OR @R2 FFH 04H 50H
VMC-178

 Instruction Set Reference
XOR _i8

XOR immediate data to accumulator

Instruction code 1 1 0 1 0 1j1j0 (D4H to D7H)

Byte count 1

Cycles 1

Function (ACC) ← (ACC) ϖ ((Rj)) j = 0, 1, 2, 3

Flags affected

Interrupts enabled Yes

Description

Logical XORs the contents of the accumulator and immediate data (i7 to i0), and stores the result in the
accumulator.

Example 1

ACC

MOV #000H,ACC 00H

XOR #00FH 0FH

XOR #0F0H FFH

XOR #00FH F0H

XOR #0F0H 00H

Example 2

ACC

MOV #000H,ACC 00H

XOR #001H 01H

XOR #002H 03H

XOR #004H 07H

XOR #008H 0FH

XOR #008H 07H

XOR #004H 03H

XOR #002H 01H

XOR #001H 00H
VMC-179

Visual Memory Unit (VMU) Programing Manual
XOR d9

XOR direct byte to accumulator

Instruction code 1 1 1 1 0 0 1d8 d7d6d5d4d3d2d1d0 (F2H to F3H)

Byte count 2

Cycles 1

Function (ACC) ← (ACC) ∀ (d9)

Flags affected

Interrupts enabled Yes

Description

Logical XORs the contents of the accumulator and the contents of the RAM address or SFR specified by d8
to d0, and stores the result in the accumulator.

Example 1

ACC RAM

23H

MOV #000H,ACC 00H -

MOV #055H,023H 00H 55H

XOR 023H 55H 55H

MOV #0FFH,023H 55H FFH

XOR 023H AAH FFH

Example 2

ACC B

MOV #0FFH,ACC FFH -

MOV #010H,B FFH 10H

XOR B EFH 10H

MOV #020H,B EFH 20H

XOR B CFH 20H

MOV #040H,B CFH 40H

XOR B 8FH 40H

MOV #080H,B 8FH 80H

XOR B 0FH 80H
VMC-180

 Instruction Set Reference
XOR @Rj

XOR indirect byte to accumulator

Instruction code 1 1 1 1 0 1j1j0 (F4H to F7H)

Byte count 1

Cycles 1

Function (ACC) ← (ACC) ∀ ((Rj)) j = 0, 1, 2, 3

Flags affected

Interrupts enabled Yes

Description

Logical XORs the contents of the accumulator and the contents of the RAM address or SFR specified by the
indirect address register specified by j1 to j0, and stores the result in the accumulator.

Example

ACC RAM RAM

01H 68H

MOV #000H,ACC 00H - -

MOV #068H,001H 00H 68H -

MOV #0F0H,@R1 00H 68H F0H

XOR @R1 F0H 68H F0H

MOV #0FFH,@R1 F0H 68H FFH

XOR @R1 0FH 68H FFH

Example 2

ACC RAM TRL

03H

MOV #0AAH,ACC AAH - -

MOV #004H,003H AAH 04H -

MOV #0FFH,@R3 AAH 04H FFH

XOR @R3 55H 04H FFH

XOR @R3 AAH 04H FFH

XOR @R3 55H 04H FFH

XOR @R3 AAH 04H FFH
VMC-181

Visual Memory Unit (VMU) Programing Manual
ROL

Rotate accumulator left

Instruction code 1 1 1 0 0 0 0 0 (E0H)

Byte count 1

Cycles 1

Function ←A7←A6←A5←A4←A3←A2←A1←A0← (A7)

Flags affected

Interrupts enabled Yes

Description

Rotates the 8-bit value of the accumulator left by one bit position. This transfers bit 7 of the accumulator
to bit 0.

Example 1

ACC

MOV #01H,ACC 01H 0000 0001B

ROL 02H 0000 0010B

ROL 04H 0000 0100B

ROL 08H 0000 1000B

ROL 10H 0001 0000B

ROL 20H 0010 0000B

ROL 40H 0100 0000B

ROL 80H 1000 0000B

ROL 01H 0000 0001B

MOV #55H,ACC 55H 0101 0101B

ROL AAH 1010 1010B

ROL 55H 0101 0101B

ROL AAH 1010 1010B

ROL 55H 0101 0101B
VMC-182

 Instruction Set Reference
ROLC

Rotate accumulator left through the carry flag

Instruction code 1 1 1 1 0 0 0 0 (F0H)

Byte count 1

Cycles 1

Function ←A7←A6←A5←A4←A3←A2←A1←A0←CY← (A7)

Flags affected CY

Interrupts enabled Yes

Description

Rotates the 8-bit value of the accumulator left by one bit position through the carry flag. This transfers bit
7 of the accumulator to the carry flag, and the contents of the carry flag to bit 0.

Example 1

ACC CY
MOV #01H,ACC 01H 000 0 0001B -
SET1 PSW,7 01H 0000 001B 1
ROLC 03H 0000 0011B 0
ROLC 06H 0000 0110B 0
ROLC 0CH 0000 1100B 0
ROLC 11H 0001 1000B 0
ROLC 30H 0011 0000B 0
ROLC 60H 0110 0000B 0
ROLC C0H 1100 0000B 0
ROLC 80H 1000 0000B 1
ROLC 01H 0000 0001B 1
MOV #55H,ACC 55H 0101 0101B 1
ROLC ABH 1010 1011B 0
ROLC 56H 0101 0110B 1
ROLC ADH 1010 1101B 0
VMC-183

Visual Memory Unit (VMU) Programing Manual
ROR

Rotate accumulator right

Instruction code 1 1 0 0 0 0 0 0 (C0H)

Byte count 1

Cycles 1

Function (A0) →A7→A6→A5→A4→A3→A2→A1→A0→
Flags affected

Interrupts enabled Yes

Description

Rotates the 8-bit value of the accumulator right by one bit position. This transfers bit 0 of the accumulator
to bit 7.

Example 1

ACC
MOV #01H,ACC 01H 0000 0001B
ROR 80H 1000 0000B
ROR 40H 0100 0000B
ROR 20H 0010 0000B
ROR 10H 0001 0000B
ROR 08H 0000 1000B
ROR 04H 0000 0100B
ROR 02H 0000 0010B
ROR 01H 0000 0001B
MOV #51H,ACC 51H 0101 0001B
ROR A8H 1010 1000B
ROR 54H 0101 0100B
ROR 2AH 0010 1010B
ROR 15H 0001 0101B
VMC-184

 Instruction Set Reference
RORC

Rotate accumulator right through the carry flag

Instruction code 1 1 0 1 0 0 0 0 (D0H)

Byte count 1

Cycles 1

Function (A0) →CY→A7→A6→A5→A4→A3→A2→A1→A0→
Flags affected CY

Interrupts enabled Yes

Description

Rotates the 8-bit value of the accumulator right by one bit position through the carry flag. This transfers bit
0 of the accumulator to the carry flag, and the contents of the carry flag to bit 7.

Example 1

ACC CY

MOV #01H,ACC 01H 0000 0001B -

SET1 PSW,7 01H 0000 0001B 1

RORC 80H 1000 0000B 1

RORC C0H 1100 0000B 0

RORC 60H 0110 0000B 0

RORC 30H 0011 0000B 0

RORC 18H 0001 1000B 0

RORC 0CH 0000 1100B 0

RORC 06H 0000 0110B 0

RORC 03H 0000 0011B 0

RORC 01H 0000 0001B 1

MOV #55H,ACC 55H 0101 0101B 1

RORC AAH 1010 1010B 1

RORC D5H 1101 0101B 0

RORC 6AH 0110 1010B 1
VMC-185

Visual Memory Unit (VMU) Programing Manual
Data Transfer Instructions

LD d9

Load direct byte to accumulator

Instruction code 0 0 0 0 0 0 1d8 d8d7d6d5d4d3d2d1d0 (02H to 03H)

Byte count 2

Cycles 1

Function (ACC) ← (d9)

Flags affected

Interrupts enabled Yes

Description

Transfers the contents of the RAM address or SFR specified by d8 to d0 to the accumulator.

Example 1

ACC RAM RAM

70H 71H

MOV #0FF,ACC FFH - -

MOV #055H,070H FFH 55H -

MOV #0AAH,071H FFH 55H AAH

LD 070H 55H 55H AAH

LD 071H AAH 55H AAH

Example 2

ACC B SP

MOV #0FF,ACC FFH - -

MOV #0F0H,B FFH F0H -

MOV #00FH,SP FFH F0H 0FH

LD B F0H F0H 0FH

LD SP 0FH F0H 0FH

LD B F0H F0H 0FH
VMC-186

 Instruction Set Reference
LD @Rj

Load indirect byte to accumulator

Instruction code 0 0 0 0 0 1j1j0 (04H to 07H)

Byte count 1

Cycles 1

Function (ACC) ← ((Rj)) j = 0, 1, 2, 3

Flags affected

Interrupts enabled Yes

Description

Transfers the contents of the RAM address or SFR specified by the indirect address register specified by jl
to j0 to the accumulator.

Example 1

ACC RAM RAM RAM RAM

00H 01H 70H 7FH

MOV #0FFH,ACC FFH - - - -

MOV #070H,000H FFH 70H - - -

MOV #07FH,001H FFH 70H 7FH - -

MOV #0F0H,@R0 FFH 70H 7FH F0H -

MOV #00FH,@R1 FFH 70H 7FH F0H 0FH

LD @R0 F0H 70H 7FH F0H 0FH

LD @R1 0FH 70H 7FH F0H 0FH

Example 2

ACC RAM RAM B C

02H 03H 102H 103H

MOV #0FF,ACC FFH - - - -

MOV #004H,002H FFH 04H - - -

MOV #005H,003H FFH 04H 05H - -

MOV #0AAH,@R2 FFH 04H 05H AAH -

MOV #055H,@R3 FFH 04H 05H AAH 55H

LD @R2 AAH 04H 05H AAH 55H

LD @R3 55H 04H 05H AAH 55H
VMC-187

Visual Memory Unit (VMU) Programing Manual
ST d9

Store direct byte from accumulator

Instruction code 0 0 0 1 0 0 1d8 d7d6d5d4d3d2d1d0 (12H to 13H)

Byte count 2

Cycles 1

Function (d9) ← (ACC)

Flags affected

Interrupts enabled Yes

Description

Transfers the contents of the accumulator to the RAM address or special function register (SFR) specified
by d8 to d0.

Example 1

ACC RAM RAM

70H 71H

MOV #0FFH,ACC FFH - -

MOV #055H,070H FFH 55H -

MOV #0AAH,071H FFH 55H AAH

ST 070H FFH FFH AAH

MOV #000H,ACC 00H FFH AAH

ST 071H 00H FFH 00H

Example 2

ACC B SP

MOV #012H,ACC 12H - -

MOV #0F0H,B 12H F0H -

MOV #00FH,SP 12H F0H 0FH

ST B 12H 12H 0FH

MOV #034H,ACC 34H 12H 0FH

ST SP 34H 12H 34H

ST B 34H 34H 34H
VMC-188

 Instruction Set Reference
ST @Rj

Store indirect byte from accumulator

Instruction code 0 0 0 1 0 1j1j0 (14H to 17H)

Byte count 1

Cycles 1

Function ((Rj)) ← (ACC) j = 0, 1, 2, 3

Flags affected

Interrupts enabled Yes

Description

Transfers the contents of the accumulator to the RAM address or special function register (SFR) specified
by the indirect address register specified by jl to j0.

Example 1

ACC RAM RAM RAM RAM

00H 01H 70H 7FH

MOV #0FFH,ACC FFH - - - -

MOV #070H,000H FFH 70H - - -

MOV #07FH,001H FFH 70H 7FH - -

MOV #0F0H,@R0 FFH 70H 7FH F0H -

MOV #00FH,@R1 FFH 70H 7FH F0H 0FH

ST @R0 FFH 70H 7FH FFH 0FH

ST @R1 FFH 70H 7FH FFH FFH

Example 2

ACC RAM RAM TRL TRH

02H 03H 104H 105H

MOV #000H,ACC 00H - - - -

MOV #004H,002H 00H 04H - - -

MOV #005H,003H 00H 04H 05H - -

MOV #0AAH,@R2 00H 04H 05H AAH -

MOV #055H,@R3 00H 04H 05H AAH 55H

ST @R2 00H 04H 05H 00H 55H

ST @R3 00H 04H 05H 00H 00H
VMC-189

Visual Memory Unit (VMU) Programing Manual
MOV _i8, d9

Move immediate data to direct byte

Instruction code 0 0 1 0 0 0 1d8 d7d6d5d4d3d2d1d0 i7i6i5i4i3i2i1i0 (22H to 23H)

Byte count 3

Cycles 2

Function (d9) ← #i8

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Transfers immediate data (i7 to i0) to the RAM address or special function register (SFR) specified by d8
to d0.

Example 1

RAM RAM RAM RAM

00H 01H 02H 03H

MOV #0FFH,000H FFH - - -

MOV #0FEH,001H FFH FEH - -

MOV #0FDH,002H FFH FEH FDH -

MOV #0FCH,003H FFH FEH FDH FCH

MOV #0FBH,003H FFH FEH FDH FBH

MOV #0FAH,002H FFH FEH FAH FBH

MOV #0F9H,001H FFH F9H FAH FBH

MOV #0F8H,000H F8H F9H FAH FBH

Example 2

ACC B TRL

MOV #0FFH,100H FFH - -

MOV #0FEH,102H FFH FEH -

MOV #0FDH,104H FFH FEH FDH

MOV #0FAH,104H FFH FEH FAH

MOV #0F9H,102H FFH F9H FAH

MOV #0F8H,100H F8H F9H FAH
VMC-190

 Instruction Set Reference
MOV _i8, @Rj

Move immediate data to indirect byte

Instruction code 0 0 1 0 0 1j1j0 i7i6i5i4i3i2i1i0 (24H to 27H)

Byte count 2

Cycles 1

Function ((Rj)) ← #i8 j = 0, 1, 2, 3

Flags affected

Interrupts enabled Yes

Description

Transfers immediate data (i7 to i0) to the RAM address or special function register (SFR) specified by the
indirect address register specified by j1 to j0.

Example 1

RAM RAM RAM RAM

00H 01H 7EH 7FH

MOV #07FH,000H 7FH - - -

MOV #07EH,001H 7FH 7EH - -

MOV #0FDH,@R0 7FH 7EH - FDH

MOV #0FCH,@R1 7FH 7EH FCH FDH

MOV #0FBH,@R0 7FH 7EH FCH FBH

MOV #0FAH,@R1 7FH 7EH FAH FBH

MOV #0F9H,@R0 7FH 7EH FAH F9H

MOV #0F8H,@R1 7FH 7EH F8H F9H

Example 2

RAM RAM ACC B

02H 03H 100H 102H

MOV #000H,002H 00H - - -

MOV #002H,003H 00H 02H - -

MOV #0FDH,@R2 00H 02H FDH -

MOV #0FCH,@R3 00H 02H FDH FCH

MOV #0FBH,@R2 00H 02H FBH FCH

MOV #0FAH,@R3 00H 02H FBH FAH
VMC-191

Visual Memory Unit (VMU) Programing Manual
LDC

Load code byte relative to TRR to accumulator

Instruction code 1 1 0 0 0 0 0 1 (C1H)

Byte count 1

Cycles 2

Function (ACC) ← (BNK)((TRR) + (ACC)) [ROM]

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Loads into the accumulator the contents of the program memory (ROM) address specified by adding the
contents of the accumulator to the contents of the table reference register (TRR). The ROM address accessed
is different for a program running in ROM and a program running in flash memory. For a program running
in ROM, ROM is accessed, and for a program running in flash memory, bank 0 of flash memory is accessed.
The LDC instruction cannot access bank 1 of flash memory. To access bank 1 of flash memory,
use the system BIOS function provided by Visual Memory.

Reference: For details of operating system function calls, refer to the "System BIOS" section of the Visual Memory
Hardware Manual.

Example

ACC TRR TRR TRR

TRH TRL +ACC

MOV #001H,TRH - 01H - -

MOV #023H,TRL - 01H 23H -

MOV #000H,ACC 00H 01H 23H 0123H

LDC 30H 01H 23H 0153H

MOV #001H,ACC 01H 01H 23H 0124H

LDC FFH 01H 23H 0222H

MOV #002H,ACC 02H 01H 23H 0125H

LDC 57H 01H 23H 017AH

MOV #003H,ACC 03H 01H 23H 0126H

LDC EAH 01H 23H 020DH

PC ROM

0123H 30H

0124H FFH

0125H 57H

0126H EAH
VMC-192

 Instruction Set Reference

M

PUSH d9

Push direct byte to stack

Instruction code 0 1 1 0 0 0 0d8 d7d6d5d4d3d2d1d0 (60H to 61H)

Byte count 2

Cycles 2

Function (SP) ← (SP) + 1, ((SP)) ← (d9)

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the stack pointer (SP), then transfers the contents of the RAM address or SFR specified by d8 to
d0 to the address indicated by the stack pointer.

Note: Even when the application is accessing RAM bank 1, the stack is in RAM bank 0.

Example

ACC B RAM SP RAM RAM RA

00H 20H 21H 22H

MOV #0AAH,ACC AAH - - - - - -

MOV #055H,B AAH 55H - - - - -

MOV #012H,000H AAH 55H 12H - - - -

MOV #01FH,SP AAH 55H 12H 1FH - - -

PUSH ACC AAH 55H 12H 20H AAH - -

PUSH B AAH 55H 12H 21H AAH 55H -

PUSH 000H AAH 55H 12H 22H AAH 55H 12H

POP B AAH 12H 12H 21H AAH 55H 12H

POP ACC 55H 12H 12H 20H AAH 55H 12H

POP 000H 55H 12H AAH 1FH AAH 55H 12H
VMC-193

Visual Memory Unit (VMU) Programing Manual
POP d9

Pop direct byte from stack

Instruction code 0 1 1 1 0 0 0d8 d7d6d5d4d3d2d1d0 (70H to 71H)

Byte count 2

Cycles 2

Function (d9) ← ((SP)), (SP) ← (SP) - 1

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Transfers the contents of the RAM address indicated by the stack pointer to the RAM address or special
function register (SFR) specified by d8 to d0, then decrements the stack pointer.

Note: Even when the application is accessing RAM bank 1, the stack is in RAM bank 0.

Example

ACC B TRL SP RAM RAM RAM

20H 21H 22H

MOV #0AAH,ACC AAH - - - - - -

MOV #055H,B AAH 55H - - - - -

MOV #012H,TRL AAH 55H 12H - - - -

MOV #01FH,SP AAH 55H 12H 1FH - - -

PUSH ACC AAH 55H 12H 20H AAH - -

PUSH B AAH 55H 12H 21H AAH 55H -

PUSH TRL AAH 55H 12H 22H AAH 55H 12H

POP B AAH 12H 12H 21H AAH 55H 12H

POP ACC 55H 12H 12H 20H AAH 55H 12H

POP TRL 55H 12H AAH 1FH AAH 55H 12H
VMC-194

 Instruction Set Reference
XCH d9

Exchange direct byte with accumulator

Instruction code 1 1 0 0 0 0 1d8 d7d6d5d4d3d2d1d0 (C2H to C3H)

Byte count 2

Cycles 1

Function (ACC) ←→ (d9)

Flags affected

Interrupts enabled Yes

Description

Exchanges the contents of the accumulator and the contents of the RAM address or SFR specified by d8
to d0.

Example 1

ACC RAM

23H

MOV #0FFH,ACC FFH -

MOV #055H,023H FFH 55H

XCH 023H 55H FFH

XCH 023H FFH 55H

XCH 023H 55H FFH

XCH 023H FFH 55H

Example 2

ACC B

MOV #0FFH,ACC FFH -

MOV #0FEH,B FFH FEH

XCH B FEH FFH

XCH B FFH FEH

XCH B FEH FFH

XCH B FFH FEH
VMC-195

Visual Memory Unit (VMU) Programing Manual
XCH @Rj

Exchange indirect byte with accumulator

Instruction code 1 1 0 0 0 1j1j0 (C4H to C7H)

Byte count 1

Cycles 1

Function (ACC) ←→ ((Rj)) j = 0, 1, 2, 3

Flags affected

Interrupts enabled Yes

Description

Exchanges the contents of the accumulator and the contents of the RAM address or SFR specified by the
indirect address register specified by j1 to j0.

Example 1

ACC RAM RAM

01H 68H

MOV #0FFH,ACC FFH - -

MOV #068H,001H FFH 68H -

MOV #0F0H,@R1 FFH 68H F0H

XCH @R1 F0H 68H FFH

XCH @R1 FFH 68H F0H

XCH @R1 F0H 68H FFH

XCH @R1 FFH 68H F0H

Example 2

ACC RAM TRL

03H

MOV #0AAH,ACC AAH - -

MOV #004H,003H AAH 04H -

MOV #055H,@R3 AAH 04H 55H

XCH @R3 55H 04H AAH

XCH @R3 AAH 04H 55H

XCH @R3 55H 04H AAH
VMC-196

 Instruction Set Reference
Jump Instructions

JMP a12

Jump near absolute address

Instruction code 0 0 1a11 1a10a9a8 a7a6a5a4a3a2a1a0 (28H to 2FH, 38H to 3FH)

Byte count 2

Cycles 2

Function (PC) ← (PC) + 2, (PC11 to 00) ← a12

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) twice, then transfers the value of a11 to a0 to PC bits 11 to 00.

Example 1

The value of label LA is 0F0EH.

PC Instruction code

NOP 0FFBH 00H

NOP 0FFCH 00H

JMP LA 0FFDH 3F0EH

LA: INC ACC 0F0EH 6300H

ROR 0F10H C0H

Example 2

The value of label LA is 1F0EH.

PC Instruction code

NOP 0FFCH 00H

NOP 0FFDH 00H

JMP LA 0FFEH 3F0EH

LA: INC ACC 1F0EH 6300H

ROR 1F10H C0H
VMC-197

Visual Memory Unit (VMU) Programing Manual
JMPF a16

Jump far absolute address

Instruction code 0 0 1 0 0 0 0 1 a15a14a13a12a11a10a9a8 a7a6a5a4a3a2a1a0 (21H)

Byte count 3

Cycles 2

Function (PC) ← a16

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Transfers the value of a15 to a0 to the program counter (PC).

Example 1

The value of label LA is 0F0EH.

PC Instruction code

NOP 0FFAH 00H

NOP 0FFBH 00H

JMPF LA 0FFCH 210F0EH

LA: INC ACC 0F0EH 6300H

ROR 0F10H C0H

Example 2

The value of label LA is 0F0EH.

PC Instruction code

NOP 0FFCH 00H

NOP 0FFDH 00H

JMPF LA 0FFEH 210F0EH

LA: INC ACC 0F0EH 6300H

ROR 0F10H C0H
VMC-198

 Instruction Set Reference
BR r8

Branch near relative address

Instruction code 0 0 0 0 0 0 0 1 r7r6r5r4r3r2r1r0 (01H)

Byte count 2

Cycles 2

Function (PC) ← (PC) + 2, (PC) ← (PC) + r8

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) twice, then adds the value of r7 to r0 to the PC, leaving the result
in PC.

Example 1

The value of label LA is 0F5FH.

PC Instruction code

NOP 0F1CH 00H

NOP 0F1DH 00H

BR LA 0F1EH 013FH

LA: INC ACC 0F5FH 6300H

ROR 0F61H C0H

Example 2

The value of label LA is 1F0EH.
PC Instruction code

NOP 1F0CH 00H

NOP 1F0DH 00H

LA: INC ACC 1F0EH 6300H

ROR 1F10H C0H

NOP 1F11H 00H

NOP 1F12H 00H

BR LA 1F13H 01F9H
VMC-199

Visual Memory Unit (VMU) Programing Manual
BRF r16

Branch far relative address

Instruction code 0 0 0 1 0 0 0 1 r7r6r5r4r3r2r1r0 r15r14r13r12r11r10r9r8 (11H)

Byte count 3

Cycles 4

Function (PC) ← (PC) + 3, (PC) ← (PC) – 1 + r16

Flags affected

Interrupts enabled Yes on the 4th cycle

Description

Increments the program counter (PC) three times, then decrements PC and further adds the value of r15 to
r0 to PC, leaving the result in PC.

Example 1

The value of label LA is 105FH.

PC Instruction code

NOP 0F1CH 00H

NOP 0F1DH 00H

BRF LA 0F1EH 113F01H

LA: INC ACC 105FH 6300H

ROR 1061H C0H

Example 2

The value of label LA is 1F0EH.

PC Instruction code

NOP 1FFCH 00H

NOP 1FFDH 00H

LA: INC ACC 1F0EH 6300H

ROR 1F10H C0H

NOP 1F11H 00H

NOP 1F12H 00H

BRF LA 1F13H 11F8FFH
VMC-200

 Instruction Set Reference
Conditional Branch Instructions

BZ r8

Branch near relative address if accumulator is zero

Instruction code 1 0 0 0 0 0 0 0 r7r6r5r4r3r2r1r0 (80H)

Byte count 2

Cycles 2

Function (PC) ← (PC) + 2, if (ACC) = 0 then (PC) ← (PC) + r8

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) twice, then if the accumulator is zero, adds the value of r7 to r0 to PC,
leaving the result in PC.

If the accumulator is nonzero, continues to the next instruction.

Example 1

When the BZ instruction is executed, the accumulator is zero, so control branches to label LA.

PC Instruction code ACC

MOV #000H,ACC 0F1BH 230000H 00H

BZ LA 0F1EH 803FH 00H

LA: INC ACC 0F5FH 6300H 01H

ROR 0F61H C0H 80H

Example 2

When the BZ instruction is executed, the accumulator is nonzero, so control passes to the next instruction.

PC Instruction code ACC

MOV #001H,ACC 0F1BH 230001H 01H

BZ LA 0F1EH 803FH 01H

DEC ACC 0F20H 7300H 00H

ROR 0F22H C0H 00H

LA: INC ACC
VMC-201

Visual Memory Unit (VMU) Programing Manual
BNZ r8

Branch near relative address if accumulator is not zero

Instruction code 1 0 0 1 0 0 0 0 r7r6r5r4r3r2r1r0 (90H)

Byte count 2

Cycles 2

Function (PC) ← (PC) + 2, if (ACC) ≠ 0 then (PC) ← (PC) + r8

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) twice, then if the accumulator is nonzero, adds the value of r7 to r0
to PC, leaving the result in PC.
If the accumulator is zero, continues to the next instruction.

Example 1

When the BNZ instruction is executed, the accumulator is nonzero, so control branches to label LA.

PC Instruction code ACC

MOV #001H,ACC 0F1BH 230001H 01H

BNZ LA 0F1EH 903FH 01H

LA: INC ACC 0F5FH 6300H 02H

ROR 0F61H C0H 01H

Example 2

When the BNZ instruction is executed, the accumulator is zero, so control passes to the next instruction.
PC Instruction code ACC

MOV #000H,ACC 0F1BH 230000H 00H

BNZ LA 0F1EH 903FH 00H

DEC ACC 0F20H 7300H FFH

ROR 0F22H C0H FFH

LA: INC ACC
VMC-202

 Instruction Set Reference
BP d9, b3, r8

Branch near relative address if direct bit is one ("positive")

Instruction code 0 1 1d8 1b2b1b0 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r0 (68H to 6FH,

78H to 7FH)

Byte count 3

Cycles 2

Function (PC) ← (PC) + 3, if (d9, b3) = 1 then (PC) ← (PC) + r8

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then if the bit selected by the bit address b2 to b0 at the
address in RAM or special function register (SFR) indicated by d8 to d0 is set (1), adds the value of r7 to r0
to PC, leaving the result in PC.
If the bit selected by the bit address b2 to b0 at the address in RAM or special function
register (SFR) indicated by d8 to d0 is cleared (0), continues to the next instruction.

Example 1

When the BP instruction is executed, bit 0 of B is 1, so control branches to the label LA.

PC Instruction code B

MOV #001H,B 0F1AH 230201H 01H

BP B,0,LA 0F1DH 78023FH 01H

LA: INC B 0F5FH 6302H 02H

NOP 0F61H 00H 02H

Example 2

When the BP instruction is executed, bit 0 of the accumulator is 0, so control passes to the next instruction.

PC Instruction code ACC
MOV #080H,ACC 0F1AH 230080H 80H
BP ACC,0,LA 0F1DH 78003FH 80H
DEC ACC 0F20H 7300H 7FH
ROR 0F22H C0H BFH

LA: INC ACC
VMC-203

Visual Memory Unit (VMU) Programing Manual
BPC d9, b3, r8

Branch near relative address if direct bit is one ("positive"), and clear

Instruction code 0 1 0d8 1b2b1b0 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r0 (48H to 4FH,

58H to 5FH)

Byte count 3

Cycles 2

Function (PC) ← (PC) + 3, if (d9, b3) = 1 then (PC) ← (PC) + r8,

(d9, b3) = 0

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then if the bit selected by the bit address b2 to b0 at the
address in RAM or special function register (SFR) indicated by d8 to d0 is set (1), first clears the bit, then
adds the value of r7 to r0 to PC, leaving the result in PC.

If the bit selected by the bit address b2 to b0 at the address in RAM or special function register (SFR)
indicated by d8 to d0 is cleared (0), continues to the next instruction.

Example 1

When the BPC instruction is executed, bit 0 of B is 1, so it is cleared, then control branches to the label LA.

PC Instruction code B

MOV #003H,B 0F1AH 230203H 03H

BPC B,0,LA 0F1DH 58023FH 02H

LA: INC B 0F5FH 6302H 03H

NOP 0F61H 00H 03H

Example 2

When the BPC instruction is executed, bit 0 of the accumulator is 0, so control passes to the next instruction.
PC Instruction code ACC

MOV #080H,ACC 0F1AH 230080H 80H

BPC ACC,0,LA 0F1DH 58003FH 80H

DEC ACC 0F20H 7300H 7FH

ROR 0F22H C0H BFH

LA: INC ACC

Caution: When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.
VMC-204

 Instruction Set Reference
BN d9, b3, r8

Branch near relative address if direct bit is zero ("negative")

Instruction code 1 0 0d8 1b2b1b0 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r0 (88H to 8FH,

98H to 9FH)

Byte count 3

Cycles 2

Function (PC) ← (PC) + 3, if (d9, b3) = 0 then (PC) ← (PC) + r8

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then if the bit selected by the bit address b2 to b0 at the
address in RAM or special function register (SFR) indicated by d8 to d0 is cleared (0), adds the value of r7
to r0 to PC, leaving the result in PC.

If the bit selected by the bit address b2 to b0 at the address in RAM or special function register (SFR)
indicated by d8 to d0 is set (1), continues to the next instruction.

Example 1

When the BN instruction is executed, bit 0 of B is zero, so control branches to the label LA.

PC Instruction code B

MOV #0FEH,B 0F1AH 2302FEH FEH

BN B,0,LA 0F1DH 98023FH FEH

LA: INC B 0F5FH 6302H FFH

NOP 0F61H 00H FFH

Example 2

When the BN instruction is executed, bit 0 of the accumulator is 1, so control passes to the next instruction.

PC Instruction code ACC

MOV #001H,ACC 0F1AH 230001H 01H

BN ACC,0,LA 0F1DH 98003FH 01H

DEC ACC 0F20H 7300H 00H

ROR 0F22H C0H 00H

LA: INC ACC
VMC-205

Visual Memory Unit (VMU) Programing Manual
DBNZ d9, r8

Decrement direct byte and branch near relative address if direct byte is nonzero

Instruction code 0 1 0 1 0 0 1d8 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r0 (52H to 53H)

Byte count 3

Cycles 2

Function (PC) ← (PC) + 3, (d9) = (d9)-1, if (d9) ≠ 0 then

(PC) ← (PC) + r8

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then decrements the address in RAM or special function
register (SFR) indicated by d8 to d0. Next, if the value of the RAM address or SFR after decrementing is
nonzero, adds the value of r7 to r0 to PC, leaving the result in PC.

If the value of the RAM address or SFR after decrementing is zero, continues to the next instruction.

Example 1

When the DBNZ instruction is executed, B is decremented, and since B is then nonzero, control branches to
the label LA.

PC Instruction code B

MOV #002H,B 0F1AH 230202H 02H

DBNZ B,LA 0F1DH 53023FH 01H

LA: INC B 0F5FH 6302H 02H

NOP 0F61H 00H 02H

Example 2

When the DBNZ instruction is executed, the accumulator is decremented, and since the
accumulator is then zero, control passes to the next instruction.

PC Instruction code ACC

MOV #001H,ACC 0F1AH 230001H 01H

DBNZ ACC,LA 0F1DH 53003FH 00H

DEC ACC 0F20H 7300H FFH

ROR 0F22H C0H FFH

LA: INC ACC

Caution: When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.
VMC-206

 Instruction Set Reference
DBNZ @Rj, r8

Decrement indirect byte and branch near relative address if indirect byte is not zero

Instruction code 0 1 0 1 0 1j1j0 r7r6r5r4r3r2r1r0 (54H to 57H)

Byte count 2

Cycles 2

Function (PC) ← (PC) + 2, ((Rj)) = ((Rj)) - 1, if ((Rj)) π 0 then

(PC) ← (PC) + r8 j = 0, 1, 2, 3

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) twice, then decrements the address in RAM or special function
register (SFR) indicated by the indirect address register specified by j1 to j0. Next, if the value of the RAM
address or SFR after decrementing is nonzero, adds the value of r7 to r0 to PC, leaving the result in PC.

If the value of the RAM address or SFR after decrementing is zero, continues to the next instruction.

Example 1

When the DBNZ instruction is executed, B is decremented, and since B is then nonzero, control branches
to the label LA.

PC Instruction B RAM

code

03H

MOV #002H,B 0F18H 230202H 02H -

MOV #002H,003H 0F1BH 220302H 02H 02H

DBNZ @R3,LA 0F1EH 573FH 01H 02H

LA: INC B 0F5FH 6302H 02H 02H

Example 2

When the DBNZ instruction is executed, the accumulator is decremented, and since the accumulator is then
zero, control passes to the next instruction.

PC Instruction ACC RAM

code

03H

MOV #001H,ACC 0F18H 230001H 01H -

MOV #000H,003H 0F1BH 220300H 01H 00H

DBNZ @R3,LA 0F1EH 573FH 00H 00H

DEC ACC 0F20H 7300H FFH 00H

LA: INC ACC

Caution: When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.
VMC-207

Visual Memory Unit (VMU) Programing Manual
BE _i8, r8

Compare immediate data to accumulator and branch near relative address if equal

Instruction code 0 0 1 1 0 0 0 1 i7i6i5i4i3i2i1i0 r7r6r5r4r3r2r1r0 (31H)

Byte count 3

Cycles 2

Function (PC) ← (PC) + 3, if (ACC) = #i8 then (PC) ← (PC) + r8

Flags affected CY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares immediate data (i7 to i0) with the contents
of the accumulator, and if the values are equal adds the value of r7 to r0 to PC, leaving the result in PC.

If the values are different, continues to the next instruction.

If the value in the accumulator is less than the immediate data value, the carry flag is set; if equal or more,
the carry flag is cleared.

ACC < #i8 → CY = 1
ACC ≥ #i8 → CY = 0

Example 1

When the BE instruction is executed, ACC=02H, so CY is cleared, and control branches to the label LA.

PC Instruction ACC CY

code

MOV #002H,ACC 0F1AH 230002H 02H -

BE #002H,LA 0F1DH 31023FH 02H 0

LA: INC ACC 0F5FH 6300H 03H 0

Example 2

When the BE instruction is executed, ACC< 04H, so CY is set, and control passes to the next instruction.

PC Instruction ACC CY

code

MOV #003H,ACC 0F1AH 230003H 03H -

BE #004H,LA 0F1DH 31043FH 03H 1

DEC ACC 0F20H 7300H 02H 1

LA: INC ACC
VMC-208

 Instruction Set Reference
BE d9, r8

Compare direct byte to accumulator and branch near relative address if equal

Instruction code 0 0 1 1 0 0 1d8 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r0 (32H to 33H)

Byte count 3

Cycles 2

Function (PC) ← (PC) + 3, if (ACC) = (d9) then (PC) ← (PC) + r8

Flags affected CY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares the contents of the RAM address or SFR
specified by d8 to d0 with the contents of the accumulator, and if the values are equal adds the value of r7
to r0 to PC, leaving the result in PC.

If the values are different, continues to the next instruction.

If the value in the accumulator is less than the contents of the RAM address or SFR specified by d8 to d0,
the carry flag is set; if equal or more, the carry flag is cleared.

ACC < d9 (RAM or SFR) → CY = 1
ACC ≥ d9 (RAM or SFR) → CY = 0

Example 1

When the BE instruction is executed, ACC=B, so CY is cleared, and control branches to the label LA.

PC Instruction ACC B CY

code

MOV #002H,ACC 0F17H 230002H 02H - -

MOV #002H,B 0F1AH 230202H 02H 02H -

BE B,LA 0F1DH 33023FH 02H 02H 0

LA: INC ACC 0F5FH 6300H 03H 02H 0

Example 2

When the BE instruction is executed, ACC=02H, so CY is set, and control passes to the next instruction.

PC Instruction ACC B CY

code

MOV #003H,ACC 0F17H 230003H 03H - -

MOV #0F2H,B 0F1AH 2302F2H 03H F2H -

BE B,LA 0F1DH 33023FH 03H F2H 1

DEC ACC 0F20H 7300H 02H F2H 1

LA: INC ACC
VMC-209

Visual Memory Unit (VMU) Programing Manual
BE @Rj, _i8, r8

Compare immediate data to indirect byte and branch near relative address if equal

Instruction code 0 0 1 1 0 1j1j0 i7i6i5i4i3i2i1i0 r7r6r5r4r3r2r1r0 (34H to 37H)

Byte count 3

Cycles 2

Function (PC) ←(PC) + 3, if ((Rj)) = #i8 then (PC) ←(PC) + r8 j = 0,

1, 2, 3

Flags affected CY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares the contents of the RAM address or SFR
specified by the indirect address register specified by j1 to j0 with immediate data (i7 to i0), and if the values
are equal adds the value of r7 to r0 to PC, leaving the result in PC.

If the values are different, continues to the next instruction.

If the value in the RAM address or SFR specified by the indirect address register specified by j1 to j0 is less
than the immediate data (i7 to i0), the carry flag is set; if equal or more, the carry flag is cleared.

@Rj < #i8 → CY = 1
@Rj ≥ #i8 → CY = 0

Example 1

When the BE instruction is executed, B=05H, so CY is cleared, and control branches to the label LA.

PC Instruction B RAM CY

code

03H

MOV #005H,B 0F17H 230205H 05H - -

MOV #002H,003H 0F1AH 220302H 05H 02H -

BE @R3,#5H,LA 0F1DH 37053FH 05H 02H 0

LA: INC B 0F5FH 6302H 06H 02H 0

Example 2

When the BE instruction is executed, ACC_09H, so CY is set, and control passes to the next instruction.
PC Instruction ACC RAM CY

code

02H

MOV #003H,ACC 0F17H 230003H 03H - -

MOV #000H,002H 0F1AH 220200H 03H 00H -

BE @R2,#9H,LA 0F1DH 36093FH 03H 00H 1

DEC ACC 0F20H 7300H 02H 00H 1

LA: INC ACC
VMC-210

 Instruction Set Reference
BNE _i8, r8

Compare immediate data to accumulator and branch near relative address if not equal

Instruction code 0 1 0 0 0 0 0 1 i7i6i5i4i3i2i1i0 r7r6r5r4r3r2r1r0 (41H)

Byte count 3

Cycles 2

Function (PC) ← (PC) + 3, if (ACC) π #i8 then (PC) ← (PC) + r8

Flags affected CY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares immediate data (i7 to i0) with the contents
of the accumulator, and if the values are unequal adds the value of r7 to r0 to PC, leaving the result in PC.

If the values are equal, continues to the next instruction. If the value in the accumulator is less than the
immediate data value, the carry flag is set; if equal or more, the carry flag is cleared.

ACC < #i8 → CY = 1
ACC ≥ #i8 → CY = 0

Example 1

When the BNE instruction is executed, ACC_00H, so CY is cleared, and control branches to the label LA.

PC Instruction ACC CY

code

MOV #002H,ACC 0F1AH 230002H 02H -

BNE #000H,LA 0F1DH 41003FH 02H 0

LA: INC ACC 0F5FH 6300H 03H 0

Example 2

When the BNE instruction is executed, ACC=03H, so CY is cleared, and control passes to the
next instruction.

PC Instruction ACC CY

code

MOV #003H,ACC 0F1AH 230003H 03H -

BNE #003H,LA 0F1DH 41033FH 03H 0

DEC ACC 0F20H 7300H 02H 0

LA: INC ACC
VMC-211

Visual Memory Unit (VMU) Programing Manual
BNE d9, r8

Compare direct byte to accumulator and branch near relative address if not equal

Instruction code 0 1 0 0 0 0 1d8 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r0 (42H to 43H)

Byte count 3

Cycles 2

Function (PC) ← (PC) + 3, if (ACC) π (d9) then (PC) ← (PC) + r8

Flags affected CY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares the contents of the RAM address or SFR
specified by d8 to d0 with the contents of the accumulator, and if the values are unequal adds the value of
r7 to r0 to PC, leaving the result in PC.

If the values are equal, continues to the next instruction.

If the value in the accumulator is less than the contents of the RAM address or SFR specified by d8 to d0,
the carry flag is set; if equal or more, the carry flag is cleared.

ACC < d9(RAM or SFR) → CY = 1
ACC ≥ d9(RAM or SFR) → CY = 0

Example 1

When the BNE instruction is executed, ACC_B, so CY is set, and control branches to the label LA.

PC Instruction ACC B CY

code

MOV #002H,ACC 0F17H 230002H 02H - -

MON #003H,B 0F1AH 230203H 02H 03H -

BNE B,LA 0F1DH 43023FH 02H 03H 1

LA: INC ACC 0F5FH 6300H 03H 03H 1

Example 2

When the BNE instruction is executed, ACC=B, so CY is cleared, and control passes to the next instruction.

PC Instruction ACC B CY

code

MOV #0F2H,ACC 0F17H 2300F2H F2H - -

MOV #0F2H,B 0F1AH 2302F2H F2H F2H -

BNE B,LA 0F1DH 43023FH F2H F2H 0

DEC ACC 0F20H 7300H F1H F2H 0

LA: INC ACC
VMC-212

 Instruction Set Reference
BNE @Rj, _i8, r8

Compare immediate data to indirect byte and branch near relative address if not equal

Instruction code 0 1 0 0 0 1j1j0 i7i6i5i4i3i2i1i0 r7r6r5r4r3r2r1r0 (44H to 47H)

Byte count 3

Cycles 2

Function (PC) ← (PC) + 3, if ((Rj)) π #i8 then (PC) ̈ (PC) + r8 j = 0,

1, 2, 3

Flags affected CY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares the contents of the RAM address or SFR
specified by the indirect address register specified by j1 to j0 with immediate data (i7 to i0), and if the values
are unequal adds the value of r7 to r0 to PC, leaving the result in PC.

If the values are different, continues to the next instruction.

If the value in the RAM address or SFR specified by the indirect address register specified by j1 to j0 is less
than the immediate data (i7 to i0), the carry flag is set; if equal or more, the carry flag is cleared.

@Rj < #i8 → CY = 1
@Rj ≥ #i8 → CY = 0

Example 1

When the BNE instruction is executed, B_08H, so CY is set, and control branches to the label LA.

PC Instruction ACC B CY

code

MOV #002H,ACC 0F17H 230002H 02H - -

MON #003H,B 0F1AH 230203H 02H 03H -

BNE B,LA 0F1DH 43023FH 02H 03H 1

LA: INC ACC 0F5FH 6300H 03H 03H 1

Example 2

When the BNE instruction is executed, ACC=03H, so CY is cleared, and control passes to the
next instruction.

PC Instruction ACC RAM CY

code

02H

MOV #003H,ACC 0F17H 230003H 03H - -

MOV #000H,002H 0F1AH 220200H 03H 00H -

BNE @R2,#3H,LA 0F1DH 46033FH 03H 00H 0

DEC ACC 0F20H 7300H 02H 00H 0

LA: INC ACC
VMC-213

Visual Memory Unit (VMU) Programing Manual
Subroutine Instructions

CALL a12

Near absolute subroutine call

Instruction code 0 0 0a11 1a10a9a8 a7a6a5a4a3a2a1a0 (08H to 0FH, 18H to 1FH)

Byte count 2

Cycles 2

Function (PC) ← (PC) + 2, (SP) ← (SP) + 1, ((SP)) ← (PC7 to 0),

(SP) ← (SP) + 1, ((SP)) ← (PC15 to 8), (PC11 to 0) ← a12

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) twice, then increments the stack pointer (SP), stores the lower byte of
PC at the RAM address indicated by SP; increments the stack pointer (SP) again, and stores the upper byte
of PC at the RAM address indicated by SP; finally, transfers the value of a11 to a0 to bits 11 to 00 of PC.

Example 1

The value of label LA is 0F0EH.

PC Instruction SP RAM RAM

code

20H 21H

MOV #01FH,SP 0FFAH 23061FH 1FH - -

CALL LA 0FFDH 1F0EH 21H FFH 0FH

LA: INC ACC 0FOEH 6300H 21H FFH 0FH

RET 0F10H A0H 1FH FFH 0FH

NOP 0FFFH 00H 1FH FFH 0FH

Example 2

The value of label LA is 1F0EH.

PC Instruction SP RAM RAM

code

20H 21H

MOV #01FH,SP 0FFBH 23061FH 1FH - -

CALL LA 0FFEH 1F0EH 21H 00H 10H

LA: INC ACC 1F0EH 6300H 21H 00H 10H

RET 1F10H A0H 1FH 00H 10H

INC ACC 1000H 6300H 1FH 00H 10H
VMC-214

 Instruction Set Reference
CALLF a16

Far absolute subroutine call

Instruction code 0 0 1 0 0 0 0 0 a15a14a13a12a11a10a9a8 a7a6a5a4a3a2a1a0 (20H)

Byte count 3

Cycles 2

Function (PC) ← (PC) + 3, (SP) ← (SP) + 1, ((SP)) ← (PC7 to 0),

(SP) ← (SP) + 1, ((SP)) ← (PC15 to 8), (PC) ← a16

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then increments the stack pointer (SP), stores the lower
byte of PC at the RAM address indicated by SP; increments the stack pointer (SP) again, and stores the
upper byte of PC at the RAM address indicated by SP; finally, transfers the value of a15 to a0 to bits 15 to
00 of PC.

Example 1

The value of label LA is 0F0EH.

PC Instruction SP RAM RAM

code

20H 21H

MOV #01FH,SP 0FF9H 23061FH 1FH - -

CALLF LA 0FFCH 200F0EH 21H FFH 0FH

LA: INC ACC 0F0EH 6300H 21H FFH 0FH

RET 0F10H A0H 1FH FFH 0FH

NOP 0FFFH 00H 1FH FFH 0FH

Example 2

The value of label LA is 0F0EH.

PC Instruction SP RAM RAM

code

20H 21H

MOV #01FH,SP 0FFAH 23061FH 1FH - -

CALLF LA 0FFDH 200F0EH 21H 00H 10H

LA: INC ACC 0F0EH 6300H 21H 00H 10H

RET 0F10H A0H 1FH 00H 10H

INC ACC 1000H 6300H 1FH 00H 10H
VMC-215

Visual Memory Unit (VMU) Programing Manual
CALLR r16

Far relative subroutine call

Instruction code 0 0 0 1 0 0 0 0 r7r6r5r4r3r2r1r0 r15r14r13r12r11r10r9r8 (10H)

Byte count 3

Cycles 4

Function (PC) ← (PC) + 3, (SP) ← (SP) + 1, ((SP)) ← (PC7 to 0),

(SP) ← (SP) + 1, ((SP)) ← (PC15 to 8), (PC) ← (PC)

- 1 + r16

Flags affected

Interrupts enabled Yes on the 4th cycle

Description

Increments the program counter (PC) three times, then increments the stack pointer (SP), stores the lower
byte of PC at the RAM address indicated by SP; increments the stack pointer (SP) again, and stores the
upper byte of PC at the RAM address indicated by SP; finally, decrements PCÇÃ, then adds the value of r15
to r0 to PC, leaving the result in PC.

Example 1

The value of label LA is 1100H.

PC Instruction SP RAM RAM

code

20H 21H

MOV #01FH,SP 0FF9H 23061FH 1FH - -

CALLR LA 0FFCH 100201H 21H FFH 0FH

LA: INC ACC 1100H 6300H 21H FFH 0FH

RET 1102H A0H 1FH FFH 0FH

NOP 0FFFH 00H 1FH FFH 0FH

Example 2

The value of label LA is 1100H.

PC Instruction SP RAM RAM

code

20H 21H

MOV #01FH,SP 0FFCH 23061FH 1FH - -

CALLR LA 0FFDH 100101H 21H 00H 10H

LA: INC ACC 1100H 6300H 21H 00H 10H

RET 1102H A0H 1FH 00H 10H

INC ACC 1000H 6300H 1FH 00H 10H
VMC-216

 Instruction Set Reference
RET

Return from subroutine

Instruction code 1 0 1 0 0 0 0 0 (A0H)

Byte count 1

Cycles 2

Function (PC15 to 8) ← ((SP)), (SP) ← (SP) - 1, (PC7 to 0) ←

((SP)), (SP) ← (SP) - 1

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Transfers the contents of RAM indicated by the stack pointer (SP) to the upper byte of the program counter
(PC), then decrements SP, then transfers the contents of RAM indicated by the stack pointer (SP) to the
lower byte of the program counter (PC), then decrements SP again.

Example 1

The value of label LA is 0F0EH.

PC Instruction SP RAM RAM

code

20H 21H

MOV #01FH,SP 0FF9H 23061FH 1FH - -

CALLF LA 0FFCH 200F0EH 21H FFH 0FH

LA: INC ACC 0F0EH 6300H 21H FFH 0FH

RET 0F10H A0H 1FH FFH 0FH

NOP 0FFFH 00H 1FH FFH 0FH

Example 2

The value of label LA is 0F0EH.

PC Instruction SP RAM RAM

code

20H 21H

MOV #01FH,SP 0FFAH 23061FH 1FH - -

CALLF LA 0FFDH 200F0EH 21H 00H 10H

LA: INC ACC 0F0EH 6300H 21H 00H 10H

RET 0F10H A0H 1FH 00H 10H

INC ACC 1000H 6300H 1FH 00H 10H
VMC-217

Visual Memory Unit (VMU) Programing Manual
RETI

Return for interrupt

Instruction code 1 0 1 1 0 0 0 0 (B0H)

Byte count 1

Cycles 2

Function (PC15 to 8) ← ((SP)), (SP) ← (SP) - 1, (PC7 to 0) ←

((SP)), (SP) ← (SP) - 1

Flags affected

Interrupts enabled No

Description

Transfers the contents of RAM indicated by the stack pointer (SP) to the upper byte of the program counter
(PC), then decrements SP, then transfers the contents of RAM indicated by the stack pointer (SP) to the lower
byte of the program counter (PC), then decrements SP again, and resumes the interrupt handling function
which was inhibited while handling an interrupt.

Example 1

PC Instruction code

NOP 0FFAH 00H

NOP 0FFBH 00H

MOV #001H,ACC 0FFCH 230001H ← external interrupt 0 occurs

INC ACC 0003H 6300H

RET1 0005H B0H

NOP 0FFFH 00H

Example 2

PC Instruction code

NOP 0FFCH 00H

MOV #00EH,B 0FFDH 23020EH ← external interrupt 1 occurs

INC ACC 0013H 6300H

RET1 0015H B0H

INC ACC 1000H 6300H
VMC-218

 Instruction Set Reference
Bit Manipulation Instructions

CLR1 d9, b3

Clear direct bit

Instruction code 1 1 0d8 1b2b1b0 d7d6d5d4d3d2d1d0 (C8H to CFH, D8H to DFH)

Byte count 2

Cycles 1

Function (d9, b3) ← 0

Flags affected

Interrupts enabled Yes

Description

Clears the bit selected by the bit address b2 to b0 at the address in RAM or special function register (SFR)
indicated by d8 to d0.

Example 1

ACC

MOV #001H,ACC 01H 0000 0001B

CLR1 ACC,0 00H 0000 0000B

Example 2

RAM

7FH

MOV #001H,07FH 01H 0000 0001B

CLR1 07FH,0 00H 0000 0000B

Caution: When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.
VMC-219

Visual Memory Unit (VMU) Programing Manual
SET1 d9, b3

Set direct bit

Instruction code 1 1 1d8 1b2b1b0 d7d6d5d4d3d2d1d0 (E8H to EFH, F8H to FFH)

Byte count 2

Cycles 1

Function (d9, b3) ← 1

Flags affected

Interrupts enabled Yes

Description

Set the bit selected by the bit address b2 to b0 at the address in RAM or special function register (SFR)
indicated by d8 to d0.

Example 1

ACC

MOV #000H,ACC 00H 0000 0000B

SET1 ACC,7 80H 1000 0000B

Example 2

RAM

7FH

MOV #001H,07FH 01H 0000 0001B

SET1 07FH,6 41H 0100 0001B

Caution: When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.
VMC-220

 Instruction Set Reference
NOT1 d9, b3

Not direct bit

Instruction code 1 0 1d8 1b2b1b0 d7d6d5d4d3d2d1d0 (A8H to AFH, B8H to BFH)

Byte count 2

Cycles 1

Function (d9, b3) ← (d9, b3)

Flags affected

Interrupts enabled Yes

Description

Inverts the bit selected by the bit address b2 to b0 at the address in RAM or special function register (SFR)
indicated by d8 to d0.

Example 1

ACC

MOV #000H,ACC 00H 0000 0000B

NOT1 ACC,7 80H 1000 0000B

NOT1 ACC,7 00H 0000 0000B

Example 2

RAM

7FH

MOV #001H,07FH 01H 0000 0001B

NOT1 07FH,6 41H 0100 0001B

NOT1 07FH,6 01H 0000 0001B

Caution: When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.
VMC-221

Visual Memory Unit (VMU) Programing Manual
Miscellaneous Instruction

NOP

No operation

Instruction code 0 0 0 0 0 0 0 0 (00H)

Byte count 1

Cycles 1

Function

Flags affected

Interrupts enabled Yes

Description

Consumes one clock cycle.
VMC-222

 Instruction Set Reference
Macro Instruction

CHANGE <label (or address)>

Change program mode

Description

Switches between system BIOS in ROM and user program in flash memory.

1) Executed while running program in ROM:

• Switch from system BIOS to application

• Set the program counter to the address in flash memory specified by the label or address.

Caution: From the system BIOS, flash memory bank 0 address 0000H is accessed. This address is fixed.

2) Executed while running an application:

• Switch from application to system BIOS (when LDCEXT=0)

• Set the program counter to the program address in ROM specified by the label or address.

Caution: When the CHANGE instruction is executed with LDCEXT=1 and while an application is running, a
jump to the system BIOS is not carried out. In this case, there is a jump to the address in flash memory
specified by the CHANGE instruction.

3) The program mode switch occurs after the dedicated macro instruction has executed.

4) Interrupts are disabled.

Caution: Install the GHEAD.ASM file included with the Visual Memory development set assembler, to call the
system BIOS. This calls OS functions without needing to be aware of ROM addresses.

Reference: For details of operating system function calls, refer to the "System BIOS" section of the Visual Memory
Hardware Manual.
VMC-223

Visual Memory Unit (VMU) Programing Manual
VMC-224

LC86K Instruction
Set Summary
Caution: An asterisk in the "Mnemonic" column for an instruction indicates that in byte or bit addressing the port
latch is selected. For these instructions, an external signal supplied to the port is selected.
VMC-225

 LC86K Instruction Set Summary
VMC-226

Assembler
Pseudoinstructions
A pseudoinstruction differs from an ordinary instruction (such as ADD or MOV in the LC86K instruction set); it
gives directives or definitions to the assemble, and a pseudoinstruction of itself does not generate a machine
instruction. (This does not apply to JMPO and other optimization pseudoinstructions, or to the CHANGE
pseudoinstruction.) Pseudoinstructions are often used in combination with ordinary instructions.

Group Pseudoinstruction Function

Linking control ORG

WORLD

CSEG

DSEG

END

PUBLIC

EXTERN

OTHER_SIDE_SYMBOL

Specify origin

Select the ROM to hold code

Declare the beginning of a code segment

Declare the beginning of a data segment

End program

Declare public symbol

Declare external symbol

Declare CHANGE instruction jump label

Symbol definitions EQU

SET

Assign a fixed value

Assign temporary value

Data definitions DB

DW

DC

DS

Define byte data

Define word data

Define character string data

Define byte area

Macro control MACRO

REPT

IRP

IRPC

ENDM

EXITM

LOCAL

Define macro

Repeat macro

Iteration macro

Character string macro

End macro definition

End macro expansion

Define local label
VMC-227

 Assembler Pseudoinstructions
Conditional assembly IFDEF

IFNDEF

IFB

IFNB

IFE

IFNE

IFIDN

IFDIF

ELSE

ENDIF

.PRINTX

.LIST

.XLIST

.MACRO

.XMACRO

.IF

.XIF

Assemble if defined

Assemble if undefined

Assemble if operand empty

Assemble if operand nonempty

Assemble if zero

Assemble if nonzero

Assemble if identical

Assemble if different

Else case of conditional assembly

End conditional assembly

Display message during assembly

Resume listing

Suppress listing

List macro expansions

End macro expansion listing

List skipped statements in conditional assembly

End listing of skipped statements

Assemble if operand empty

Miscellaneous INCLUDE

TITLE

PAGE

CHIP

COMMENT

WIDTH

BANK

CHANGE

RADIX

Include file

Set listing title

New page

Specify chip for assembly

Add comment to object file

Specify columns in listing file

Specify RAM bank

Jump between flash memory and ROM

Specify default radix
VMC-228

 Assembler Pseudoinstructions
ORG

Specify origin

Syntax

ORG expression

Description

The ORG pseudoinstruction specifies the start address in program memory (flash memory) as expression.
Expression must be a numeric constant, or an expression which can be evaluated at assembly time.

Example

WORLD

Select the ROM to hold code

Syntax

WORLD selection

Description

This specifies the ROM which will hold the assembled code. This pseudoinstruction is only valid when the
target chip is the LC86800 series. There are three values which can be specified for selection.

Optimization JMPO

BRO

CALLO

BZO

BNZO

BPO

BPCO

BNO

DBNZO

BEO

BNEO

Optimized JMP instruction

Optimized BR instruction

Optimized CALL instruction

BZ instruction guaranteeing no address error

BNZ instruction guaranteeing no address error

BP instruction guaranteeing no address error

BPC instruction guaranteeing no address error

BN instruction guaranteeing no address error

DBNZ instruction guaranteeing no address error

BE instruction guaranteeing no address error

BNE instruction guaranteeing no address error

Optimized BR instruction

Optimized CALL instruction

BZ instruction guaranteeing no address error

BNZ instruction guaranteeing no address error

BP instruction guaranteeing no address error

BPC instruction guaranteeing no address error

BN instruction guaranteeing no address error

DBNZ instruction guaranteeing no address error
VMC-229

Visual Memory Unit (VMU) Programing Manual
Caution: For Visual Memory, always specify EXTERNAL. Other specifications may lead to data corruption
or misoperation.

If there is more than one WORLD pseudoinstruction in a single file, an error results. For chips other than the chips
other than the LC86800 series, if a value other than INTERNAL is selected for the WORLD pseudoinstruction, an
error results.

CSEG

Declare the beginning of a code segment

Syntax

CSEG mode

Description

This indicates to the assembler the beginning of a segment holding program code. When mode is not
specified or is INBLOCK, the segment is aligned within 4K boundaries. If the mode is FREE, this indicates
that the segment can be located regardless of 4K boundaries.

Example

DSEG

Declare the beginning of a data segment

Syntax

DSEG

Description

This indicates to the assembler the beginning of a segment holding data.

Caution: Data segments are copied into RAM. It is not possible to open a data segment in flash memory.

INTERNAL Store in the on-chip ROM.

EXTERNAL Store in flash memory bank 0.

EXTERNAL_DATA Store in flash memory bank 1.
VMC-230

 Assembler Pseudoinstructions
Example

END

End program

Syntax

END

Description

This indicates the end of the source program. When the assembler encounters this instruction, it ends the
pass currently being executed, so any text beyond this point, even if valid statements, is ignored.

Example

PUBLIC

Declare public symbol

Syntax

PUBLIC symbol {, symbol}

Description

The PUBLIC pseudoinstruction declares that a symbol defined in the program can be referenced from other
source files.

Example

Caution: To reference a symbol defined in another source file, it must be declared EXTERN.
To allow a symbol in this file to be referenced from another file, it must be declared PUBLIC.
VMC-231

Visual Memory Unit (VMU) Programing Manual
page:1 <public.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; sample program for PUBLIC

0002 chip lc866032

0003 public label1, label2

0004

0005 cseg inblock

0006 C 0000 220000 label1: mov #00, data1

0007 C 0003 23033C mov #60, c

0008 C 0006 A0 ret

0009

0010 C 0007 6200 label2: inc data1

0011 C 0009 0200 ld data1

0012 C 000B 410A05 bne #10, label3

0013 C 000E 220000 mov #00, data1

0014 C 0011 6201 inc data2

0015

0016 C 0013 7303 label3: dec c

0017 C 0015 A0 ret

0018

0019 dseg

0020 D 0000 data1: ds 1

0021 D 0001 data2: ds 1

0022

0023 end

Note: The combination of PUBLIC and EXTERN declarations allows a symbol to be referenced even
when it is defined in another file.

EXTERN

Declare external symbol

Syntax

EXTERN [segment:] symbol {, [segment:] symbol}

Description

The EXTERN pseudoinstruction is used when a symbol or symbols are defined in other source program
files. The optional segment parameter is either CSEG or DSEG, indicating the segment type. If this is not
specified, a code segment, CSEG, is the default.

Reference: For examples see the previous item "PUBLIC - Declare public symbol."

OTHER_SIDE_SYMBOL

Declare CHANGE instruction jump label
VMC-232

 Assembler Pseudoinstructions
Syntax

OTHER_SIDE_SYMBOLlabel {, label}

Description

This declares an address label which can be specified as the operand of a CHANGE instruction, which in
the LC86800 series is used for switching between ROM and flash memory. The label declared is a type of
external symbol, but one difference is that in a source file of code to be stored in ROM, a label is declared
in flash memory (or in ROM in a source file of code to be stored in flash memory). This pseudoinstruction
is only valid for the LC86800 series, and in other cases an error results.

Reference: For examples, see under "CHANGE - Jump between flash memory and ROM in this chapter.

EQU

Assign a fixed value

Syntax

Symbolname EQU expression

Description

The EQU pseudoinstruction assigns the value expression to symbolname. A symbol defined with the EQU
pseudoinstruction cannot be redefined. Used appropriately, the EQU pseudoinstruction can aid the visual
identification of constant data, and improve maintenance efficiency.

Example

SET

Assign temporary value

Syntax

Symbolname SET expression

Description

The SET pseudoinstruction assigns the value expression to symbolname. A symbol defined with the SET
pseudoinstruction can be redefined by a subsequent SET. However, a symbol set with this
pseudoinstruction cannot be the subject of a PUBLIC declaration, nor can it be redefined with EQU.
VMC-233

Visual Memory Unit (VMU) Programing Manual
Example

DB

Define byte data

Syntax

Labelname DB expression {, expression}

Description

The DB pseudoinstruction stores the 8-bit data value or values represented by expression in program
memory (ROM). Any number of operands may be specified, separated by commas. When two or more
operands are specified, they are evaluated in order left to right, and stored in successive addresses. If there
are two commas with nothing between them, this is interpreted as a zero value.

Example

In the above example, because the "db area" statement references the symbol "area," which is a 16-bit value,
at assembly time a warning level message, "Value is out of range," is generated. The bottom eight bits of the
value are used in the object code.

DW

Define word data

Syntax

labelname DW expression {, expression}

Description

The DW pseudoinstruction stores the 16-bit data value or values represented by expression in program
memory (ROM). The more significant byte is stored first, and the less significant byte at the address one
higher. Any number of operands may be specified, separated by commas. When two or more operands are
specified, they are stored in successive addresses. If there are two commas with nothing between them, this
is interpreted as a zero value.

Example

DC

Define character string data

Syntax

labelname DC "string"
VMC-234

 Assembler Pseudoinstructions
Description

This stores the ASCII codes of string (a character string constant) in sequence in program memory (ROM).

Reference: For details of character string constants, see Section 20.7, “Character String Constants.”

Example

DS

Define byte area

Syntax

labelname DS absolute_expression

Description

The DS pseudoinstruction allocates any area of data memory (RAM) of the number of bytes specified by
absolute_expression . The absolute_expression must have a value completely determined at
assembly time. This pseudoinstruction can only be used after a DSEG pseudoinstruction.

Caution: A DS pseudoinstruction can only be used to allocate RAM (a data segment). It cannot be used for flash
memory. Use DB or DW statements instead.

Example

MACRO

Define macro

Syntax

name MACRO parameter {, parameter}

Description

The MACRO pseudoinstruction defines a macro. The statements from the MACRO pseudoinstruction to
the following ENDM pseudoinstruction form the body of the macro. The parameter name is the name by
which the macro can be called, which is replaced by the body of the macro, and is therefore mandatory. The
formal parameter list specified by parameter is optional, depending on the macro being defined.

Caution: When calling one macro from within another, or when using a pseudoinstruction such as IFB which
requires angle brackets (< >), a sufficient depth of angle brackets to correspond to the nesting level is
required. See the section "EXITM – End macro expansion" in this chapter.
VMC-235

Visual Memory Unit (VMU) Programing Manual
Example

REPT

Repeat macro

Syntax

REPT count

Description

The REPT pseudoinstruction repeats the statements up to the ENDM instruction, generating the number of
copies specified by count. This value can be any integer from 1 to 65535.

Example

In the following example, the area not occupied by the program is filled with NOP codes (for a
256-byte boundary).

IRP

Iteration macro

Syntax

IRP parameter, argument {, argument}…

Description

The IRP pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each argument specified. In each copy, parameter is replaced by the corresponding argument.

Example

IRPC

Character string macro

Syntax

IRPC parameter, string

Description

The IRPC pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each character in string. As distinct from a character string constant, string is not enclosed in quotation
marks. Codes beginning with a backslash cannot be used. In each copy, parameter is replaced by the
corresponding character in string.
VMC-236

 Assembler Pseudoinstructions
Example

ENDM

End macro definition

Syntax

ENDM

Description

This marks the end of a macro definition.

Example

EXITM

End macro expansion

Syntax

EXITM

Description

The EXITM pseudoinstruction ends expansion of a macro. In combination with conditional assembly
pseudoinstructions, this can be used to create different forms of expansion of a macro depending on the
arguments supplied.

Example

LOCAL

Define local label

Syntax

LOCAL name {, name}

Description

The LOCAL pseudoinstruction declares a label which can be used internally to the body of the macro.
During macro expansion, the name declared in the LOCAL pseudoinstruction is replaced by the assembler
with a unique identifier to avoid name conflicts.
VMC-237

Visual Memory Unit (VMU) Programing Manual
Example

; sample program for LOCAL

chip lc864008

b_ne macro val,dst

local skip

be val,skip

bro dst

skip:

endm

cseg

b_ne #0, over

org 200h

over: b_ne #0, under

nop

under: nop

end

In the above example, the BRO pseudoinstruction is used to define the B_NE macro which generates different
instructions depending on the destination of a jump; this is then used in the example. The following is the result
of assembly.

IFDEF

Assemble if defined

Syntax

IFDEF symbol

Description

If symbol is defined, the statements after the IFDEF pseudoinstruction until the next ELSE or ENDIF are
assembled.

Example

IFNDEF

Assemble if undefined

Syntax

IFNDEF symbol

Description

If symbol is undefined, the statements after the IFNDEF pseudoinstruction until the next ELSE or ENDIF
are assembled.
VMC-238

 Assembler Pseudoinstructions
Example

IFB

Assemble if operand empty

Syntax

IFB <argument>

Description

If argument is empty, the statements after the IFB pseudoinstruction until the next ELSE or ENDIF are
assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.

Example

IFNB

Assemble if operand nonempty

Syntax

IFNB <argument>

Description

If argument is nonempty, the statements after the IFNB pseudoinstruction until the next ELSE or ENDIF
are assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.

Example

IFE

Assemble if zero

Syntax

IFE expression

Description

If the value of expression is zero, the statements after the IFE pseudoinstruction until the next ELSE or
ENDIF are assembled.
VMC-239

Visual Memory Unit (VMU) Programing Manual
Example

IFNE

Assemble if nonzero

Syntax

IFNE expression

Description

If the value of expression is nonzero, the statements after the IFNE pseudoinstruction until the next ELSE
or ENDIF are assembled.

Example

IFIDN

Assemble if identical

Syntax

IFIDN <string1>, <string2>

Description

If the two strings string1 and string2 are identical, the statements after the IFIDN pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.

Example

IFDIF

Assemble if different

Syntax

IFDIF <string1>, <string2>

Description

If the two strings string1 and string2 are different, the statements after the IFDIF pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.
VMC-240

 Assembler Pseudoinstructions
Example

ELSE

Else case of conditional assembly

Syntax

ELSE

Description

The statements after the ELSE pseudoinstruction until the next ENDIF are assembled when the test
condition of the preceding IF pseudoinstruction fails to hold.

Reference: See under "IFDEF - Assemble if defined" in this section.

ENDIF

End conditional assembly

Syntax

ENDIF

Description

Marks the end of a conditional assembly.

Reference: See under "IFDEF - Assemble if defined" in this section.

.PRINTX

Display message during assembly

Syntax

.PRINTX"string"

Description

The .PRINTX pseudoinstruction displays the character string constant string during assembly.

Reference: For details of character string constants, see Section 20.7, “Character String Constants.”
VMC-241

Visual Memory Unit (VMU) Programing Manual
Example

.LIST

Resume listing

Syntax

.LIST

Description

The .LIST pseudoinstruction resumes listing output, when it has been suppressed with the .XLIST
pseudoinstruction.

Example

.XLIST

Suppress listing

Syntax

.XLIST

Description

The .XLIST pseudoinstruction suppresses output to the listing file.

Reference: See under ".LIST - Resume listing," in this section.

.MACRO

List macro expansions

Syntax

.MACRO

Description

The .MACRO pseudoinstruction causes the expanded body of macro calls to be output to the listing file.

Example
VMC-242

 Assembler Pseudoinstructions
.XMACRO

End macro expansion listing

Syntax

.XMACRO

Description

The .XMACRO pseudoinstruction ends the output of expanded macro calls to the listing.

Reference: For an example, see under the previous item, ".MACRO - List macro expansions."

REPT

Repeat macro

Syntax

REPT count

Description

The REPT pseudoinstruction repeats the statements up to the ENDM instruction, generating the number
of copies specified by count. This value can be any integer from 1 to 65535.

Example

In the following example, the area not occupied by the program is filled with NOP codes (for a
256-byte boundary).

IRP

Iteration macro

Syntax

IRP parameter, argument {, argument}…
VMC-243

Visual Memory Unit (VMU) Programing Manual
Description

The IRP pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each argument specified. In each copy, parameter is replaced by the corresponding argument.

Example

IRPC

Character string macro

Syntax

IRPC parameter, string

Description

The IRPC pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each character in string. As distinct from a character string constant, string is not enclosed in quotation
marks. Codes beginning with a backslash cannot be used. In each copy, parameter is replaced by the
corresponding character in string.

Example

ENDM

End macro definition

Syntax

ENDM

Description

This marks the end of a macro definition.

Example

EXITM

End macro expansion

Syntax

EXITM
VMC-244

 Assembler Pseudoinstructions
Description

The EXITM pseudoinstruction ends expansion of a macro. In combination with conditional assembly
pseudoinstructions, this can be used to create different forms of expansion of a macro depending on the
arguments supplied.

Example

LOCAL

Define local label

Syntax

LOCAL name {, name}

Description

The LOCAL pseudoinstruction declares a label which can be used internally to the body of the macro.
During macro expansion, the name declared in the LOCAL pseudoinstruction is replaced by the assembler
with a unique identifier to avoid name conflicts.

Example

; sample program for LOCAL

chip lc864008

b_ne macro val,dst

local skip

be val,skip

bro dst

skip:

endm

cseg

b_ne #0, over

org 200h

over: b_ne #0, under

nop

under: nop

end

In the above example, the BRO pseudoinstruction is used to define the B_NE macro which generates
different instructions depending on the destination of a jump; this is then used in the example. The
following is the result of assembly.
VMC-245

Visual Memory Unit (VMU) Programing Manual
IFDEF

Assemble if defined

Syntax

IFDEF symbol

Description

If symbol is defined, the statements after the IFDEF pseudoinstruction until the next ELSE or ENDIF
are assembled.

Example

IFNDEF

Assemble if undefined

Syntax

IFNDEF symbol

Description

If symbol is undefined, the statements after the IFNDEF pseudoinstruction until the next ELSE or ENDIF
are assembled.

Example

IFB

Assemble if operand empty

Syntax

IFB <argument>

Description

If argument is empty, the statements after the IFB pseudoinstruction until the next ELSE or ENDIF are
assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.
VMC-246

 Assembler Pseudoinstructions
Example

IFNB

Assemble if operand nonempty

Syntax

IFNB <argument>

Description

If argument is nonempty, the statements after the IFNB pseudoinstruction until the next ELSE or ENDIF
are assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.

Example

IFE

Assemble if zero

Syntax

IFE expression

Description

If the value of expression is zero, the statements after the IFE pseudoinstruction until the next ELSE or
ENDIF are assembled.

Example

IFNE

Assemble if nonzero

Syntax

IFNE expression

Description

If the value of expression is nonzero, the statements after the IFNE pseudoinstruction until the next ELSE
or ENDIF are assembled.
VMC-247

Visual Memory Unit (VMU) Programing Manual
Example

IFIDN

Assemble if identical

Syntax

IFIDN <string1>, <string2>

Description

If the two strings string1 and string2 are identical, the statements after the IFIDN pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.

Example

IFDIF

Assemble if different

Syntax

IFDIF <string1>, <string2>

Description

If the two strings string1 and string2 are different, the statements after the IFDIF pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.

Example

ELSE

Else case of conditional assembly

Syntax

ELSE

Description

The statements after the ELSE pseudoinstruction until the next ENDIF are assembled when the test
condition of the preceding IF pseudoinstruction fails to hold.

Reference: See under "IFDEF - Assemble if defined" in this section.
VMC-248

 Assembler Pseudoinstructions
ENDIF

End conditional assembly

Syntax

ENDIF

Description

Marks the end of a conditional assembly.

Reference: See under "IFDEF - Assemble if defined" in this section.

.PRINTX

Display message during assembly

Syntax

.PRINTX "string"

Description

The .PRINTX pseudoinstruction displays the character string constant string during assembly.

Reference: For details of character string constants, see Section on, “Character String Constants.”

Example

.LIST

Resume listing

Syntax

.LIST

Description

The .LIST pseudoinstruction resumes listing output, when it has been suppressed with the .XLIST
pseudoinstruction.
VMC-249

Visual Memory Unit (VMU) Programing Manual
Example

.XLIST

Suppress listing

Syntax

.XLIST

Description

The .XLIST pseudoinstruction suppresses output to the listing file.

Reference: See under ".LIST - Resume listing," in this section.

.MACRO

List macro expansions

Syntax

.MACRO

Description

The .MACRO pseudoinstruction causes the expanded body of macro calls to be output to the listing file.

Example

.XMACRO

End macro expansion listing

Syntax

.XMACRO

Description

The .XMACRO pseudoinstruction ends the output of expanded macro calls to the listing.

Reference: For an example, see under the previous item, ".MACRO - List macro expansions."
VMC-250

 Assembler Pseudoinstructions
.IF

List skipped statements in conditional assembly

Syntax

.IF

Description

The .IF pseudoinstruction causes source program statements skipped in a conditional assembly to be
output to the listing file.

Example

.XIF

End listing of skipped statements

Syntax

.XIF

Description

The .XIF pseudoinstruction stops source program statements skipped in a conditional assembly from being
output to the listing file.

Reference: For an example, see under the previous item, ".IF - List skipped statements in conditional assembly."

INCLUDE

Include file

Syntax

INCLUDE filename

Description

The INCLUDE pseudoinstruction causes the source file specified by filename to be read into the current
point in the source program and assembled. The specification of filename must include the extension. The
INCLUDE pseudoinstruction can be nested to a maximum depth of nine. Note that if an END
pseudoinstruction occurs in the included file, this terminates the assembly.
VMC-251

Visual Memory Unit (VMU) Programing Manual
Example

TITLE

Set listing title

Syntax

TITLE string

Description

The TITLE pseudoinstruction specifies string as the title for the listing file. Unlike a character string
constant, string is not enclosed in quotation marks. It is also not possible to include codes with the backslash
(\) symbol.

Example

PAGE

New page

Syntax

PAGE

Description

The PAGE pseudoinstruction forces a new page in the listing file. The page break appears immediately after
this pseudoinstruction.

Example

CHIP

Specify chip for assembly

Syntax

CHIP chipname
VMC-252

 Assembler Pseudoinstructions
Description

The CHIP pseudoinstruction informs the assembler of the chip for which assembly is to be carried out.
According to the value of chipname, the assembly changes the reserved words, and carries out a memory
size check. This pseudoinstruction must appear at the beginning of the source file, before any other
instructions or pseudoinstructions. If this pseudoinstruction is not found, the environment variable
CHIPNAME is referenced. If the chip name specified by this pseudoinstruction is different from the chip
specified by the CHIPNAME environment variable, a warning level error is issued.

Note: For developing Visual Memory applications, the chip name must be set to LC868700.

COMMENT

Add comment to object file

Syntax

COMMENT comment_string

Description

The COMMENT pseudoinstruction adds a comment directly into the assembled object code. Unlike a
character string constant, comment_string is not enclosed in quotation marks. It is also not possible to
include codes with the backslash (\) symbol. The comment is stored from byte 680 of the object file. A
maximum of 255 characters can be used for the comment.

Example

WIDTH

Specify columns in listing file

Syntax

WIDTH number

Description

The WIDTH pseudoinstruction specifies the number of character columns in the listing file, that is, the
number of characters in each line. The parameter number may be any value from 72 to 132 inclusive, but
the recommended minimum is the number of columns of the source file plus 28. Although this
pseudoinstruction can appear any number of times in a single source file, normally it is specified once only
at the beginning of the file. If this pseudoinstruction is not found, the default listing file has 132 columns.
VMC-253

Visual Memory Unit (VMU) Programing Manual
Example

BANK

Specify RAM bank

Syntax

BANK expression

Description

The BANK pseudoinstruction supplies the bank number for symbols defined by DS pseudoinstructions for
RAM after a DSEG pseudoinstruction.

Example

CHANGE

Jump between flash memory and ROM

Syntax

CHANGE symbol

Description

For the LC86800 series, this is a special jump instruction for switching between code in flash memory and
code in ROM (system BIOS). The operand symbol must have been declared with the pseudoinstruction
OTHER_SIDE_SYMBOL. Note that this pseudoinstruction is special to the LC86800 series, and in other cases
an error results.

Note: For Visual Memory, use this instruction to call an operating system function.

Reference: For details of operating system function calls, refer to the "System BIOS" section of the Visual Memory
Hardware Manual.

Example

RADIX

Specify default radix

Syntax

RADIX expression
VMC-254

 Assembler Pseudoinstructions
Description

The RADIX pseudoinstruction specifies the radix, or base, of a numeric constant with no explicit radix
indication. The value of expression must be a constant value from the set 2, 8, 10, and 16. This specification
takes effect from this statement until a subsequent RADIX pseudoinstruction. If this pseudoinstruction is
not present, the default radix is 10.

Example

Xxx SET 10 _ interpreted by default as 10 decimal.

RADIX 16

Xxx SET 10 _ interpreted as 16 decimal, because of the radix value 16.

RADIX 2

Xxx SET 10 _ interpreted as 2 decimal, because of the radix value 2.

JMPO

Optimized JMP instruction

Syntax

JMPO expression

Description

The JMPO pseudoinstruction compares expression with the current location, and if this is a jump within
the same block (only the bottom 12 bits of the addresses are different) generates a JMP instruction.
Otherwise, that is, if the address is in a different block, or if the address cannot be determined because for
example it is an external symbol, then this generates a JMPF instruction.

Example

BRO

Optimized BR instruction

Syntax

BRO expression

Description

BRO pseudoinstruction compares expression with the current location, and if the branch address is
within the range -128 to +127 generates a BR instruction; when outside the range -128 to +127 generates
a BRF instruction.
VMC-255

Visual Memory Unit (VMU) Programing Manual
Example

CALLO

Optimized CALL instruction

Syntax

CALLO expression

Description

The CALLO pseudoinstruction compares expression with the current location, and if this is a call within the
same block (only the bottom 12 bits of the addresses are different) generates a CALL instruction. Otherwise,
that is, if the address is in a different block, or if the address cannot be determined because for example it is
an external symbol, then this generates a CALLF instruction.

Example

BZO

BZ instruction guaranteeing no address error

Syntax

BZO expression

Description

The BZO macro generates code equivalent to the BZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BZO macro uses a BNZ instruction, which is the logical inverse of the BZ instruction, and a BRO
instruction. Enter the branch destination for expression.

Code generation macro

; *** Branch near relative address if accumulator is zero ***

bzo macro r8

local _next_

bnz _next_

bro r8

next:

endm
VMC-256

 Assembler Pseudoinstructions
BNZO

BNZ instruction guaranteeing no address error

Syntax

BNZO expression

Description

The BNZO macro generates code equivalent to the BNZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNZO macro uses a BZ instruction, which is the logical inverse of the BNZ instruction, and a BRO
instruction. Enter the branch destination for expression.

Code generation macro

; *** Branch near relative address if accumulator is not zero ***

bnzo macro r8

local _next_

bz _next_

bro r8

next:

endm

BPO

BP instruction guaranteeing no address error

Syntax

BPO expression

Description

The BPO macro generates code equivalent to the BP instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BPO macro uses a BP instruction, and BR and BRO instructions. Enter the branch destination for
expression.

Code generation macro

; *** Branch near relative address if direct bit is one ***

bpo macro d9,b3,r8

local _next_

local _true_

bp d9,b3,_true_

br _next_

true: bro r8

next:

endm
VMC-257

Visual Memory Unit (VMU) Programing Manual
BPCO

BPC instruction guaranteeing no address error

Syntax

BPCO expression

Description

The BPCO macro generates code equivalent to the BPC instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BPCO macro uses a BPC instruction, and BR and BRO instructions. Enter the branch destination for
expression.

Code generation macro

; *** Branch near relative address if direct bit is one,

; and clear ***

bpco macro d9,b3,r8

local _next_

local _true_

bpc d9,b3,_true_

br _next_

true: bro r8

next:

endm

BNO

BN instruction guaranteeing no address error

Syntax

BNO expression

Description

The BNO macro generates code equivalent to the BN instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNO macro uses a BN instruction, and BR and BRO instructions. Enter the branch destination
for expression.
VMC-258

 Assembler Pseudoinstructions
Code generation macro

; *** Branch near relative address if direct bit is zero ***

bno macro d9,b3,r8

local _next_

local _true_

bn d9,b3,_true_

br _next_

true: bro r8

next:

endm

DBNZO

DBNZ instruction guaranteeing no address error

Syntax

DBNZOexpression

Description

The DBNZO macro generates code equivalent to the DBNZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The DBNZO macro uses a DBNZ instruction, and BR and BRO instructions. The function of expression is
the same as in the DBNZ instruction.

Code generation macro

; *** Decrement direct byte and branch near relative address

; if direct byte is not zero ***

dbnzo macro d9,r8

local _next_

local _true_

dbnz d9,_true_

br _next_

true: bro r8

next:

endm

BEO

BE instruction guaranteeing no address error

Syntax
VMC-259

Visual Memory Unit (VMU) Programing Manual
BEO expression

Description

The BEO macro generates code equivalent to the BE instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BEO macro uses a BNE instruction and BRO instruction. The function of expression is the same as in
the BE instruction.

Code generation macro

; *** Compare immediate data or accumulator and branch

; near relative address if equal ***

beo macro arg0,arg1,arg2

local _next_

local _txen_

ifb <<arg2>>

bne arg0,_next_

bro arg1

next:

else

bne arg0,arg1,_txen_

bro arg2

txen:

endif

endm

BNEO

BNE instruction guaranteeing no address error

Syntax

BNEO expression

Description

The BNEO macro generates code equivalent to the BNE instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNEO macro uses a BE instruction and BRO instruction. The function of expression is the same as in
the BNE instruction.
VMC-260

 Assembler Pseudoinstructions
Code generation macro

; *** Compare immediate data or accumulator and branch

; near relative address if equal ***

bneo macro arg0,arg1,arg2

local _next_

local _txen_

ifb <<arg2>>

be arg0,_next_

bro arg1

next:

else

be arg0,arg1,_txen_

bro arg2

txen:

endif

endm
VMC-261

Visual Memory Unit (VMU) Programing Manual
VMC-262

Visual Memory Unit (VMU)
VMU-BIOS Specifications

Table of Contents
VMU-BIOS Specifications . VME–3
Outline .. VME–3
VMU Outline ... VME–4

System-BIOS Outline .. VME–4
Memory Space ... VME–5
System BIOS Functions .. VME–7
System BIOS Data and Memory Allocation .. VME–8

Program Layout .. VME–8
Subroutine Call Flow .. VME–9
Returning From User Program to Mode Selection Screen .. VME–11
VMU Initialization .. VME–12

Subroutine Description .. VME–14
Flash Memory Access Functions .. VME–14
Clock Function .. VME–21

Automatic low battery detection function ... VME–22
Automatic low battery detection flag .. VME–22

VMU-BIOS Specifications
Outline
This document describes the System BIOS functions of the backup memory system “VMU” designed for the
new-generation game machine (preliminary).
VME-1

 VMU-BIOS Specifications
VMU Outline
“VMU” stands for “Visual Memory Unit”. The VMU is a backup memory cartridge equipped with a liquid-crystal
display and operation buttons.

When connected to a dedicated controller in the new-generation game machine (preliminary), the VMU serves as
a file backup memory and it can also display game sub screens on its LCD.

When not connected to the new-generation game machine, the VMU can function as a stand alone unit that allows
displaying and deleting stored files. Two VMU units can be connected to allow file transfer.

Another application of the VMU is as a highly portable miniature game machine, using simple application
programs downloaded from the new-generation game machine to the VMU. (Such application programs are called
“user programs”.)

System-BIOS Outline

The functions described above are implemented by several programs that are contained in an internal ROM on the
VMU. These programs are called “OS programs”. OS programs consist of subroutines which can be called by user
programs. Two program types (system program and header) are used to call up subroutines. The entire system
consisting of OS programs, system programs, and headers is called the “System-BIOS”.

OS program subroutines are divided into subroutines that serve mainly for accessing the flash memory and
subroutines for calculating time data. Application developers can use the System-BIOS to call these subroutines in
user programs. This makes it easy for application developers to use VMU functions without having to deal with
detailed VMU specifications.
VME-2

Visual Memory Unit (VMU) VMU–BIOS Specifications
Memory Space
VMU uses two types of memory space: internal memory space and external memory space.

Internal memory space consists of the internal program area and internal RAM. The external memory space is made
up of flash memory.

The internal program area is 64 kilobytes and contains the OS programs and system programs. User programs can
reference this area as needed. The internal program area is allocated as shown in the memory map in Figure 1.4,
”VMU memory map,”(For information on OS programs and system programs, please refer to Section , ”System
BIOS Data and Memory Allocation”.)

The flash memory space is 128 kilobytes, divided into two banks of 64 kilobytes each. Bank-0 is the program area
and bank-1 the data area. User programs are stored in the program area. A memory map of the flash memory is
shown in Figure 1.2, ”Flash memory space,”(For information on the internal and external program area and BIOS
usage, please see “System BIOS Functions” on page 5, and the following sections.)

The internal RAM has a memory space of 1222 bytes, divided into the following four sections: main RAM, special
register area, LCD video RAM (XRAM), work RAM (VTRBF).

The main RAM is 512 bytes, divided into two banks of 256 bytes each. Because bank-0 is reserved for the System
BIOS, user programs are generally prohibited from writing to bank-0 (except for certain cases listed in appendix 1).

The special register area is allocated to VMU specific registers (timer register, LCD control register, etc.). For
information on registers and corresponding addresses, please refer to the VMU user's manual.

The LCD video RAM (XRAM) consists of three banks which serve for storing LCD image data. (For information on
RAM usage, please refer to the VMU user's manual.)

The work RAM is 512 bytes and serves as a buffer when VMU carries out data transfer according to the Maple Bus
protocol. When the VMU is operating as a standalone unit and data transfer according to the Maple Bus protocol is
therefore not being carried out, user programs can use this area.

A memory map of the internal RAM is shown in Figure 1.3, ”Internal RAM space,”(The access procedure for the
work RAM differs from normal RAM access. For information, please refer to the VMU user's manual.)
VME-3

 VMU-BIOS Specifications
Figure 1.1 Internal program space

Figure 1.2 Flash memory space

Figure 1.3 Internal RAM space

System programs
16K byte

Reserved area

OS programs
4K byte

Reserved area

00000000h

3FFFh

E000h

EFFFh
FFFFh

Bank 1
64K

Bank 0
64K

FFFFH

0000H

FFFFH

0000H
*Only Bank 0 can be used as external program memory.

Main RAM

Bank 0

XRAM-0
LCD video RAM

Special register area
SFR

Main RAM

Bank 1

XRAM-1
LCD video RAM

XRAM-2
LCD video RAM

000h

0FFh

100h

17Fh

180h

1FFh

Work RAM

VTRBF

000h

1FFh

*Bank 0 of the main RAM is reserved for system programs. Except for special cases, user programs cannot use this area.
VME-4

Visual Memory Unit (VMU) VMU–BIOS Specifications
System BIOS Functions
This section explains the System BIOS functions provided for VMU.

User programs running on the VMU can access System BIOS functions by calling special subroutines. However,
there are certain limitations on which System BIOS functions (subroutines) can be called by user programs.

The following functions are provided by the System BIOS.

• System initialization

– VMU initialization function

• VMU execution mode selection

VMU comes with the following three execution modes:

1) Game data and user program management and editing

2) User program startup and return

3) Time display and adjustment

For details on execution mode selection, please refer to appendix 2.

• Subroutines

– Flash Memory Access Functions

1) Flash Memory Page Data Readout

2) Writing to Flash Memory

3) Flash Memory Verify

– Clock Function

1) Clock Countup Timer

For details on VMU initialization, please refer to Section , ”VMU Initialization”. For details on subroutines, please
refer to Section , ”Subroutine Description”.
VME-5

 VMU-BIOS Specifications
System BIOS Data and Memory Allocation
VMU comes with certain programs for using the System BIOS functions. These programs can be classified into the
following three types:

1) OS programs

2) System programs

3) Header

Program Layout

The actual programs are arranged in memory as follows.

Figure 1.4 VMU memory map

Details are explained below.

System programs

System programs are required for using the VMU as a memory device. Major system programs are the file
management system, clock functions, and programs for data transfer according to the Maple standard. A
program for calling subroutines from the external memory space (user programs) is also located here.
(A flow diagram showing the call-up process of specified subroutines is shown in Section , ”Subroutine Call
Flow”.)

The VMU initialization program is located in this area. For details on the initialization program, please refer
to Section , ”VMU Initialization”.

System programs Header

Internal memory space External memory space

Reserved area

OS programs

Reserved area

Bank 0

Program/Data area

Bank 1

Data area

0000h

0100h

(preliminary)

FFFFh
VME-6

Visual Memory Unit (VMU) VMU–BIOS Specifications
OS programs

The VMU program subroutines are located here. For information on subroutines that can be called by user
programs, please refer to Section , ”Subroutine Description”.

The method of accessing to this area is also shown in Section , ”Subroutine Call Flow”.

Header

Contains information about internal memory space processing routines and return procedures from the
internal memory space. Because this area also contains interrupt vectors for internal use by user programs,
its source code is being made available to application developers. It also contains information about return
from user programs to the mode selection screen. User programs must use this information to return to the
file management system. (For details on mode selection screen, please refer to Appendix 2.) Within the
given specifications, the area content may be modified by developers.

Subroutine Call Flow

This section explains the operation flow that occurs when a user programs calls OS program subroutines and then
returns to the user program. An actual flow diagram is shown in Figure 1.5, ”OS program call flow,”.

Figure 1.5 OS program call flow

LABEL MNEMONIC

WORLD EXTERNAL
OTHER SIDE SYSBOL os_call
PUBLIC os_ret

jmp main
os_int:

change os_call
_head_ret:

RET return to main
os_ret:

br_hrad_ret
main:

callf os int start call flow

External memory space
(header, user program)

16

2

5

LABEL MNEMONIC

WORLD INTERNAL
OTHER SIDE SYSBOL os_ret
PUBLIC os_call

os_call:
callf os_main
change os_ret

os_main:
(actual OS program)

ret

Internal memory space
(system program, OS program)

3

4

VME-7

 VMU-BIOS Specifications
Label processing description

• external memory space
main: Main program in user program
os_int: This subroutine shifts processing to internal memory space.

In the example, processing passes to the internal memory space when the
subroutine is called, and the main program resumes upon return from the internal
memory space. This subroutine is included in the header.

os_ret: Subroutine for returning to external memory space.
The “change” command serves to return to this label from the internal memory
space. After returning, processing moves to the interrupt return routine in
the header.

• internal memory space
os_call: Serves to call an OS program and return to the external memory space.

After the OS program subroutine has executed, processing returns to the external
memory space.
os_main: Main OS program which executes the various subroutines.

The sample flow shown in Figure 1.5, ”OS program call flow,”assumes that a user program is executing in the
external memory space.

1) When wishing to use an OS program during execution of an external program, call the “os_int”
subroutine. Interrupt processing routines which need to jump to an OS program contain an
“os_int” subroutine.

2) The “change” command in the os_int subroutine jumps to the OS program call routine (os_call) placed
in the internal program area.

3) The OS program call routine calls the actual OS program subroutine (os_main). From this point on, the
OS program starts to execute.

4) When the OS program execution is finished, the RET command jumps to the next address of the call
command in the OS program call routine. In the OS program call routine, the call command is always
followed by a change command which moves processing to the external program area.

5) After returning from the OS program subroutine, the change command passes processing over to the
external program. This program contains a subroutine (os_ret) that is called when returning from an
internal program. The subroutine position is fixed. These programs are distributed to application
developers as a library. Such programs are called headers. (The sample program contains the headers
“os_int” and “os_ret”.)

6) From the above described external program return routine, processing returns to the “os_int” subroutine
and then by the RET command to the main program (main).

Note: Label names in the sample program are all preliminary. Label names will be different in the actual
System-BIOS.

* “change” command

The “change” command serves to move processing from the external memory space to the internal
memory space, or from the internal memory space to external memory. By executing this command, a
program that is currently executing in internal memory space (or external memory space) moves to
external memory space (or internal memory space). The program counter is reset to the specified label
(or address).
VME-8

Visual Memory Unit (VMU) VMU–BIOS Specifications
Returning From User Program to Mode Selection Screen

When a user program is executing, if the user presses the MODE button on VMU, the user program will terminate
immediately and processing will return to the mode selection screen.

This section explains the operation flow from user program to the mode selection screen when the MODE button is
pressed while a user program is executing.

Figure 1.6 Operation flow of returning to mode selection

Label processing description

• external memory space
main: Main program in a user program.

A user program must contain description to allow for pressing of the MODE button to jump
to the OS program return subroutine.
user_end: Subroutine to terminate a user program in execution and move processing to the OS
program. If data in the executing user program needs to be saved, then be sure to include this
information in the user program so that the subroutine will save it before returning to the OS program.
(The OS program does not keep data.)

• internal memory space
int_ret: Return routine to serve as entry to returning to the internal memory space when a user
program terminates. When processing returns to the internal memory area, the mode selection program
will start.
mode_main: Mode selection program.

For details on mode selection specification, please refer to Appendix 2.

LABEL MNEMONIC

WORLD EXTERNAL
OTHER SIDE SYSBOL int_ret

jmp main

user_end
(Saving of data by user program)
change int_ret

main:
interrupt generated
when MODE button pressed

jmp main

External memory space
(header, user program)

1

2

LABEL MNEMONIC

WORLD INTERNAL
PUBLIC int_ret

int_ret:
jmp mode_main

mode_main:
(mode selection screen program)

ret

Internal memory space
(system program, OS program)

3

VME-9

 VMU-BIOS Specifications
The sample program flow in Figure 1.6, ”Operation flow of returning to mode selection,”assumes the user program
is executing in the external memory space.

1) While an external program is executing, pressing the MODE button will jump to the user_end
subroutine. In the user_end subroutine, the “change” command will shift processing to the internal
memory space. Therefore, if data in the executing user program needs to be saved, then be sure to save
it before executing the “change” command.

2) When program control jumps from the user program to the user_end subroutine, the “change”
command inside the user_end subroutine will shift processing to the mode_ret subroutine in the
internal memory space.

3) When processing moves from the external memory space to the mode_ret subroutine, the mode
selection program will start.

* “change” command

The “change” command serves to move processing from the external memory space to the internal
memory space, or from the internal memory space to external memory. By executing this command, a
program that is currently executing in the internal memory space (or external memory space) moves to the
external memory space (or internal memory space). The program counter is reset to the specified label
(or address).

VMU Initialization

This section explains the initialization that is performed at VMU startup.

The VMU is automatically initialized in the following cases.

1. VMU is connected to new-generation game machine, and power to new-generation game machine is
turned ON

2. Reset switch on VMU is pressed

3. Battery is inserted in VMU

Initialization comprises the following steps.

1) Clear main RAM

• Write ‘00h’ to entire main RAM area (bank 0, bank 1).

* Initialization does not change XRAM values.

All registers are initialized by a hardware reset first, and then again by software. For information on the
register values after a hardware reset, please refer to the VMU user's manual.

2) Set system clock and cycle time

• Switch system clock to sub-clock (crystal quartz oscillator).

• Set cycle time to 1/6 system clock.
(The cycle time is used as reference for command execution. For details, please refer to the VMU
user's manual.)

3) Set base timer

• Select 14-bit base timer mode.

• Switch base timer clock to sub-clock (crystal quartz oscillator).

• Enable base timer 0 interrupt and start counting.
VME-10

 VMU-BIOS Specifications
For details regarding base timer 0 operation, please refer to the VMU user's manual.

The base timer 0 is used by the clock function. For details regarding the clock function, please refer to Section ,
”Clock Function”.

4) Set master interrupt

• Enable master interrupt.

(The master interrupt flag controls enabling/disabling of all interrupts with “High level” and “Low
level” priority.)

5) Set LCD driver

• Activate LCD controller.

• Set LCD clock to 1/2 of LCD driver input clock.

• Set LCD start address to’000h’ of XRAM.

• Set character register.

• Set time allocation register.

• Set LCD to ON.

6) Set port 1

• Set port 1 to all-bit input.

• Set bit 7 of port 1 to audio output pin.

* After initialization, bit 7 of port 1 is set to input mode. Therefore a user program will need to again select
the output mode.

• Set bit 5 – bit 0 of port 1 (serial interface for VMU) to synchronous operation. For details regarding the
synchronous serial interface, please refer to the VMU user's manual.

7) Set port 3

• Pull up all bits of port 3.

• Set port 3 to all-bit input.

• Enable interrupt triggering and HOLD mode cancel by port 3.

• Enable interrupt trigger request by port 3.

8) Initialize Maple Bus interface circuit

• Initialize Maple Bus interface circuit.

9) Set work RAM

• Enable use of work RAM.
VME-11

Visual Memory Unit (VMU) VMU–BIOS Specifications
Subroutine Description
This section describes the subroutines available in the System BIOS.

Flash Memory Access Functions

The following subroutines are available for flash memory access.

1) Flash Memory Page Data Readout
Read 128 bytes of data from the flash memory space.

2) Write to Flash Memory
Write 128 bytes of data to the flash memory space.

3) Flash Memory Verify
Verify data written to the flash memory.

* When accessing the flash memory, the main clock in use must be switched to 600 kHz. For details, please
refer to the next section.

Precautions for Using Flash Memory Access Subroutines

When accessing the flash memory space, the following points must be observed.

VMU uses three types of system clock as reference for command execution
(see Figure 1.7, ”System clock table,”).

When VMU is operating as a standalone unit, the quartz oscillator clock (32 kHz) will normally be used.
However, for accessing the flash memory, the clock must be switched to the internal (RC) oscillator (600
kHz) before calling a flash memory access subroutine. After subroutine execution is completed, switch back
to the previously used clock.

For information on the timing for clock switching, see Figure 1.7, ”System clock table,”.

Figure 1.7 System clock table

Oscillation frequency Command cycle timeSystem clock source

6 MHz 1.0 usCeramic (CF) oscillator

600 kHz 10.0 usInternal (RC) oscillator

32 kHz 183.0 usQuartz (X'TAL) oscillator
VME-12

 VMU-BIOS Specifications
Figure 1.8 Flow diagram for clock switching during flash memory access

Subroutine execution starts

Subroutine execution completed

OS programHeader

Internal memory spaceExternal memory

User program

Call OS call routine

Call OS routine starts

Change clock to 600 kHz

Call OS program

Return from OS program

Change clock to 32 Khz

Call OS Routine ends
Return to user program

32 kHz clock
600 kHz clock
VME-13

Visual Memory Unit (VMU) VMU–BIOS Specifications
Flash Memory Page Data Readout

Subroutine name: fm_prd_ex (org 0120h)

Arguments: High-order start address for flash memory read: fmadd_h (RAM bank-1 07Eh)

Low-order start address for flash memory read: fmadd_l (RAM bank-1 07Fh)

Bank address for flash memory read: fmbank (RAM bank-1 07Dh)

Return value: Read data (128 bytes): 080h - 0FFh of RAM bank-1

Function: Read one continuous page of data (128 bytes) from specified address

Description: By calling this subroutine, a program can read one page of data (128 bytes) from
flash memory.

Before using this subroutine, the following settings must be made.

• Select RAM bank to use

(1) Select RAM bank-1 (Set bit 1 of PSW to “1”)

 For information on the PSW register, please refer to the VMU user's manual.

• Set start address for flash memory read

(2) High-order address (8 bit): set to fmadd_h (07Eh of RAM bank-1)

(3) Low-order address (8 bit): set to fmadd_l (07Fh of RAM bank-1)

• Select flash memory bank to read

(4) Select flash memory bank-0

 (Set 07Dh of RAM bank 1 to’00h’)

 * If another value is set, normal operation is not assured.

 The read data are written to 080h - 0FFh of RAM bank-1.

 When making read settings, observe the following points.

• Data extending to 2 pages cannot be read. The read start address must therefore
always be set to the beginning of each page.

The start address of each page can be calculated according to the following equation:

start address value (2 byte) = 080h x page number (0 - 511)

(Because readout is performed in single-page units, bit 0 – bit 6 of the lower-level
address must always be set to “0”. If an address other than the start address of a page
is set, normal operation is not assured.)

• The read-out data overwrite any previous content of the RAM.

* Register values after subroutine completion
VME-14

 VMU-BIOS Specifications
Note that the following (memory) registers will have different values before the
subroutine is called and after the subroutine has completed:

• ACC (accumulator)

• TRL (table lookup register lower byte)

• TRH (table lookup register higher byte)

• r0 (RAM indirect address register)

*About pages

Beginning at the top, the flash memory space is subdivided into 128-byte units called
pages. Flash memory is managed in page units. Because 1 bank of the flash memory

space is 64 kilobytes, it has 512 pages.

“fm_prd_ex” execution is shown in Figure 1.9, ”Execution of fm_prd_ex,”.

Figure 1.9 Execution of fm_prd_ex

MainRAM
000h

*fmadd_h=A0h
When fmadd_I is set to 80h (page no. 321)

FFFh

080h

000h

0FFh

A080h

A100h

FFFh

0000h

128 byte DATA

Flash memory space

Bank 0

Bank 1

128 byte DATA

Bank 0

Bank 1
VME-15

Visual Memory Unit (VMU) VMU–BIOS Specifications
Writing to Flash Memory

Subroutine name: fm_wrt_ex (org 0100h)

Arguments: High-order start address for flash memory write: fmadd_h (RAM bank-1 07Eh)

Low-order start address for flash memory write: fmadd_l (RAM bank-1 07Fh)

Bank address for flash memory write: fmbank (RAM bank-1 07Dh)

Flash memory write data (128 bytes): RAM bank-1 080h - 0FFh

Data write end detection algorithm:

Bit 0 of RAM bank-1 07Ch

(toggle bit method (0)/data polling method (1))

Return value: result of write: ACC (accumulator)

(Normal termination: 00h. Abnormal termination: FFh)

Function: Write one continuous page of data (128 bytes) to the flash memory, starting at the
specified address

Description: By calling this subroutine, a program can write a page of data (128 bytes) to a
continuous

area in the flash memory, starting at the specified address.

Before using this subroutine, the following settings must be made.

• Select RAM bank to use

(1) Select RAM bank 1 (Set bit 1 of PSW to “1”)

• Prepare data to be written to flash memory

(2) Store data to be written to flash memory in RAM bank 1, 080h - 0FFh

• Select flash memory bank to read

(3) Select flash memory bank 0

 (Set 07Dh of RAM bank 1 to’00h’)

 * If another value is set, normal operation is not assured.

• Set address for accessing flash memory

(4) High-order address (8 bit): set to 07Eh of RAM bank-1

 (5) Low-order address (8 bit): set to 07Fh of RAM bank-1

• Specify data write end detection algorithm

(6) Set data write end detection algorithm in 07Ch of RAM bank-1, as follows.

(6-1) Use toggle bit method: set 07Ch to 00h

(6-2) Use data polling method: set 07Ch to 01h

* If another value is set, normal operation is not assured.

 When making write settings, observe the following points.

• fm_wrt_ex is a subroutine specifically for user programs. This subroutine can
write only to the area where the user program is located. For this reason, be sure
to secure an area within the user program before performing the data write.

• Data extending to 2 pages cannot be written. The write start address must
therefore always be set to the beginning of each page.

The start address of each page can be calculated according to the following equation:
start address value (2 byte) = 080h x page number (0 - 511)
VME-16

 VMU-BIOS Specifications
(Because writing is performed in single-page units, bit 0 - 6 of the lower-level address must
always be set to “0”. If an address other than the start address of a page is set, normal
operation is not assured.)

For information on pages, please refer to Section , ”Flash Memory Page Data Readout”.

* Register values after subroutine completion

Note that the following (memory) registers will have different values before the
subroutine

is called and after the subroutine has completed:

• ACC (accumulator)

• B (B register)

• C (C register)

• TRL (table lookup register lower byte)

• TRH (table lookup register higher byte)

• r0 (RAM indirect access register)

fm_wrt_ex execution is shown in Figure 1.10, ”Execution of fm_wrt_ex,”.

Figure 1.10 Execution of fm_wrt_ex

MainRAM
000h

*fmadd_h=A0h
When fmadd_I is set to 80h (page no. 321)

FFFh

080h

000h

0FFh

A080h

A100h

FFFh

0000h

128 byte DATA

Flash memory space

Bank 0

Bank 1

128 byte DATA

Bank 0

Bank 1
VME-17

Visual Memory Unit (VMU) VMU–BIOS Specifications
Flash Memory Verify

Subroutine name: fm_vrf_ex (org 0110h)
Arguments: High-order address flash memory address for verify start: fmadd_h (RAM bank 1 07Eh)

Low-order address flash memory address for verify start: fmadd_l (RAM bank 1 07Fh)
Flash memory bank address for verify operation: fmbank (RAM bank 1 07Dh)
Data (128 bytes) for verify operation: RAM bank 1 080h - 0FFh

Return value: Verify result: accumulator (ACC) (normal end: 00h?error end: other than 00h)
Function: Serves to verify whether data were written correctly to flash memory. For use after writing
data to flash memory with fm_wrt_ex (see section 7.1.4).
Description: This subroutine compares the 128 byte data specified when calling fm_wrt_ex with the

data actually written to flash memory. Therefore the subroutine can only be used
immediately after the fm_wrt_ex subroutine was called.
When calling this subroutine, the same arguments as used for the preceding fm_wrt_ex
must be specified. If different arguments are specified, data verify will not be carried
out properly.

 After calling this subroutine, if all 128 bytes of data were found to match, 00h will be set
in ACC, and the routine returns. If a data mismatch was detected, a value other then 00h
will be set in ACC, and the routine returns.

* Register values after subroutine completion
Note that the following (memory) registers will have different values before the
subroutine is called and after the subroutine has completed.
• TRL (table lookup register lower byte)
• TRH (table lookup register higher byte)
• r0 (RAM indirect access register)

fm_vrf_ex execution is shown in Figure 1.11, ”Execution of fm_vrf_ex,”.

Figure 1.11 Execution of fm_vrf_ex

Comparedata contents

MainRAM
000h

*fmadd_h=A0
fmadd_I=80 • (page no. 321)
Fmbank= 01

FFFh

080h

000h

0FFh

A080h

A100h

FFFh

0000h

128 byte DATA

Flash memory space

Bank 0

Bank 1

128 byte DATA

Bank 0

Bank 1

Data do not matchData match

00h

ACC

00h set in ACC

Not 00h

ACC

Value other than 00h set in ACC
VME-18

 VMU-BIOS Specifications
Clock Function

The clock functions implemented in VMU are as follows.

Time data automatic update

Clock Countup Timer

Subroutine name: timer_ex

Arguments: None

Return value: Year: year_h (RAM bank 0 017h, 18h)

Month: mon_h (RAM bank 0 019h)

Day: day_h (RAM bank 0 01Ah)

Hour: hour_h (RAM bank 0 01Bh)

Minute: min_h (RAM bank 0 01Ch)

Second: sec_h (RAM bank 0 01Dh)

* The year data are configured as 2 bytes, with the higher-level in byte in 17h and the
lower level byte in 18h. Because “year_h” is assigned to RAM bank, 017h, address 018h
can be accessed by specifying “year_h+1”.

Function: When the subroutine is called, it obtains the time data and places them in the specified
location in RAM bank 0. (For information on the specified location, please refer to
Appendix 1.)

Description: This subroutine is a time counter using the base timer interrupt. To enable use of the
subroutine, the following settings for the base timer interrupt must be made.

• Base timer interrupt settings

This subroutine uses only the base timer 0 interrupt. The base timer interrupt is to be
set as shown below.

(1) Base timer count stop (BTCR 6 bit ='0’)

(2) 14 bit base timer mode selected (BTCR 7 bit =’0’)

(3) Sub clock used as base timer clock (ISL 4 bit =’0’)

(4) Base timer interrupt 0 enabled (BTCR 0 bit =’1’)

(5) Base timer count start (BTCR 6 bit =’1’)

Because the base timer 0 interrupt is used by the timer_ex subroutine, user programs
may not access this interrupt. Otherwise, normal operation is not assured.

This subroutine should be called after jumping to the interrupt vector of the base timer
interrupt 0 source. Also, be sure to clear the base timer 0 interrupt source (BTCR 1
bit =’0’).
(If this is not performed, the clock function will not operate properly.)

All time data obtained by this subroutine are in hex format. Conversion into decimal
format must be performed by the user program.
VME-19

Visual Memory Unit (VMU) VMU–BIOS Specifications
Automatic low battery detection function
Visual Memory comes with the ability to automatically detect low battery.

The following explains how this function works.

Automatic low battery detection flag

Visual Memory can automatically check the battery's power consumption and when necessary display a
low battery warning message on the screen. Gamedevelopers can use the automatic low battery detection
flag to enable ordisable this function.

The following describes how to use this function.

Register to use: 06Eh (Bank-0)

Register values: 00h (enable the automatic low battery detection function)

FFh (disable the automatic low battery detection function)

(If any value other than the above ones is used, then normal operation
cannot be guaranteed.)

How it work: The automatic low battery detection function constantly monitors the
battery's voltage and if the voltage falls below a certain level it will
stop the current program, wait for 3 seconds, then display the battery
warning message on the screen.

Explanation: The automatic low battery detection function consists of tasks from
detecting low voltage to displaying the low battery warning message.

When the automatic low battery detection flag is set to 00h,the
automatic low battery detection function is enabled and when the
battery is low it will display the low battery warning message,
regardless of the current task of Visual Memory. If the flag is set to FFh,
then the automatic low battery detection function is disabled.

When the user program is performing the following tasks, be sure to turn off the automatic low battery
detection function:

1. Communicating with another Visual Memory via the serial interface

2. Writing to the flash memory space
VME-20

 VMU-BIOS Specifications
VME-21

Visual Memory Unit (VMU) VMU–BIOS Specifications
VME-22

Visual Memory Unit (VMU)
Sound Development

Specifications

Table of Contents
VMU Sound Development Specifications .VMA–1
VMU Sound Output Hardware Outline ..VMA–1
Sound Output Principle ...VMA–2

Timer 1 Outline ...VMA–2
8-Bit Counter Mode ..VMA–5
Table of Available Output Frequencies ...VMA–8

Sample Program ..VMA–13

VMU Sound
Development Specifications
VMU Sound Output Hardware Outline
VMU can use an internal timer (timer 1) to produce sound output.

The following two output methods are possible.

• 8-bit pulse generator output

• Variable bit length pulse generator output (9 - 16bits)

Both methods use the timer 1 circuit. Normally, the 8-bit pulse generator output method is used.
VMA-1

 VMU Sound Development Specifications
Sound Output Principle
This section describes the VMU sound output method.

VMU sound output uses timer 1.

Timer 1 Outline

This section describes timer 1 that is used for VMU sound output.

Timer 1 incorporated in the VMU is a 16-bit timer with the following four functions.

Mode 0: 8-bit reload timer x 2 channels
Mode 1: 8-bit reload timer + 8-bit pulse generator
Mode 2: 16-bit reload timer
Mode 3: Variable bit length pulse generator (9 - 16bits)

Among these modes, VMU uses mode 1 for sound output.

For information on using the other modes, please refer to the VMU Hardware manual.

Timer 1 Block Configuration

This section describes the block configuration of timer 1.

A configuration diagram of timer 1 is shown in Figure 1.1, ”VMU Timer 1 Block Diagram,”.

• Timer 1 lower level (T1L) ······ 1

This is an 8-bit reload timer using the cycle clock or cycle clock 1/2 signal as clock signal.

At the overflow of T1L, the T1lR data are reloaded. When T1LRUN (T1CNT, bit6) is set to “0”, the T1LR
data are transferred to T1L.

• Timer 1 lower level comparator (T1LC) ······ 2

This circuit consists of the 8-bit timer 1 lower level comparison data register (T1LC) and an 8-bit data
comparator circuit. The circuit compares the T1L and T1LC data.

• Timer 1 higher level (T1H) ······ 3

This is an 8-bit reload timer using the cycle clock or the T1L overflow as clock signal.

At the overflow of T1H, the 1HR data are reloaded. Reload also occurs when T1HRUN (T1CNT, bit7)
is reset.

• Timer 1 higher level comparator (T1HC) ······ 4

This circuit consists of the 8-bit timer 1 higher level comparison data register (T1HC) and an 8-bit data
comparator circuit. The circuit compares the T1H and T1HC data.

• Timer 1 control register (T1CNT) ······ 5

Serves for T1 mode setting and interrupt control.
VMA-2

Visual Memory Unit (VMU) Sound Development Specifications
Figure 1.1 VMU Timer 1 Block Diagram

Related Registers

The following registers are required for controlling timer 1.

•T1L (11Bh) Timer 1 lower level counter register

•T1LR (11Bh) Timer 1 lower level reload register

•T1LC (11Ah) Timer 1 lower level comparison data register

•T1CNT (118h) Timer 1 control register

•P1 (114h) Port 1 latch register

•P1DDR (145h) Port 1 data direction register

•P1FCR (146h) Port 1 control register

•OCR (10Eh) Resonance control register

For details on the above timer, please refer to the timer section of the VMU Hardware manual.

1/2cycle clock

Cycle clock

T1LONG

Selector

Comparison data
register (T1LC)

Comparator

8-bit counter (T1L)
Pulse generator
control circuit Port 1 circuit

Piezo beep

Reload register (T1LR)

Comparison data
register (T1HC)

Comparator

8-bit counter (T1L)

Reload register (TLR)

7 6 5 4 3 2 1 0

T1CNT(118h)

7 6 5 4 3 2 1 0

P1FCR

7 6 5 4 3 2 1 0

P1DDR

5

3

4

1

2

Selector

T1HOVF

T1LOVF

T1LOVF
VMA-3

 VMU Sound Development Specifications
Mode Setting

This section describes how to set timer 1 to the mode for VMU sound output (mode 1).

The following four registers are required for setting the mode.

T1CNT (bit5: T1LONG)
P1 (bit7: P17)
P1DDR (bit7: P17DDR)
P1FCR (bit7: P17DDR)

The register values for the modes are listed in the table below, along with the cycle clock used for
each mode.

Table 1.1 Time 1 Mode Setting

Tcyc in the table is the cycle clock.

To use the sound output capability of VMU, be sure to set the system clock to the sub-clock (32 KHz).

At other system clock settings, correct sound output may not be obtained.

The cycle clock is defined as follows.

System clock 32 KHz (Tcyc = 183.0 us)

For information on setting the system clock, please refer to the VMU Hardware manual.

* Problems when using other system clock settings

Besides the 32 KHz clock, the VMU can use a 600 KHz and 6 MHz system clock, but when the latter two
are selected, the following problems occur.

• 600KHz When the 600 KHz clock is selected, the output frequency tolerance will be -50%, +100%,
which will cause a wide fluctuation in the actual output sound.

• 6MHz When the 6 MHz clock is selected, power consumption will increase considerably,
resulting in a shorter battery life.

Mode Clock cycle T1LONG P17FCR P17DDR P17

1 Tcyc 0 1 1 0
VMA-4

Visual Memory Unit (VMU) Sound Development Specifications
8-Bit Counter Mode

This section describes VMU sound output when using 8-bit counter mode. For information on basic operation,
please refer to the VMU Hardware manual.

Output Waveform and Parameter Settings

This section describes the signal waveform that can be output in 8-bit counter mode, and lists the
parameters that determine the waveform.

The output waveform is shown in Figure 1.2, ”Output waveform,”.

Figure 1.2 Output waveform

8-bitcounter value (T1L)

255

[T1LC] setting value

[T1LR] setting value

Output sound signal

T1LC-T1LR

256-T1LR

Time (t)

Beeper output
VMA-5

 VMU Sound Development Specifications
8-Bit Counter Mode Setting

This section describes the sound signal output procedure in 8-bit counter mode.

To output a sound signal in 8-bit counter mode, make the settings as described below.

1. Set the parameters (T1LR, T1LC) according to the desired output waveform.

Use equations (1) and (2) given below to define the waveform.

Sound output signal L level pulse width (decimal)

= (T1LC setting value - T1LR setting value) X Tcyc······Equation (1)

Sound output signal cycle (decimal)

= (256 - T1LR setting value) X Tcyc······························Equation (2)

 Tcyc: cycle clock

2. Select the mode for timer 1.

The following four registers are required for setting the mode.

 T1CNT (bit5: T1LONG)

 P1 (bit7: P17)

 P1DDR (bit7: P17DDR)

 P1FCR (bit7: P17FCR)

The register values for the modes are listed in the table below, along with the cycle clock used for
each mode.

Table 1.2 Time 1 Mode Setting

Mode T1LONG P17FCR P17DDR P17

 1 0 1 1 0
VMA-6

 VMU Sound Development Specifications
3. Start the count for timer 1 (lower 8bits)

To start/stop the timer, make the following settings.

Waveform parameter update Set T1CNT bit4 (ELDT1C) to “1”. Note that the waveform
parameters set in step 1 do not become effective until this setting
is made.
If the parameters were changed while T1CNT bit4 was “1”, the
parameter setting value becomes effective immediately after
the change.

Timer 1 count start Set T1CNT bit6 (T1LRUN) to “1”.

To stop audio output in the 8-bit counter made, make the Following setting.

4. Set the timer1(T1L) count stop flag (T1CNT bit6)to “0”.

While timer 1 (lower 8bits) is operating, the waveform parameters can be changed. To output sound of a
different frequency without interruption, change the waveform output parameters without stopping timer
1. (Leave T1CNT bit4 [ELDT 1C]) set to “1”.)

Frequency Response Characteristics

The frequency response of the beeper in the VMU is shown below.

The T1LR value indicates the frequency range that can be output by the VMU.

For details, please refer to the explanation of the relationship between T1LR value and output frequency in
section on “Table of Available Output Frequencies” on page 8.

Visual Memory frequent responce

T1LR

Vo
lu

m
e(

db
) •

j

74

72

70

68

66

64

62

60

58

56

e0 e2 e4 e6 e8 ea ec ee f0 f2 f4 f6 f8 fa fc fe
VMA-7

Visual Memory Unit (VMU) Sound Development Specifications
Table of Available Output Frequencies

The output frequencies (theoretical values) available with a system clock of 32 KHz are listed below.

Due to limitations of the beeper, not all frequencies can actually be output. You should use the recommended
frequencies indicated in the table.

The L level pulse width of the output signal is set to 1/2 of the output signal cycle (duty factor = 50%).

Table 1.3 Waveform Parameters and Output Frequencies

T1LR(hex) T1LC(hex)
Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz)

00 80 21.346 40 94 28.461 80 A8 42.691 C0 E0 85.383

01 80 21.429 41 A0 28.610 81 C0 43.027 C1 E0 86.738

02 81 21.514 42 A1 28.760 82 C1 43.369 C2 E1 88.137

03 81 21.599 43 A1 28.913 83 C1 43.716 C3 E1 89.582

04 82 21.684 44 A2 29.066 84 C2 44.068 C4 E2 91.075

05 82 21.771 45 A2 29.222 85 C2 44.427 C5 E2 92.618

06 83 21.858 46 A3 29.379 86 C3 44.791 C6 E3 94.215

07 83 21.946 47 A3 29.538 87 C3 45.161 C7 E3 95.868

08 84 22.034 48 A4 29.698 88 C4 45.537 C8 E4 97.580

09 84 22.123 49 A4 29.861 89 C4 45.920 C9 E4 99.354

0A 85 22.213 4A A5 30.025 8A C5 46.309 CA E5 101.194

0B 85 22.304 4B A5 30.191 8B C5 46.705 CB E5 103.103

0C 86 22.395 4C A6 30.358 8C C6 47.108 CC E6 105.086

0D 86 22.488 4D A6 30.528 8D C6 47.517 CD E6 107.147

0E 87 22.580 4E A7 30.699 8E C7 47.934 CE E7 109.290

0F 87 22.674 4F A7 30.873 8F C7 48.358 CF E7 111.520

10 88 22.769 50 A8 31.048 90 C8 48.790 D0 E8 113.843

11 88 22.864 51 A8 31.226 91 C8 49.230 D1 E8 116.266

12 89 22.960 52 A9 31.405 92 C9 49.677 D2 E9 118.793

13 89 23.057 53 A9 31.587 93 C9 50.133 D3 E9 121.433

14 8A 23.155 54 AA 31.770 94 CA 50.597 D4 EA 124.193

15 8A 23.253 55 AA 31.956 95 CA 51.070 D5 EA 127.081

16 8B 23.352 56 AB 32.144 96 CB 51.552 D6 EB 130.107
VMA-8

 VMU Sound Development Specifications
17 8B 23.453 57 AB 32.334 97 CB 52.043 D7 EB 133.280

18 8C 23.554 58 AC 32.527 98 CC 52.543 D8 EC 136.612

19 8C 23.656 59 AC 32.721 99 CC 53.053 D9 EC 140.115

1A 8D 23.759 5A AD 32.919 9A CD 53.573 DA ED 143.802

1B 8D 23.862 5B AD 33.118 9B CD 54.104 DB ED 147.689

1C 8E 23.967 5C AE 33.320 9C CE 54.645 DC EE 151.791

1D 8E 24.073 5D AE 33.524 9D CE 55.197 DD EE 156.128

1E 8F 24.179 5E AF 33.731 9E CF 55.760 DE EF 160.720

1F 8F 24.287 5F AF 33.941 9F CF 56.335 DF EF 165.590

20 90 24.395 60 B0 34.153 A0 D0 56.922 E0 F0 170.765

21 90 24.504 61 B0 34.368 A1 D0 57.521 E1 F0 176.274

22 91 24.615 62 B1 34.585 A2 D1 58.133 E2 F1 182.149

23 91 24.726 63 B1 34.806 A3 D1 58.758 E3 F1 188.430

24 92 24.839 64 B2 35.029 A4 D2 59.397 E4 F2 195.160

25 92 24.952 65 B2 35.255 A5 D2 60.049 E5 F2 202.388

26 93 25.066 66 B3 35.484 A6 D3 60.716 E6 F3 210.172

27 93 25.182 67 B3 35.716 A7 D3 61.399 E7 F3 218.579

28 94 25.299 68 B4 35.951 A8 D4 62.096 E8 F4 227.687

29 94 25.416 69 B4 36.189 A9 D4 62.810 E9 F4 237.586

2A 95 25.535 6A B5 36.430 AA D5 63.540 EA F5 248.385

2B 95 25.655 6B B5 36.674 AB D5 64.288 EB F5 260.213

2C 96 25.776 6C B6 36.922 AC D6 65.053 EC F6 273.224

2D 96 25.898 6D B6 37.173 AD D6 65.837 ED F6 287.604

2E 97 26.021 6E B7 37.428 AE D7 66.640 EE F7 303.582

2F 97 26.146 6F B7 37.686 AF D7 67.463 EF F7 321.440

30 98 26.272 70 B8 37.948 B0 D8 68.306 F0 F8 341.530

31 98 26.398 71 B8 38.213 B1 D8 69.171 F1 F8 364.299

32 99 26.527 72 B9 38.482 B2 D9 70.057 F2 F9 390.320

33 99 26.656 73 B9 38.755 B3 D9 70.967 F3 F9 420.345

T1LR(hex) T1LC(hex)
Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz)
VMA-9

Visual Memory Unit (VMU) Sound Development Specifications
34 9A 26.787 74 BA 39.032 B4 DA 71.901 F4 FA 455.373

35 9A 26.919 75 BA 39.313 B5 DA 72.860 F5 FA 496.771

36 9B 27.052 76 BB 39.598 B6 DB 73.844 F6 FB 546.448

37 9B 27.186 77 BB 39.887 B7 DB 74.856 F7 FB 607.165

38 9C 27.322 78 BC 40.180 B8 DC 75.896 F8 FC 683.060

39 9C 27.460 79 BC 40.478 B9 DC 76.965 F9 FC 780.640

3A 9D 27.598 7A BD 40.780 BA DD 78.064 FA FD 910.747

3B 9D 27.738 7B BD 41.086 BB DD 79.195 FB FD 1092.896

3C 9E 27.880 7C BE 41.398 BC DE 80.360 FC FE 1366.120

3D 9E 28.023 7D BE 41.714 BD DE 81.559 FD FE 1821.494

3E 9F 28.167 7E BF 42.034 BE DF 82.795 FE FF 2732.240

3F 9F 28.313 7F BF 42.360 BF DF 84.069 FF FF 5464.481

00 80 21.346 40 94 28.461 80 A8 42.691 C0 E0 85.383

01 80 21.429 41 A0 28.610 81 C0 43.027 C1 E0 86.738

02 81 21.514 42 A1 28.760 82 C1 43.369 C2 E1 88.137

03 81 21.599 43 A1 28.913 83 C1 43.716 C3 E1 89.582

04 82 21.684 44 A2 29.066 84 C2 44.068 C4 E2 91.075

05 82 21.771 45 A2 29.222 85 C2 44.427 C5 E2 92.618

06 83 21.858 46 A3 29.379 86 C3 44.791 C6 E3 94.215

07 83 21.946 47 A3 29.538 87 C3 45.161 C7 E3 95.868

08 84 22.034 48 A4 29.698 88 C4 45.537 C8 E4 97.580

09 84 22.123 49 A4 29.861 89 C4 45.920 C9 E4 99.354

0A 85 22.213 4A A5 30.025 8A C5 46.309 CA E5 101.194

0B 85 22.304 4B A5 30.191 8B C5 46.705 CB E5 103.103

0C 86 22.395 4C A6 30.358 8C C6 47.108 CC E6 105.086

0D 86 22.488 4D A6 30.528 8D C6 47.517 CD E6 107.147

0E 87 22.580 4E A7 30.699 8E C7 47.934 CE E7 109.290

0F 87 22.674 4F A7 30.873 8F C7 48.358 CF E7 111.520

10 88 22.769 50 A8 31.048 90 C8 48.790 D0 E8 113.843

T1LR(hex) T1LC(hex)
Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz)
VMA-10

 VMU Sound Development Specifications
11 88 22.864 51 A8 31.226 91 C8 49.230 D1 E8 116.266

12 89 22.960 52 A9 31.405 92 C9 49.677 D2 E9 118.793

13 89 23.057 53 A9 31.587 93 C9 50.133 D3 E9 121.433

14 8A 23.155 54 AA 31.770 94 CA 50.597 D4 EA 124.193

15 8A 23.253 55 AA 31.956 95 CA 51.070 D5 EA 127.081

16 8B 23.352 56 AB 32.144 96 CB 51.552 D6 EB 130.107

17 8B 23.453 57 AB 32.334 97 CB 52.043 D7 EB 133.280

18 8C 23.554 58 AC 32.527 98 CC 52.543 D8 EC 136.612

19 8C 23.656 59 AC 32.721 99 CC 53.053 D9 EC 140.115

1A 8D 23.759 5A AD 32.919 9A CD 53.573 DA ED 143.802

1B 8D 23.862 5B AD 33.118 9B CD 54.104 DB ED 147.689

1C 8E 23.967 5C AE 33.320 9C CE 54.645 DC EE 151.791

1D 8E 24.073 5D AE 33.524 9D CE 55.197 DD EE 156.128

1E 8F 24.179 5E AF 33.731 9E CF 55.760 DE EF 160.720

1F 8F 24.287 5F AF 33.941 9F CF 56.335 DF EF 165.590

20 90 24.395 60 B0 34.153 A0 D0 56.922 E0 F0 170.765

21 90 24.504 61 B0 34.368 A1 D0 57.521 E1 F0 176.274

22 91 24.615 62 B1 34.585 A2 D1 58.133 E2 F1 182.149

23 91 24.726 63 B1 34.806 A3 D1 58.758 E3 F1 188.430

24 92 24.839 64 B2 35.029 A4 D2 59.397 E4 F2 195.160

25 92 24.952 65 B2 35.255 A5 D2 60.049 E5 F2 202.388

26 93 25.066 66 B3 35.484 A6 D3 60.716 E6 F3 210.172

27 93 25.182 67 B3 35.716 A7 D3 61.399 E7 F3 218.579

28 94 25.299 68 B4 35.951 A8 D4 62.096 E8 F4 227.687

29 94 25.416 69 B4 36.189 A9 D4 62.810 E9 F4 237.586

2A 95 25.535 6A B5 36.430 AA D5 63.540 EA F5 248.385

2B 95 25.655 6B B5 36.674 AB D5 64.288 EB F5 260.213

2C 96 25.776 6C B6 36.922 AC D6 65.053 EC F6 273.224

2D 96 25.898 6D B6 37.173 AD D6 65.837 ED F6 287.604

T1LR(hex) T1LC(hex)
Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz)
VMA-11

Visual Memory Unit (VMU) Sound Development Specifications
2E 97 26.021 6E B7 37.428 AE D7 66.640 EE F7 303.582

2F 97 26.146 6F B7 37.686 AF D7 67.463 EF F7 321.440

30 98 26.272 70 B8 37.948 B0 D8 68.306 F0 F8 341.530

31 98 26.398 71 B8 38.213 B1 D8 69.171 F1 F8 364.299

32 99 26.527 72 B9 38.482 B2 D9 70.057 F2 F9 390.320

33 99 26.656 73 B9 38.755 B3 D9 70.967 F3 F9 420.345

34 9A 26.787 74 BA 39.032 B4 DA 71.901 F4 FA 455.373

35 9A 26.919 75 BA 39.313 B5 DA 72.860 F5 FA 496.771

36 9B 27.052 76 BB 39.598 B6 DB 73.844 F6 FB 546.448

37 9B 27.186 77 BB 39.887 B7 DB 74.856 F7 FB 607.165

38 9C 27.322 78 BC 40.180 B8 DC 75.896 F8 FC 683.060

39 9C 27.460 79 BC 40.478 B9 DC 76.965 F9 FC 780.640

3A 9D 27.598 7A BD 40.780 BA DD 78.064 FA FD 910.747

3B 9D 27.738 7B BD 41.086 BB DD 79.195 FB FD 1092.896

3C 9E 27.880 7C BE 41.398 BC DE 80.360 FC FE 1366.120

3D 9E 28.023 7D BE 41.714 BD DE 81.559 FD FE 1821.494

3E 9F 28.167 7E BF 42.034 BE DF 82.795 FE FF 2732.240

3F 9F 28.313 7F BF 42.360 BF DF 84.069 FF FF 5464.481

T1LR(hex) T1LC(hex)
Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz)
VMA-12

 VMU Sound Development Specifications
Sample Program

Start

Sound output

Sound output stop

Timer 1 initial setting

Timer 1 setting

Timer 1 start

Sound output signal setting

Signal frequency setting

Sound output signal setting

change

(L level pulse width change)

mov #A3h, ocr ;set system clock to 32 kHz
:set clock division ratio to 1/6

mov #000h, T1LR ;T1LR=0 → 256-0=256
mov #080h, T1LC ;T1LC=128 → 256-128=128

;L level pulse width 128 Tcyc
;sound signal cycle 256 Tcyc

mov #040h, T1LC ;T1LC=64 → 256-64=192
;L level pulse width 192 Tcyc
;sound signal cycle 256 Tcyc

mov #000h, T1CNT ;stop updating waveform parameter
;stop counter (sound output stop)

mov #080h, P1FCR ;set P17 to sound output mode
clr1 P1, 7 ;set sound output port
mov #80h, P1DDR ;set output of P17

mov #0D4h, T1CNT ;update waveform parameter
;start counter (sound output start)

128 x Tcyc

256 x Tcyc

Output waveform

192 x Tcyc

256 x Tcyc

Output waveform
VMA-13

Visual Memory Unit (VMU) Sound Development Specifications
VMA-14

Visual Memory Unit (VMU)
Simulator Manual

Table of Contents
Overview .VMB–1
Features ... VMB–1
Visual Memory Simulator Operating Environment .. VMB–2
Checking Operation on Actual Visual Memory Hardware .. VMB–3
Notes Concerning Startup for the First Time .. VMB–4

Implemented Devices .VMB–5
Virtual CPU .. VMB–5
Memory .. VMB–6

LCD Controller (LCDC) ... VMB–6
Serial Interface (SIO) ... VMB–7
Timer ... VMB–7
Interrupt Controller .. VMB–7
I/O Ports .. VMB–7

External Input Devices ... VMB–8

Basic Operation .VMB–9
Starting Up the Visual Memory Simulator .. VMB–9
Loading the System BIOS ... VMB–10
Loading and Executing Applications ... VMB–11
MAP File ... VMB–12
Drag & Drop .. VMB–12

Descriptions of Windows and Panels . VMB–13
Main Window ...VMB–14

Menus ..VMB–14
Toolbar ..VMB–17
CPU Register Display Function ...VMB–18
Execution Control ..VMB–19
Disassembly Function ...VMB–20
Visual Memory Image ..VMB–21
Status Lamp ..VMB–21
Changing the Size of the Main Window ..VMB–22
System Console ..VMB–22

Memory Control Window ..VMB–23
RAM#0, RAM#1 ...VMB–24
FLASH#0 ...VMB–25
XRAM ..VMB–26
SFR ...VMB–27
VTRBF ...VMB–28

Break Control Window ...VMB–29
Break by Breakpoint Address Comparison ...VMB–29
Display When an Interrupt Is Received ...VMB–32
Access Reference Monitor ..VMB–33

Special Function Register Control Window ...VMB–34
CPU Control ...VMB–35
LCD ...VMB–35
INT Control ..VMB–36
Timer 0 ..VMB–36
Timer 1 ..VMB–37
SIO ...VMB–37
PORT1 ...VMB–38
PORT3/7 ...VMB–38
External INT ...VMB–39
VMU Special ...VMB–40
Base Timer ..VMB–40

LCD Snapshot Window ..VMB–41
Description of Tool Bar Buttons ..VMB–41
Display by STAD Checkbox ..VMB–42
Menus ..VMB–42

Network Monitor Window ..VMB–43
Trace Panel ..VMB–45
Hexadecimal Input Pad ..VMB–47
Environment Settings Window ...VMB–49

Settings ..VMB–49
Work Settings ...VMB–51

Networking . VMB–55

Related Files . VMB–57
System Files ..VMB–58
Application Files ..VMB–59

Warning Messages . VMB–61

Overview
The Visual Memory Simulator is a virtual machine system that simulates the Visual Memory hardware. This system
can execute, without any special additional processing, programs that were developed for Visual Memory.

Features

• The Visual Memory Simulator implements almost all of the hardware in the Visual Memory System
through software.

• The status of CPU registers and memory can be displayed during execution.

• Program execution can be traced.

• The status of the Special Function Registers can be displayed.

• The Visual Memory Simulator supports debugging functions such as breakpoints and memory
fetch breaks.

• Two Visual Memory Simulators can be connected through a network.

The Visual Memory Simulator is composed of several virtual devices, the central one being a virtual CPU.

The virtual CPU is designed as an interpreter. Execution files are fetched and executed one instruction at a
time. Because peripheral devices are also implemented in the Virtual Memory Simulator, roughly 100% of
a program can be checked. Furthermore, no special programs or hardware are needed in order to load
execution files into the Visual Memory Simulator.

Because the Visual Memory Simulator is almost entirely software based, there are differences in the
operating speed of the Visual Memory Simulator versus actual Visual Memory. Checks that require the
actual speed, such as checks of operation timing and sound, should be performed on the actual hardware.
The purpose of the Visual Memory Simulator is to verify the program logic; the use of the Visual Memory
Simulator in the development cycle should be differentiated from that of the actual hardware.
VMB-1

 Overview
Visual Memory Simulator Operating Environment

Table 2.1

Note: Because the Visual Memory Simulator is a Windows application, it can basically run on any CPU
on which Windows 95 is running. However, the virtual CPU is a type of interpreter, and when the
operation of other virtual devices is also included, the Visual Memory Simulator can run slowly. In order
to run at a reasonable speed, a PC with a fairly fast clock speed is required.

CPU Pentium 150MHz or higher recommended

RAM At least 32MB recommended

OS Windows 95

HDD free space At least 5MB

Colors At least 256 colors

Resolution At least 1280 x 1024 recommended
VMB-2

 Overview
Checking Operation on Actual Visual Memory Hardware
The Memory Card Utility, which is provided with the Visual Memory SDK, is used to transfer an application that
has been developed into Visual Memory. The Memory Card Utility is a utility that is used to transfer Visual Memory
applications between a PC and the Dev.Box, and between the Dev.Box and Visual Memory.

The Memory Card Utility is located in the "Utility" folder in the folder where the Visual Memory SDK was installed,
as an ELF file that runs on the Dev.Box. For details on how to use the Memory Card Utility, refer to the “Visual
Memory Tutorial.” After the logic in an application has been checked by using the Visual Memory Simulator, be
certain to check the timing and operating speed of the application on the actual hardware.

The following environment is needed in order to run the Memory Card Utility:

Items provided by Sega:

• Dreamcast SDK

• CodeScape (including DA Checker)

• GD WorkShop

• Dev.Box (Set 5.2X or later)

• Dreamcast controller

• Visual Memory

Items That Must Be Obtained Separately

• RS-232C cross cable

• Communications program that runs under Windows
VMB-3

Visual Memory Unit (VMU) Simulator Manual
Notes Concerning Startup for the First Time
When the Visual Memory Simulator is started up for the first time, the contents of flash memory bank 1 are
undefined, so the Visual Memory Simulator may indicate that “Visual Memory has not been formatted.”

The operation described below must be performed the first time that the Visual Memory Simulator is started up.

Caution: Be certain to perform the procedure described below when starting up the Visual Memory Simulator
for the first time after installing the Visual Memory SDK.

À Execute the Visual Memory Simulator.

À From the [File] menu, select [Open FLASH#1 Memory].

The following screen appears:

From the "Files" folder, select "GAME.BIN" and then click the [Open] button.

Caution: "GAME.BIN" contains the memory image for flash memory bank 1 in Visual Memory. Because this file
includes the FAT information and the system management information, if this information is not found
in flash memory bank 1, Visual Memory will be recognized as not having yet been formatted.

À Once "GAME.BIN" is loaded, the following screen appears:

Ã From the [Option] menu, select [Environment Variables]; the following screen appears:

Ä Make the settings described below in the dialog box that appears. All of these items are displayed under the
[Settings] tab.

In the [Start Up] group, click the [Load System File] checkbox so that the box is checked.

In the [System File] group, select the [Quick Start BIOS] option.

After you have made all of the settings, click the [OK] button.

Å The display returns to the Visual Memory Simulator screen.

From the [File] menu, select [Exit] to quit the Visual Memory Simulator.

Caution: Be certain to quit the Visual Memory Simulator.

When you have completed the above procedure, the Simulator will recognize Visual Memory as having
been formatted.
VMB-4

Implemented Devices
The following devices are implemented in the Visual Memory Simulator:

• Virtual CPU

• Memory

• LCD controller

• Serial interface

• Timer

• Interrupt controller

• I/O ports

• External input devices

Virtual CPU
A CPU interpreter, called the "virtual CPU," and which executes the Sanyo Electric LC86 Series instruction set, is
implemented in the Visual Memory Simulator. This virtual CPU executes binary code that is stored in the memory
area in the same manner as the actual CPU. There is no need to add special programs for the Simulator.

The Windows system idle is used as the operating clock for the virtual CPU. "n" instructions are executed per idle.
The number of instructions that are executed per idle can be set in the Environment Settings Window. Adjust this
value according to the clock speed of the PC that you will be using. for a detailed description of how to make this
setting, refer to [Settings] - [CPU Loop Count] in section, “Environment Settings Window.” However, if this value
is increased, the timing by which Windows messages are acquired becomes skewed, with the result that the
response of buttons, etc., becomes sluggish.
VMB-5

 Implemented Devices
Memory
The Visual Memory Simulator simulates all memory areas in the Visual Memory System.

RAM Area

Bank 0 00H to FFH (256 bytes) System work area
Bank 1 00H to FFH (256 bytes) User work area

ROM Area

This area stores the OS program and the system application. This area cannot be manipulated by the user.

Flash Memory

Bank 0 0000H to FFFFH (64K bytes) User program area

Bank 1 0000H to FFFFH (64K bytes) Backup memory area

Work RAM

This is a buffer for communications with Dreamcast that can be accessed through the Special Function
Registers.

If there are no communications with Dreamcast, this area can be used as RAM by an application.
VTRBF 0000H to 01FFH (512 bytes)

XRAM

This is the LCD display memory. This memory is equivalent to video memory in a typical PC.
This memory consists of three banks. Two banks are allocated to bitmap display, and one bank is allocated
for icons.

Bank 0 0180H to 01FBH (96 bytes) Includes unused areas.
Bank 1 0180H to 01FBH (96 bytes) Includes unused areas.
Bank 2 0180H to 0185H (6 bytes)

In addition to direct access by the virtual CPU, these memory areas can be edited through the Memory
Control Window.

LCD Controller (LCDC)

The LCDC is designed to operate in an equivalent manner to the actual hardware from the standpoint of the CPU.
The LCDC is accessed through the LCD-related Special Function Registers.

If data is written to XRAM while the LCD is ready for display, the data appears in the drawing area.
VMB-6

 Implemented Devices
Serial Interface (SIO)

The serial interface is used to connect two Visual Memory units. A Visual Memory unit has two SIOs. SIO0 is
allocated for sending, and SIO1 is allocated for receiving. Together, full-duplex communication is implemented
through these two interfaces.

In the Simulator, Visual Memory units are connected by using TCP communication for communications
between SIOs.

Only the Special Function Registers for the SIOs are visible from the standpoint of the virtual CPU; the network is
hidden. Connection control is implemented through the [Network Monitor] command on the [Panels] menu.

Timer

Visual Memory has three timers. The Simulator supports timer 0, timer 1, and the base timer.

The Simulator supports all interrupts that are generated by the timers.

Timer Restrictions

The counter function based on external input to timer 0 is not supported in the Simulator. Although pulses
can be generated through timer 1 PWM output, no sound is actually output.

Operating Clock for Timers

As is the case for the virtual CPU, the Windows system idle is used for the clock that is supplied to the
timers. As a result, the actual speed at which the timers operate is different from that of the actual hardware.

Interrupt Controller

The LC86 Series supports interrupts with variable priority levels and nested interrupts. The Visual Memory
Simulator simulates interrupt operations in the same manner. There are no restrictions concerning interrupts. Both
internal and external interrupts are supported.

I/O Ports

There are three I/O ports: port 1, port 3, and port 7.

Port 1 Assigned to SIO and PWM output ports.

Port 3 The Visual Memory buttons are connected to this port.

Port 7 The voltage detection and other VMU detection signals are connected to this port.
VMB-7

Visual Memory Unit (VMU) Simulator Manual
External Input Devices

Buttons Connected to Port 3

Visual Memory has eight buttons that serve as input devices. These buttons are connected to port 3. The
current status (pressed/not pressed) of each button can be detected by reading this port. When a button is
not being pressed, the corresponding signal is high; when a button is being pressed, the corresponding
signal is low. Port 3 interrupts are also supported, so it is possible to simulate interrupts that are generated
when a button status changes.

Starting from the most significant bit, the buttons assigned to the bits are: SLEEP button, MODE button, B
button, A button, right button, Left button, Down button, Up button.

Control Signals Connected to Port 7

Bits 0 to 3 of port 7 are input signal ports for external interrupts. Interrupt control for external interrupts is
specified through the IO1CR register and the I23CR register.

Four input signals are connected to port 7.

+5V Supply Signal as External Power Supply Connected to P70

When no external power supply is connected, this signal is low; when external power is supplied, this
signal is high. This is simulated through the "+5V Test" checkbox connected to P70 on the SFR panel. When
"ON," external power is being supplied.

Internal Battery Voltage Drop Signal Connected to P71

This signal is generated when the voltage of the internal battery drops. When this signal is high, the battery
voltage is normal. When this signal is low, the battery voltage drops. This is simulated through the "Low
Voltage Test" checkbox connected to P71 in the SFR panel. When "ON," the voltage is low.

Input Signals ID0, Connected to P72, and ID1, Connected to P73

These signals are normally low; they are high when an input is connected. This is simulated through the
"ID0 Test" and "ID1 Test" checkboxes connected to P72 and P73 in the SFR panel.
VMB-8

Basic Operation
This chapter explains the procedure for loading and executing application programs in the Visual
Memory Simulator.

Starting Up the Visual Memory Simulator
Startup the Visual Memory Simulator either from the Windows [Start] menu, or directly from the folder where it
was installed. Once the Simulator is started up, the Main Window is displayed and the Simulator begins waiting
for input.
VMB-9

 Basic Operation
Loading the System BIOS
Right after the Visual Memory Simulator has been started up, the system ROM area is initialized. Because
applications developed by users are called from the system BIOS, it is necessary to load the system BIOS first.

1) From the Visual Memory Simulator's [File] menu, select [Open System File].

2) Select the system BIOS file (SBF) to be loaded.

3) Click the [Open] button. The system BIOS is loaded into the internal system ROM.

"FBIOS.SBF" is the full-size BIOS; this program manages the system when Visual Memory is started up.
"QBIOS.SBF" is the quick start BIOS; this BIOS can skip the clock setting that is requested when Visual
Memory is reset.

Applications are called from BIOS and started up. A setting can be made in the Environment Settings
window that automatically loads the system BIOS when the Visual Memory Simulator is started up. For
details on making these settings, refer to [Startup Settings] - [Load System File] in section, “Environment
Settings Window.”

Caution: Quick start BIOS supports exactly the same functions as full-size BIOS, except that the clock setting can
be skipped at startup.
VMB-10

 Basic Operation
Loading and Executing Applications
The application execution files that can be loaded into the Visual Memory Simulator are HEX files. The extension
for such files is ".HEX" or ".H??".

Caution: The Visual Memory Simulator cannot load binary files (".BIN") created by H2BIN.

1) From the [File] menu, select [Open Application].

2) Select the application execution file (".HEX" or ".H??") to be loaded.

3) Click the [Open] button. The file is loaded into flash memory bank 0. The memory area where such files
are loaded is fixed to "bank 0."

After the file has been loaded, click the Reset button; the Simulator virtual machine is reset and the CPU
begins operating. As soon as the CPU begins operating, the system BIOS is executed.

Although the operations performed in the CPU's internal registers while the system BIOS is running can
be checked, displaying the registers consumes CPU time, so the Simulator will run more slowly as a result.
The display of these registers can be stopped in order to speed up processing.

To stop an application that is running, click the [Break] button. The values in the registers as of the moment
when execution was stopped are displayed on the console, and operation stops. Furthermore, the program
counter value for the next instruction to be executed is set in the text box where the execution address
is stored.

To resume program execution, click the [Run] button. Click the [Step] button to step through the
instructions one at a time.
VMB-11

Visual Memory Unit (VMU) Simulator Manual
MAP File
When a MAP file is in the same folder as the application, this file is loaded after the application. The extension for
symbol files is ".MAP", and this type of file can be output by the Linker. Although this file is not required, it allows
symbol names to be displayed during disassembly.

The symbols that are loaded are stored in list format in the hexadecimal input pad.

Caution: The extension for files output by the Linker is ".EVA". This type of file is converted to a HEX file by
E2H86K.EXE. Because the Visual Memory Simulator cannot load EVA files, these files must be
converted to HEX files.

Drag & Drop
The drag & drop technique can be used with the text boxes where addresses are input. In order to begin dragging
from a given text box, hold down Shift key and press the left mouse button. The mouse cursor changes to a drag
cursor, confirming that dragging is enabled.

The address labels and the hexadecimal input pad text boxes that are displayed on the Special Function Register
Panel can be dragged without using Shift key. When the mouse is moved to one of these areas, it changes to a
drag cursor.
VMB-12

Descriptions of
Windows and Panels
When the Visual Memory Simulator is started up, the Main Window is displayed first. If all that is necessary is to
load and execute an application program that has been created, the functions in the Main Window are all that are
needed. Debugging requires the use of functions on a number of other windows.

Main Window

This is the main window for the Visual Memory Simulator. Applications can be loaded and execution can
be controlled through this window.

Memory Control Window

This window displays the contents of memory implemented in Visual Memory. The contents of memory
can also be edited on this screen.

Break Control Window

This window is used to set execution stop triggers for breakpoints.

Special Function Register Control Window

This window displays the status of the Special Function Registers.

LCD Snapshot Window

This window gets and enlarges images that are displayed on the LCD.

Network Monitor Window

This control window is used to connect two Visual Memory Simulators.

Trace Panel

This panel is used to perform program traces.

Hexadecimal Input Pad

This window is used to easily input hexadecimal numbers. A symbol table is also stored here.

Environment Settings Window

This window is used to make the basic settings for Visual Memory Simulator operation.
VMB-13

 Descriptions of Windows and Panels
Main Window
The following functions are implemented in the main window:

• Loading applications and system files

• Calling up control windows and panels

• Displaying CPU registers

• Executing, stopping, and step-executing applications

• Outputting disassembled listings

• Simulating the Visual Memory LCD and buttons

• Switching the Main Window between reduced and normal size display

The following Main Window functions are described in this section:

• Menus

• Speed button

• CPU register display function

• Execution control

• Disassembly function

• Visual Memory image

• Status lamps

• Changing the Main Window size

• System console

Menus

File Menu

[Open Application] Command

This command loads an application in HEX file format. The application is loaded into flash memory bank
0. Flash memory bank 0 is used as memory for Visual Memory applications.

[Re-open Application] Command

This command reloads the application that is currently open. This command cannot be selected initially; it
can only be used after an application has been loaded. The name of the file that was loaded is displayed in
the title bar on the Main Window.

[Open System File] Command

This command loads the system BIOS into the internal ROM area. A setting can be made in the
Environment Settings Window that will load the system BIOS automatically when the Visual Memory
Simulator is started up.
VMB-14

 Descriptions of Windows and Panels
[Open RAM File] Command

This command loads a RAM file that was saved. A RAM file contains the contents of RAM that were saved.
RAM banks 0 and 1, work RAM, and XRAM are included in a RAM file.

The file format is binary. The memory map is as shown below.

0000H - 00FFH RAM bank #0

0100H - 017FH SFR (reserved for system)

0180H - 01FFH XRAM bank #0

0200H - 027FH Reserved for system

0280H - 02FFH XRAM bank #1

0300H - 037FH Reserved for system

0380H - 03FFH XRAM bank #2

0400H - 04FFH RAM bank #1

0500H - 06FFH VTRBF

0700H - FFFFH Reserved for system

[Save RAM File] Command

This command saves the current contents of RAM provided for the virtual CPU. The file format is binary.
This type of file can be loaded by using the [Open RAM File] command.

[Open FLASH#1] Command

This command loads a file into flash memory bank 1. The file format is binary. The size of flash memory
bank 1 is 64K. Writing to flash memory is accomplished by writing directly to the memory area, ignoring
the flash write simulation facility.

Flash memory bank 1 is a system area that is used to manage Visual Memory files, and an area for saving
Dreamcast game data. Visual Memory applications are loaded into flash memory bank 0.

Caution: If "GAME.BIN" is not loaded through this menu before starting up an application, an error message
stating that Visual Memory has not been initialized will be displayed. Before starting up an application,
be certain to first load "GAME.BIN" through this menu.

[Save FLASH#1] Command

This command saves the current contents of flash memory bank #1 in a file. The file format is binary. This
type of file can be loaded by using the [Open FLASH#1] command.

[Print] Command

This command prints the character string that is displayed in the text box (system console) at the bottom of
the Main Window.

[Save Console to File] Command

This command saves the character strings displayed in the system console in a text file.
VMB-15

Visual Memory Unit (VMU) Simulator Manual
 [Exit] Command

This command quits the Visual Memory Simulator.

[Execute] Menu

[Break] Command

This command halts application execution. The effect of this command is identical to that of the
Break button.

[Reset] Command

This command resets the virtual Visual Memory, and starts Visual Memory operation.

[Run/Continue] Command

This command executes the program, starting from the instruction following the instruction at which
program execution was stopped.

[Step Execution] Command

This command executes one instruction according to the current program counter.

[Disassemble] Command

This command displays a disassembled listing.

[Panel] Menu

[Break Control] Command

This command displays the Break Control Window.

[Memory Control] Command

This command displays the Memory Control Window.

[SFR Display] Command

This command displays the Special Function Register Window.

[LCD Snapshot] Command

This command displays the LCD Snapshot Window.

[Network Monitor] Command

This command displays the Network Monitor Window.
VMB-16

 Descriptions of Windows and Panels
[Trace Panel] Command

This command displays the Trace Panel.

[Hexadecimal Input Pad] Command

This command displays the Hexadecimal Input Pad.

 [Reduce Main Window] Command

This command changes the size of the Main Window to the size of the Visual Memory image.

[Normal Main Window] Command

This command restores the Main Window to its normal size.

[Options] Menu

[Environment Settings] Command

This command displays the Environment Settings Window.

[Clear Console] Command

This command clears the system console.

[Help] Menu

[Reference Guide] Command

This command displays help.

[Version Information] Command

This command displays the version information for the Visual Memory Simulator.

Toolbar

The toolbar is located at the top of the panel. The toolbar buttons all correspond to menu items or buttons on panels.

Reset

Reduce Panel Size

Memory Control Window

LCD Snapshot Window

Hexidecimal Input Pad

Break

Normal Panel Size

Break Control Window

Network Monitor Window

Clear System Console

Run

Open Application

SFR Window

Trace Panel
VMB-17

Visual Memory Unit (VMU) Simulator Manual
CPU Register Display Function

This function displays the values of the virtual CPU's registers in the Main Window.

Figure 1.3

The registers are Acc, B, C, TRH, TRL, SP, PSW, and PC. Each value is expressed in hexadecimal notation.

Each register may be edited. After selecting the register to be edited by clicking on the register, click on the
register again to begin editing it. In the case of the PSW (Program Status Word), the status of each bit
is displayed.

Meanings of the Bits in the PSW

Cy Carry flag

Ac Auxiliary carry flag

B1 Indirect register bank specification bit

B0 Indirect register bank specification bit

Ov Overflow flag

Rb RAM bank switching bit

P Parity bit

Each bit of the PSW, except for the parity bit, can be inverted by clicking on the bit with the mouse. The
results of the change are reflected in the value of the PSW.

The selected bank and the current indirect register values are displayed in the indirect registers.

The contents of the register scan be edited. It is also possible to change the current bank for the indirect
registers by clicking on the label that indicates the bank. If B1 and B0 in the PSW are changed, the bank label
is also updated.

Because the CPU registers can be displayed while an application is in progress, so the changes in register
values can be observed. However, because it takes time to update the value of each register, the operating
speed of an application will slow down if the register values are displayed. To suppress the register display,
uncheck the [CPU Registers] checkbox. When this checkbox is in the checked state, the contents of the
registers are displayed.
VMB-18

 Descriptions of Windows and Panels
Execution Control

There are four buttons that are used for execution control.

Figure 1.4

Execution Control Buttons

Reset Button

If the [Reset] button is clicked, all Visual Memory devices are reset.

All of the CPU registers are initialized with "00H," RAM bank 0 is the current RAM bank, and the internal
ROM is selected as the program ROM. "0000H" is loaded into the program counter, and then the CPU
begins running.

Run Button

If the [Run] button is clicked, execution begins, starting from the address that is shown in the execution
start address text box (program counter). In this case, the devices are not reset. The [Sys]/[Usr] button
indicates whether the program that is currently executing is located in ROM or in flash memory. The [Sys]
button indicates ROM, and the [Usr] button indicates flash memory.

Break Button

If the [Break] button is clicked while an application is executing, Visual Memory displays the current
register values on the console and halts execution. At this point, the value of the program counter, which is
the address of the instruction that is to be executed next, is substituted into the execution start address text
box. Execution can be resumed if the [Run] button is pressed right after the [Break] button.

Step Button

If the [Step] button is clicked while program execution is halted, the next instruction in the program is
executed and then execution halts again. This button can be used to execute a program one instruction at a
time in a deliberate fashion.
VMB-19

Visual Memory Unit (VMU) Simulator Manual
Register Dump Display Format

The format of the register dump that is displayed on the console is shown below.

A=10 B=01 C=03 TRH=05 TRL=ED SP=45 PSW=01 PC=1:027D

RBANK=0:0 R0=00 R1=00 R2=A6 R3=A7

1:027D 02 77 LD 0077H

The values from "A" to "PSW" show the current values in each of the registers.

"PC" indicates the program counter value, consisting of the bank and the address, separated by a colon.

Bank 0 indicates ROM, and bank 1 indicates flash memory. In the above example, "PC" indicates address
027DH in flash memory. The digits that are used to represent the bank are "0" and "1".

The next line shows the indirect registers. "RBANK" indicates the indirect register bank that is currently
selected. The left side of the colon indicates the RAM bank. The value is either "0" or "1". The right side of
the colon indicates the indirect register bank. The value can range from "0" to "3". The values from "R0" to
"R3" indicate the indirect register values in the selected bank. A disassembled list is displayed only if the
dump was executed while a flash memory program was running.

Disassembly Function

Clicking on the [DisAsm] button displays a disassembled list on the console.

Figure 1.5

Text boxes are provided for the starting and ending addresses. The [Length] box is used to switch between
either performing disassembly according to the number of lines, or performing disassembly according to the
ending address specification. When the [Length] box is checked, disassembly is performed according to the
specified number of lines. Under the default setting, 32 lines are displayed. The number of lines can be
specified by specifying any number of lines in the environment settings window. For details on how to make
this setting, refer to [Work Settings] - [Disassemble Lines] See “Environment Settings Window” on page 49.

The results of execution are shown below.

Figure 1.6
VMB-20

 Descriptions of Windows and Panels
Visual Memory Image

The Visual Memory image is a virtual target machine that is patterned on Visual Memory.

Figure 1.7

The Visual Memory image includes an area that is equivalent to the LCD, icons, and eight buttons.

The buttons can be clicked through either the mouse or the keyboard. When the Visual Memory image is
active, the image is framed in blue. To make the Visual Memory image active, click on any portion of the
Visual Memory image other than a button.

The keys that correspond to the Visual Memory buttons can be changed through the environment setting
window. For details on how to make this setting, refer to [Work Settings] - [VMU Button Configuration] See
“Environment Settings Window” on page 49.

Status Lamp

There are lamps that indicate the status of Visual Memory located on the right side of the Visual Memory image.

Figure 1.8

Run Lights when the CPU is running. Turns off when the CPU is stopped.

Halt Lights when the CPU is in the HALT state.

Hold Lights when the CPU is in the HOLD state.

RAM#0 Lights when RAM bank 0 is selected.

RAM#1 Lights when RAM bank 1 is selected.

S-ROM Lights when ROM is selected.

U-ROM Lights when flash memory is selected.

PWM Lights when PWM is output by an application.

NET Lights when the Visual Memory unit is connected to another Visual Memory unit.
VMB-21

Visual Memory Unit (VMU) Simulator Manual
Changing the Size of the Main Window

The Main Window can be reduced to a size that displays only the Visual Memory image and the [Reset], [Break],
and [Run] buttons on the toolbar, and the panel size change button. In addition, it is possible to make a setting in
the Environment Settings Window that sets this reduced size for the Main Window when the Visual Memory
Simulator is started up. For details on how to make this setting, refer to [Settings] - [Minimum Size] See
“Environment Settings Window” on page 49.

Figure 1.9

System Console

The system console outputs a variety of information from the Visual Memory Simulator. Text information that is
output on the console can be printed or saved in a file.

Figure 1.10

Under the default setting, the console has buffer space for 300 lines. The number of lines can be adjusted in
the Environment Settings window. For details on how to make this setting, refer to [Work Settings] -
[Console] See “Environment Settings Window” on page 49.

If the text output is longer than the number of lines set for the system console, the text is deleted, starting
from the beginning.

Caution: When the console buffer is set to a default of 300 lines or more, the operation of the Visual Memory
Simulator will slow down.
VMB-22

 Descriptions of Windows and Panels
Memory Control Window
This window displays the contents of memory. Memory is divided into tab pages by category. The memory that is
displayed on each page can be the target of editing.

Figure 1.11

Synchronous Display Function

There is a "Synchronous Update" checkbox in the Memory Control Window. If a check is placed in this
checkbox, the displayed contents are updated whenever the virtual CPU writes to memory. however,
because it takes time to update the screen, the Visual Memory Simulator will run more slowly if this
function is used.

Dump Function

The current contents of the Memory Control Window can be transferred to the system console by clicking
the [Transfer to Console] button. The 256 bytes of Flash Memory #0 and work RAM that are currently
displayed are transferred to the console.

Update Button

Clicking the [Update] button causes the Memory Control Window to be updated with the current, most
recent data. Normally, this button is used to update the data if the synchronous display function checkbox
is not checked.

RAM#0 System work area for system BIOS, etc. Size: 256 bytes

RAM#1 Application area. Size: 256 bytes

FLASH#0 Flash memory area that is used to store user applications.

XRAM LCD display memory.

SFR Special Function Registers.

VTRBF Work RAM. Size: 512 bytes
VMB-23

Visual Memory Unit (VMU) Simulator Manual
RAM#0, RAM#1

RAM is divided into bank 0 and bank 1. Bank 0 is a system work area that is used by the system BIOS. Bank 1 is a
work area that is open to user applications.

The Memory Control Window display format is the same for both of these banks. The size of each bank is 256 bytes.

In the LC86 Series CPU, the first 16 bytes of RAM are allocated as the indirect register area. The indirect register area
is displayed separately in an easy-to-read format on the panel.

Figure 1.12

Because RAM bank 0 is allocated for the system BIOS work area and the stack area, it should not be accessed
by applications.

RAM bank 1 has 256 bytes that are open to applications.

Calculation of Memory Usage Rate

RAM contains internal flags that indicate whether a location was accessed by the CPU. When the CPU
writes to a given location in memory, the corresponding flag is set. These flags are counted and then used
to calculate the memory usage rate. These flags are cleared when the CPU is reset. Specific flags can also be
deleted by clicking the [Clear Flags] button.

If the [View All] checkbox is checked, the flags are ignored and all 256 bytes are displayed. If this checkbox
is not checked, only memory for which flags have been set is displayed. In other words, the memory that
the virtual CPU has written to is displayed.
VMB-24

 Descriptions of Windows and Panels
Figure 1.13

FLASH#0

Flash memory is divided into bank 0 and bank 1. The size of each bank is 64 kilobytes each.

Flash memory bank 0 is used for application programs. User-created programs are loaded into this area. Flash
memory bank 1 is a data area, so programs cannot be loaded into flash memory bank 1.

Caution: The contents of flash memory bank 1 cannot be changed.

Figure 1.14

The memory panel displays 256 bytes at one time.
VMB-25

Visual Memory Unit (VMU) Simulator Manual
Scroll Buttons

The up and down scroll buttons can be used to scroll through the display 256 bytes at a time.

Slider

The slider box can be dragged with the mouse in order to move the display to any desired position in
memory. The display can also be moved to a certain position by clicking on the label in which that address
is displayed.

Dial

The dial can be moved up and down to change the displayed address accordingly. The unit of movement
is 16 bytes.

Display Start Address

If an address is input in the text box, the 256 bytes that start from that address are displayed. The lower four
bits are discarded so that the display starts from "0".

XRAM

XRAM is video memory for the LCD.

XRAM is divided into three banks. Banks 0 and 1 are matrix memory, and bank 2 is icon memory. Banks 0
and 1 are displayed in the Memory Control Window.

Figure 1.15
VMB-26

 Descriptions of Windows and Panels
LCD Bit Image Display

The current status of XRAM can be displayed as a bit image. This display area can be displayed even when
the LCD is off. Although the bit image is synchronized with user writes, it is not synchronized with writes
by the virtual CPU. Clicking the [Refresh] button causes the latest contents of XRAM to be displayed.

The XRAM display start address can be changed. This specification is made through the Special Function
Register STAD. When the [Display By STAD] checkbox is checked, the value in STAD is used as the display
start address. If the [Display By STAD] checkbox is not checked, the display starts at the start of XRAM.
This is the same as if STAD = 0.

Note: The LCD resolution is 48 dots (H) x 32 dots (V), and one line of the LCD corresponds to 6 bytes.
The MSB of data that is written corresponds to the left-side dot.
XRAM bank 0 is displayed in the top half of the LCD, and bank 1 is displayed in the bottom half. Bank
2 is icon memory.

Caution: Because bank 2 is used for the icon that displays the Visual Memory mode, do not change the contents
of bank 2 from within an application.

SFR

Although the Special Function Registers are displayed, areas that are not actually implemented are also displayed.
Normally, locations for which no device is connected are indicated as "0FFH". The data that is displayed can
be edited.

Figure 1.16

Caution: If data is edited in an address that does not exist in any storage that is connected to the device, the data
is not actually written.
VMB-27

Visual Memory Unit (VMU) Simulator Manual
VTRBF

VTRBF is allocated as buffer memory for communications between Visual Memory and Dreamcast. If
communications with Dreamcast are not being performed, however, this area is open to the user as work RAM. This
memory is accessed through the SFRs, and is not decoded in the CPU memory space. The size of this area is 512
bytes, and the addresses range from 0000H to 01FFH.

Figure 1.17 Fig. 4-15
VMB-28

 Descriptions of Windows and Panels
Break Control Window
There are three execution control functions that are implemented in the break control window.

Break by Breakpoint Address Comparison

Aside from breakpoints, program execution can be stopped by memory fetches.

Display When an Interrupt Is Received

This indicates that the virtual CPU has received an interrupt and that an interrupt routine has been called.

Access Reference Monitor

This function displays the position in a program where the specified memory is being accessed.

To enable the address set in the Break Control Window, click the [Apply] button.

Figure 1.18

Break by Breakpoint Address Comparison

Break Control

Break control specifies monitoring of application execution. There are four monitoring groups: breakpoint
specification, TRR fetch breaks, memory fetch breaks, and memory fetch breaks with a range specification.
Four compare addresses can be set for each group. The common items for all of the groups are
explained below.

Group ON/OFF

This item turns individual groups on and off. The switches for the individual groups are provided in order
to minimize address comparison overhead in the Visual Memory Simulator. If a group is turned on, it is
displayed on a white background and its settings are enabled.
VMB-29

Visual Memory Unit (VMU) Simulator Manual
Address ON/OFF

Each compare address in a group has its own ON/OFF switch. If set to ON, that compare address is
enabled. Addresses can be turned on and off by clicking in the first column.

Break Mode

The break mode specifies whether to stop or continue execution when a compare address matches. When
a compare address matches, the current register values are dumped. If "Break" is ON, the virtual CPU stops
executing the program after the register dump. If "Break" is OFF, the register dump is still performed, but
the virtual CPU continues executing.

Breakpoints

Execution is halted when the program counter matches the specified address. Four addresses can be
specified as compare addresses.

Figure 1.19

TRR Fetch Break

Execution halts when the program counter matches the memory address that is referenced by the TRH and
TRL (indirect address) registers.

Essentially, the program counter is compared with the address that is referenced when the LDC instruction
was executed.

Therefore, when the LDC instruction is executed, the address indicated by TRH and TRL is the object of
comparison, with no distinction made for flash memory.

Figure 1.20
VMB-30

 Descriptions of Windows and Panels
Memory Fetch Break

A memory fetch break halts execution when the CPU accesses the specified address in memory. This group
permits specification of the target memory and the access mode.

The target memory can be RAM#0, RAM#1, SFR, XRAM#0, XRAM#1, or VTRBF. To select the target
memory, click on the column that is to be set, and then make the selection in the popup menu that appears.

Select the access mode from among READ, WRITE, and R/W.

If the access mode is READ, execution is halted when a read is executed in the target memory; if the access
mode is WRITE, execution is halted when a write is executed in the target memory. If the access mode is
R/W, execution is halted when a read or a write is executed in the target memory.

Figure 1.21

Memory Fetch Break With Range Specification

A memory fetch break with range specification halts execution when an access is made inside or outside of
the specified memory address range.

The compare range is specified with a [Start] address and an [End] address. The compare condition can be
selected as either "inside the range" or "outside the range." If "outside the range" is specified, then execution
stops when memory is accessed outside of the specified address range. This condition does not include the
specified addresses. If "inside the range" is specified, then execution stops when memory is accessed inside
of the specified address range. This condition does include the specified addresses.

Just as in the case of a memory fetch break, this group permits specification of the target memory and the
access mode.

The target memory can be RAM#0, RAM#1, SFR, XRAM#0, XRAM#1, or VTRBF.

To select the target memory, click on the column that is to be set, and then make the selection in the popup
menu that appears.

Select the access mode from among READ, WRITE, and R/W.

If the access mode is READ, execution is halted when a read is executed in the target memory.
If the access mode is WRITE, execution is halted when a write is executed in the target memory.
If the access mode is R/W, execution is halted when a read or a write is executed in the target memory.

Figure 1.22
VMB-31

Visual Memory Unit (VMU) Simulator Manual
Display When an Interrupt Is Received

Interrupt Report

When the virtual CPU accepts an interrupt, it outputs an acceptance message on the system console.

This message is output after the virtual CPU has gotten the interrupt vector.

This is valid when the interrupt source checkbox has been checked.

Figure 1.23

These checkboxes will function correctly even if their settings are changed while the CPU is running. The
interrupt sources are described below:

INT0 External interrupt. This interrupt is generated when +5V is supplied to the Visual
Memory unit.

INT1 External interrupt. This interrupt is generated when the Visual Memory unit's internal
battery voltage drops.

INT2/T0L The external interrupt is generated by ID0, and the internal interrupt is generated by the
lower timer 0 register.

INT3/BT The external interrupt is generated by ID1, and the internal interrupt is generated by the
base timer.

T0H This interrupt is generated by the upper timer 0 register.
T1 This interrupt is generated by timer 1.
SIO0 This interrupt is generated by SIO0.
SIO1 This interrupt is generated by SIO1.
P3 This interrupt is generated by port 3.
VMB-32

 Descriptions of Windows and Panels
Access Reference Monitor

The access reference displays the position in a program that is accessing the specified memory. Usually, this
function is used to pinpoint a position in a program that is destroying memory.
The access reference monitor function permits selection of the access mode.
The access mode may be specified as either READ, WRITE, or R/W.
The displayed contents are the mode in which the access was made (R or W), and a disassembly of the program
position. This information is output on a special console.
Because program positions are checked twice when output, they are not listed for each access. If you wish to know
the access sequence over time, use the memory fetch break function. If you use the access reference monitor, the
information will be output on the system console each time an access occurs.

Figure 1.24
VMB-33

Visual Memory Unit (VMU) Simulator Manual
Special Function Register Control Window
This window displays the Special Function Registers that Visual Memory leaves open to users.

The display in this window is divided into several groups.

Figure 1.25

Each group is a tabbed page; click on the tab for the group that you want to display.

Figure 1.26

Click the [UPDATE] button in order to display the most recent information. Checking the [Synchronous
Update] box causes the contents of registers to be updated as soon as the virtual CPU performs a write.

Each register can be edited at the bit level. Clicking on one of the displayed bits causes the value of that bit
to be inverted. Bits can also be inverted by clicking on the label connected to that bit.

The Special Function Register groups displayed in this window are listed below.

• CPU Control

• LCD

• INT Control

• Timer0

• Timer1

• SIO

• PORT1

• PORT3/7

• External INT

• VMU Special

• Base Timer
VMB-34

 Descriptions of Windows and Panels
CPU Control

This group includes the CPU power control, system clock oscillation source control, and external memory control
registers. The target registers are PCON, OCR, and EXT.

PCON is the power control register, OCR is the oscillation control register, and EXT is the external memory register.

Figure 1.27

LCD

This group displays the LCD control registers. The target registers are MCR, STAD, CNR, RDR, XBNK, and VCCR.
STAD, CNR, TDR, and VCCR cannot be written while the liquid crystal display controller is stopped. This also
applies to accesses from an application.
XBNK is unrelated to the operation of the LCD controller, and can be accessed at any time. Although it may appear
that it is possible to set this to an unused bank, such a setting is corrected to bank 0.

Figure 1.28
VMB-35

Visual Memory Unit (VMU) Simulator Manual
INT Control

This group displays the interrupt-related registers. The target registers are IE and IP.

Figure 1.29

Timer 0

This group displays the registers that are related to timer 0. The target registers are T0CNT, T0PRR, T0L, T0LR, T0H,
and T0HR.

Figure 1.30
VMB-36

 Descriptions of Windows and Panels
Timer 1

This group displays the registers that are related to timer 1. The target registers are T1CNT, T1LC, T1L, T1HC,
and T1H.

The roles of registers T1L and T1H differ, depending on whether they are being read or written. When read, they
return the counter value; when written, the value becomes the reload value. Each status can be checked on the
SFR panel.

Figure 1.31

SIO

This group displays the registers for the serial communications-related circuits for two channels. The target
registers are SCON0, SCON1, SBUF0, SBR, and SBUF1.

Figure 1.32
VMB-37

Visual Memory Unit (VMU) Simulator Manual
PORT1

This group displays the registers related to port 1. The target registers are P1, P1DDR, and P1FCR.

Because port 1 is used for serial communications and PWM (buzzer) output control, it cannot be used as a general
I/O port.

Figure 1.33

PORT3/7

This group displays the registers related to port 3 and to port 7. The target registers are P3, P3DDR, P3INT, and P7.

Eight buttons of the Visual Memory unit are connected to port 3. The signals corresponding to each button are
normally high, but if a button is pressed the signal goes low. Port 3 interrupts can be generated through P3INT. Note
that P3 interrupts are level interrupts.

Port 7 is a four bit input port, with special input signals connected. Each bit of port 7 is an external interrupt input
port. Interrupt control is handled through the I01CR and I23CR registers.

• P70 is connected to the +5V supply test checkbox. Normally, this signal is low, but when +5V is supplied
this signal goes high. This signal can generate interrupts as external interrupt INT0.

• P71 is connected to the low voltage detection test checkbox. Normally, this signal is high, but when low
voltage is detected this signal goes low. This signal can generate interrupts as external interrupt INT1. The
signal goes low when the checkbox is checked.

• P72 is connected to the special signal ID0 checkbox. Normally, this signal is low. This signal can generate
interrupts as external interrupt INT2.

• P73 is connected to the special signal ID1 checkbox. Normally, this signal is low. This signal can generate
interrupts as external interrupt INT3.

• The [VMU Connect] checkbox simulates another Visual Memory unit being connected. When this
checkbox is checked, the port values for the connected state are simulated.
VMB-38

 Descriptions of Windows and Panels
Figure 1.34

External INT

This group displays the external interrupt control-related registers. The target registers are I01CR and I23CR.

INT0 is the +5V supply test, and INT1 is the low voltage detection test. In addition, INT2 is connected to ID0, and
INT3 is connected to ID1.

Figure 1.35
VMB-39

Visual Memory Unit (VMU) Simulator Manual
VMU Special

This group displays related registers among the registers that are related to the Visual Memory special serial
circuitry. The target registers are VCFLG2, VSEL, VRMAD1, VRMAD2, and VTRBF.

VTRBF has [Read] and [Write] buttons. VTRBF can also be listed in the Memory Control Window.

The Visual Memory Simulator only supports registers for access to VTRBF.

Figure 1.36

Base Timer

This group displays the registers related to the base timer. The target registers are BTCR and ISL.

Figure 1.37
VMB-40

 Descriptions of Windows and Panels
LCD Snapshot Window
This window displays an enlarged version of the bit image that is currently displayed on the LCD. The bit image is
fetched either when this window is called or when the [Get Screen] button is clicked. If this window is displayed,
the bit image shown is not synchronized with writes by the virtual CPU.

Figure 1.38

Description of Tool Bar Buttons

Get Screen Button

This button gets the current LCD bit image. The contents that are gotten are the contents of XRAM. The dot
size is determined by the current magnification.

Save Button

This button saves the current bit image in a file with the displayed magnification. The file is saved in ".BMP"
format. The grid is not saved.

Grid Button

This button displays a grid in the display area. This button functions as a toggle switch; each time the
button is clicked, it turns the grid on or off.

Zoom Button

This button can be used to select a magnification from 1x to 5x.
VMB-41

Visual Memory Unit (VMU) Simulator Manual
Display by STAD Checkbox

The [Display by STAD] checkbox is a switch that enables the display start address register STAD. When this
checkbox is checked, drawing is based on addresses converted according to the STAD register. In other words, the
same image as that which is displayed on the virtual LCD is displayed on the screen.

If this checkbox is not checked, the STAD register value is ignored when drawing the image. In other words, the
contents of XRAM are drawn as is, starting from the beginning of XRAM.

Menus

[File] Menu

[Save Bit Image] command Same function as the [Save] button.

[Exit] command Closes the LCD Snapshot Window.

[Display] Menu

[Get Image] command Same function as the [Get Screen] button.

[Display Grid] command Same function as the [Grid] button.
VMB-42

 Descriptions of Windows and Panels
Network Monitor Window
The Visual Memory Simulator simulates data transfers between Visual Memory units via TCP.

The Network Monitor Window supports TCP communications between two Visual Memory Simulators.

This panel consists of several buttons related to connection control, a console for outputting the status, a data
monitor for displaying the transferred data, and a status bar for displaying the current status.

Figure 1.39

Connection Control

To perform communications, each unit must select either client mode or server mode. If one is set to server
mode, the other must be set to client mode.

Setting the Unit as the Server

1) The option buttons permit selection of either [Client] or [Server]; select [Server].

2) In order to set the unit as the server, the local port number must be set. The default setting is 1024.

3) If this number is OK, click the [Wait] button. The Visual Memory Simulator is now in server mode in the
standby state.

The server performs connection processing when there is a connection request from the client. When the
connection is completed, the "Net" lamp in the Main Window lights.

Stopping Server Operation

Click the [Abort] button to release the server standby state, or to disconnect.

When in the standby state, clicking the [Abort] button puts the unit into the stopped state. If the unit is
connected when the [Abort] button is clicked, it performs disconnect processing and then enters the
stopped state.

Setting the Unit as the Client

1) Select [Client] with the option buttons.

2) Input the machine name or IP address that was set for the server in the [Remote Host] text box.

3) Input the port number that was set for the server in the [Remote Port] text box.

4) Click the [Link] button.

5) Once the connection is made properly with the server, a confirmation message is displayed.
VMB-43

Visual Memory Unit (VMU) Simulator Manual
When the connection is made with the server, the "Net" lamp in the Main Window lights.

Stopping Client operation

To release the connection with the server, click the [Off] button. When this button is clicked, the client issues
a disconnection request to the server and then enters the unconnected state.

At this point, the server is in standby state. Reconnection is possible by clicking the [Link] button.

Console

The console displays statuses related to connection/disconnection.

The contents displayed in this console can be transferred to the system console by clicking the [Trans To
Console] button.

The [Clear] button clears the contents displayed on the console.

Clicking the [Test] button while a connection is established sends a test message to the other side.

Data Monitor

The data monitor monitors the data that is sent between the two Visual Memory Simulators. This data is
the data that is transferred from the virtual SIO.

Data that is sent is displayed on the Tx grid, and data that is received is displayed on the Rx grid.

The data monitor function begins operating when the [Monitor On] button is clicked, and stops when the
[Monitor Off] button is clicked. When the buffer becomes full, the oldest displayed contents are
overwritten first.

The [Trans Buffer to Console] button transfers the currently displayed contents of the data monitor buffer
to the system console. The [Buffer Clear] button clears all of the current contents of the buffer.

Status Bar

Starting from the left, the status bar consists of:

• Client/server mode indication

• Data monitor operating mode indication

• Client, server connection status
VMB-44

 Descriptions of Windows and Panels
Trace Panel
The Trace Panel traces the execution of an application.

The trace results are output on the trace console.

Figure 1.40

Trace Mode Checkbox

Tracing starts when the [Trace Mode] checkbox is checked. The setting of this checkbox can be changed
even while an application is running.

Trace Area

This specifies the area to be traced.

Main Program

This limits tracing to the main program. Here, "main program" indicates areas other than the interrupt
processing routine.

Interrupt Handler

This traces only the interrupt processing routine (interrupt handler). Tracing starts when an interrupt is
received, and continues until the RETI instruction is executed.

Both

This traces both the main program and the interrupt processing routine.
VMB-45

Visual Memory Unit (VMU) Simulator Manual
Trace Level

The trace level refers to the subroutine nesting level. At level 0, no subroutines are traced. If the level
number increases, subroutines to the corresponding nesting level are traced. This setting can be used to
avoid unnecessary tracing.

To enable the trace level, check the [Trace Level] checkbox.

Trigger

This is a switch that enables a trace start address and a trace end address.

When the program counter matches the start address, tracing starts and continues until the program
counter matches the end address. These addresses are valid only for flash memory.

Trace Console

The trace results are displayed on the trace console. The trace results are the disassembled code that the
virtual CPU executed.

To clear the contents of the trace console, click the [Clear] button.

Apply Button

Clicking the [Apply] button places the trace level value, trace start address, and trace end address
into effect.
VMB-46

 Descriptions of Windows and Panels
Hexadecimal Input Pad

Hexadecimal Input Pad

The Hexadecimal Input Pad is an auxiliary panel that is used to input hexadecimal numbers. Symbols are
displayed on the right side of the panel.

Figure 1.41

Description of Input Buttons

Numeric Buttons

These buttons are used to input hexadecimal digits. The digits that are input are inserted from the right
edge, and are then shifted left. Overflow digits are ignored; only the four digits that are displayed are valid.

C Button

This button clears the displayed digits and returns the display to "0".

+ Button

This button is used for addition in the same manner as a calculator.

- Button

This button is used for subtraction in the same manner as a calculator.

= Button

This button displays the total in the same manner as a calculator.

+1 button

This button adds "1" to the current displayed value. If the current displayed value is "FFFF" and this button
is pressed, "0" is the result.
VMB-47

Visual Memory Unit (VMU) Simulator Manual
-1 button

This button subtracts "1" from the current displayed value. If the current displayed value is "0" and this
button is pressed, "FFFF" is the result.

How To Use the Displayed Number

The displayed number can be dragged. When the mouse cursor is moved to the display area, it becomes a
drag cursor. The number can be dragged and dropped in an address text box on any panel.

Keyboard Correspondence

The buttons for the digits also correspond to keys on the keyboard or numeric keypad.

The buttons for the digits "0" through "9", the letters "A" through "F", and the "+" symbol all correspond to
the same keys on the keyboard, but the "C" button corresponds to the "*" key and the "=" button corresponds
to the "Enter" key. The "+1" button corresponds to the PageUp key, and the "-1" button corresponds to the
PageDown key.

In order to input from the keyboard, it is necessary to first make the numeric buttons on the Hexadecimal
Input Pad active. The numeric buttons can be made active by clicking either on or near the buttons with the
mouse.

Symbol List Box

The symbol information for an application is displayed in the list box. The Special Function Register
symbols are registered as the default.

If an appropriate symbol in the list box is selected, that address is transferred to the display box. An address
can also be dragged directly from this list box.

Symbol Search

A symbol search can be performed by inputting the search character in the text box. Each time a character
is input, a search is conducted for the symbol that matches that character (incremental search).

The [FindNext] button starts its search from the currently selected position. If the [Full Compare] checkbox
is checked, a search is conducted for a symbol that matches the entire character string that was input.

If the [CaseSensitive] checkbox is checked, the search distinguishes between upper and lower case letters.

Caution: The symbol file is a map file that is output by the Linker. If this file resides in the same folder as the
application, it is loaded into the Simulator at the same time as the application. If there is no map file,
only the default symbols are available.
VMB-48

 Descriptions of Windows and Panels
Environment Settings Window
The Environment Settings Window is used to make general settings and to make settings concerning the operation
of the Simulator.

The items that are set in the Environment Panel are saved in the "VMU.ENV" file in the "Files" folder where the
Visual Memory Simulator was installed. This file is loaded when the Visual Memory Simulator is started up, and
the environment settings contained in the file are restored.

Settings

The general settings include the settings upon startup, warning specifications, etc.

Figure 1.42

Startup Settings

Load Application

This checkbox is used to automatically load, the next time that the Simulator is started up, the application
that is currently loaded. The name of the current application is displayed in the title bar on the
Main Window.

Run After Loading

This checkbox automatically performs the reset operation and initiates execution the next time that the
Simulator is started up. If this checkbox is used at the same time as [Load Application], that application is
loaded and then automatically executed.

Minimum Size

This displays the Main Window at its minimum size the next time that the Simulator is started up.

Load System File

This checkbox automatically loads the system BIOS the next time that the Simulator is started up. The
system BIOS file that is loaded is the file that is selected by the system file setting.
VMB-49

Visual Memory Unit (VMU) Simulator Manual
Caution: This checkbox must be checked in order to execute an application automatically.

System File Setting

This item selects the system file that is loaded by the [Load System File] checkbox. There are two system
files: [Quick Start BIOS] and [Full Size BIOS]. Select one or the other by clicking the option buttons.

Caution: Quick start BIOS supports exactly the same functions as full-size BIOS, except that the clock setting can
be skipped at startup.

Warning Specifications

TRR Invalid Address

This outputs a warning message when the address that is referenced during the execution of an LDC
instruction is outside the application area. "Outside the application area" is defined as an address that is
higher than the last address of the HEX file that was loaded.

XRAM Invalid Address

This outputs a warning message when an access is made using an XRAM address in a memory area that is
not implemented. A warning message is also output when bank 3, which does not exist in XRAM,
is specified.

Stack Guard

This switch monitors the value of the stack pointer (SP). The monitoring area is specified as a starting and
ending value in the text boxes. In the case of an application where the depth of the stack is important, this
item can be set in order to output warning messages.

Caution: If the Visual Memory Simulator is reset, the system BIOS sets "7FH" in SP. Because the data is stored in
the stack after the SP is incremented, the actual data is processed starting from 80H, heading up
to 0FFH.

Break On Warning Above

The virtual CPU does not stop program execution when the above warning messages are output. Check this
checkbox in order to stop program execution when a warning message is output.

Break On SFR Invalid Access

A warning message is always output in the event of an invalid access to the Special Function Registers.
Check this checkbox in order to stop program execution when an invalid access is made to the Special
Function Registers.
VMB-50

 Descriptions of Windows and Panels
Initial Panel Location

This sets the panel display position. [Center] displays panels in the center of the screen. [Custom] stores the
position where the user has moved a panel.

Others

Display Hints

This displays hints that have been set up for each GUI control. If this box is checked, hints are displayed; if
this box is not checked, hints are not displayed.

Save Setting On Exit

This specifies whether or not to save application environment information when exiting the Visual
Memory Simulator.

Work Settings

Figure 1.43

Work Settings

CPU Loop Count

This value determines how many instructions the virtual CPU will execute during one system idle process
called from Windows. Increasing this value causes the virtual CPU to run faster. If the results of instruction
execution are being drawn at the Simulator level, etc., the graphics speed becomes a limiting factor, so that
setting a large value for the loop count will have little effect. On the other hand, a large value tends to slow
down message handling in windows, with the result that GUI control response becomes sluggish. The
operating speed is also affected by the clock speed of the computer on which the Simulator is running,
which is another factor that should be taken into account in order to set this value to a suitable level. The
default setting is "20."
VMB-51

Visual Memory Unit (VMU) Simulator Manual
Timer Delay Count

The timer delay count value is used to adjust the clock to the virtual Visual Memory timer.

The counter for the timer is started after "n" instructions have been executed. "n" is the timer delay
count value.

In other words, this value represents the delay before the timer starts operating. If this value is large, the
timer slows down. The default setting is "10."

Disassemble Lines

This specifies the number of lines in the disassemble list. This setting is valid when the [Length] checkbox
for the Main Window is checked. The default setting is "32."

Sound Simulation

Because the actual hardware needed for PWM output is not available in the Virtual Memory Simulator, the
Simulator is not able to output an accurate frequency. When PWM output becomes possible at the Visual
Memory Simulator level, the "PWM.WAV" file will be played. This checkbox is used to enable the playback
of "WAV" files. When this box is checked, playback is enabled; when this box is not checked, playback is not
enabled.

VMU Button Configuration

The settings for the keys that are allocated as the Visual Memory Image buttons can be changed.

Starting from the left, this group consists of option buttons for selecting the Visual Memory buttons, the
name of the key that is currently selected, the setting button, and the setting candidate list box.

Select the Visual Memory button that you wish to set from among the option buttons.

Next, select the key to be set from the list box, and then press the setting button [<<]. You can also
double-click on the key in the list box. The key that was set is displayed in yellow.

Console

This group sets the font, color, scroll bar, and other options for the system console.

Font Button

This specifies the character font that is used on the system console. Clicking this button causes the font
dialog box to appear. Set whichever font is desired.

Caution: Although vertical fonts are available in the font dialog box, do not specify any of those fonts.
VMB-52

 Descriptions of Windows and Panels
Color Button

This specifies the background color of the system console. Clicking this button causes the color dialog box
to appear. Set whichever color is desired.

Scroll Bars

This provides options for the display of scroll bars on the system console.

Vertical Displays vertical only

Horizontal Displays horizontal only

V/H Displays both vertical and horizontal

None Does not display scroll bars

Console Lines

This specifies the number of lines that are buffered for the system console. The maximum value is 1000
lines. The default setting is 300 lines. Increasing the number of lines increases the load caused by scrolling.

Default Button

This button returns the system console settings to their default settings.
VMB-53

Visual Memory Unit (VMU) Simulator Manual
VMB-54

Networking
Two Visual Memory units can be connected to each other through their serial interfaces (SIO). With the
Visual Memory Simulator, an equivalent setup can be created by connecting two Simulators through
TCP communications.

Although only the various SIO registers are visible from the virtual CPU, data can be transferred to SIO of the other
Visual Memory Simulator through the network in response to a transfer request.

The network is controlled through the Network Monitor Window. One of the Visual Memory Simulators is
designated as the client, and the other as the server. Because the network connection is not established
automatically, it must be established beforehand by using the Network Monitor Window.

Both a client and a server are required for connection. It does not matter which Visual Memory Simulator is the client
and which is the server, but it is not possible to have a connection between two clients or two servers.

Start up two Visual Memory Simulators in one PC.

In the Network Monitor Window of the Simulator that will be the client, enter the name of the PC or the IP
address as the name of the remote host. Put the server Simulator into the standby state, and then make the
connection from the client side.

Start up separate Visual Memory Simulators in different PCs.

Set one of the PCs as the server, and put the Simulator into the standby state. On the client side, enter the
name of the server PC or the IP address as the name of the remote host, and then make the connection.

Disconnecting the Network

Although the client and the server can both request disconnection, the disconnection request is usually
issued by the client.
VMB-55

 Networking
VMB-56

Related Files
This section describes the files that the Visual Memory Simulator references.
VMB-57

 Related Files
System Files
The system files that the Visual Memory Simulator references reside in the "Files" folder.

VMU.INI

This file contains the initial settings for the Visual Memory Simulator. Modifying this file could cause the
Visual Memory Simulator to operate incorrectly. The Visual Memory Simulator cannot start up without
this file.

VMU.ENV

This file contains the environment settings that have been made by the user. This file is updated when the
Visual Memory Simulator is exited.

DEFAULT.ENV

This file contains initial settings for applications to reference if they do not have their own environment file.

FBIOS.SBF

This file contains the ROM image of the system BIOS that is stored into the Visual Memory unit. The system
BIOS is started up whenever Visual Memory is reset. Applications are called from the system BIOS, and
when an application is exited, control returns to the system BIOS. The system BIOS includes various
subroutine packages that can be used by applications.

QBIOS.SBF

QBIOS skips the clock setting screen that is displayed when FBIOS starts up. Because the clock setting can
be skipped, program verification can be performed immediately during debugging. In all other respects,
QBIOS provides exactly the same functions as FBIOS.

PWM.WAV

Because the Visual Memory Simulator cannot guarantee complete real-time operation, PWM sound output
is not possible. When PWM output becomes possible at the Simulator level, the PWM.WAV file will
be played.
VMB-58

 Related Files
Application Files
The files that are referenced by applications are described below.

APPFILENAME.H00

This is the application execution file. The files that the Visual Memory Simulator can load as applications
are H00 files. An H00 file is created by converting an EVA file that is output by the Linker.

E2H86K.EXE is used to convert EVA files to H00 files. Although E2H86K.EXE outputs both a HEX file and
an H00 file, only the H00 file is used by the Visual Memory Simulator.

APPFILENAME.MAP

The MAP file contains the symbols that are output by the Linker. The file format is that of a typical text file.
The Visual Memory Simulator loads this file and extracts the necessary symbols. Once symbols are loaded,
they can be displayed with labels when disassembled.

The MAP file is loaded automatically after the application is loaded. Therefore, the MAP file must reside
in the same folder as the application. However, the MAP file is not required by the Visual Memory
Simulator, so its absence has no effect on the Visual Memory Simulator.

APPFILENAME.ENV

Information such as panel positions and settings can be stored for each application in a file with the "ENV"
extension that resides in the same folder as the application. The next time that the application is loaded, this
file is referenced and the settings are restored. If this file does not reside in the same folder as the
application, the execution of the application is unaffected, except that the default settings will be used.
VMB-59

Visual Memory Unit (VMU) Simulator Manual
VMB-60

Warning Messages
This section describes the warning messages that are displayed when an application is executed.

Stack Guard> Stack overflow occurred.

If the Stack Guard function has been enabled in the Environment panel, this message appears when the
stack pointer has gone outside of the specified range.

SFR> Invalid write (read) of SFR was attempted.

This message appears when an invalid write (read) of a Special Function Register was attempted.

An "invalid access" means that a Special Function Register was accessed by a method that is not permitted
for users. For example, this message appears in cases where bit access is permitted but byte access is not, or
in cases where reading is permitted but writing is not.

TRR> An invalid address was accessed.

This message appears when an address referenced by an LDC instruction was outside the range of
addresses where the application is loaded.

XRAM> XRAM cannot be written in subclock mode.

This message appears when a memory area for which XRAM is not implemented was accessed. The XRAM
space exists from 180H to 1FFH, but that does not mean that memory is implemented for that entire area.
Addresses in which the lower four bits range from 0CH to 0FH are not implemented.

However, the memory that is implemented in XRAM bank 2 is from 180H to 185H.
VMB-61

 Warning Messages
LCD> Invalid XRAM bank was accessed.

The XRAM bank specification is made in the XBNK register. The bank number is specified by two binary
digits, but the value for bank 3 (which does not exist) can be written to this register. In this case, the
Simulator switches the bank to bank 0 and displays this message.

LCD> Invalid STAD value was specified.

This message appears when a value that cannot be set is written in the display address start register for
the LCD.

SIO#0> Warning: PORT#1 is not ready.

SIO#1> Warning: PORT#1 is not ready.

SIO uses port 1 for input/output. This message appears when none of the bits in port 1 are set for SIO.

SIO> SIO control register values do not match.

This message appears when the settings in the control registers (SCON0 and SCON1) for two Visual
Memory Simulators that are attempting SIO communications do not match, making simulation of SIO
communications impossible.

Correct the program so that the settings for the transfer bit length, the LSB/MSB first selection, etc., match
for both Visual Memory Simulators.
VMB-62

	Dreamcast (VMU) Visual�Memory Unit
	Table of Contents

	Visual Memory Unit (VMU) Tutorial Manual
	Table of Contents
	Application Development�Procedure
	Writing Source Code
	Correcting GHEAD.ASM
	Assembly Without Using MAKE
	Assembly
	Linking
	Converting an EVA File Into a HEX File
	Converting a HEX File to a Binary File
	Creating a MAKE File

	Creating the Information Fork
	Transferring the Program to Visual Memory

	Interfacing between Visual Memory and Dreamcast
	Names of Elements in the Startup Screen
	Memory Selection Screen
	File Management Screen

	Creating a Volume Icon
	Creating an Animated Icon
	Three File Structures
	Information Fork
	Visual Comment Data Structure
	Game Name Sorting Rules

	Memory Card Utility
	Memory Card Utility Preparation and Startup
	Requirements for Transfer
	Software Preparation
	Memory Card Utility Startup

	Memory Card Utility Operation
	Main Menu
	Memory Selection Menu
	Command Selection Menu
	File Operations Menu

	Initializing Visual Memory
	Transferring Files from a PC to Visual Memory
	LCD Pattern Display
	LCD Character Pattern Display
	Counter That Uses Base Timer Interrupts
	Button Press Detection
	Using the PWM Sound Source
	Interrupt Using Timer 0
	Serial Communications (Sending Side)
	Serial Communications (Receiving Side)
	General-purpose Serial Driver
	Reading and Writing Flash Memory
	Low Battery Detection and Saving Data

	Dreamcast VMU Specifications
	Table of Contents
	VMU Specifications
	Overview
	VMU Overview
	VMU Configuration
	VMU Functions

	Mode Settings
	File Management
	Management Area
	Data Area
	Reserved Area

	LCD Display
	XRAM
	Screen Mode
	Icons
	Screen Configuration
	LCD Characteristics
	Miscellaneous

	Executable File Initiation
	Downloading an Executable File
	File Size
	Subroutine
	Interrupts
	RAM
	Save Processing During Executable File Operations
	Auto Power Off

	Communications Function
	Maple Bus Protocol
	Synchronous Serial Communications

	Clock Function
	Settings

	Alarm Function
	SLEEP Function
	SLEEP Operation

	Buttons
	Batteries
	Battery Life
	Processing When Battery Power Is Exhausted
	Battery Replacement

	Postscript

	Visual Memory Unit (VMU) Hardware Manual
	Table of Contents
	Visual Memory Unit�Overview
	VMU Specifications
	VMU Functions
	File management
	Liquid-Crystal Display
	Starting VMU applications
	Data transfer
	Clock
	Buzzer
	Operation mode switching
	Integrated character font

	Mode Setting
	System mode
	Game mode
	File mode
	Clock mode

	File Management
	Flash memory management area
	Data area
	Reserved area

	LCD Display
	XRAM
	Image mode
	Icon
	Image configuration
	LCD characteristics
	Other important points

	Starting an Executable File
	Writing applications for the VMU
	Transferring an executable file
	Executable file size
	OS programs usable by applications
	RAM
	Saving application data
	Auto power-off

	Communication Functions
	Maple bus protocol
	Synchronous serial transfer

	Clock Function
	Alarm Function
	Sleep Function
	Buttons
	Batteries
	Battery life
	Battery status monitoring
	Battery replacement

	CPU Features
	Differences to Conventional CPUs
	Specifications
	System block diagram

	Internal System Configuration
	Memory Space
	Program Counter (PC)
	ROM Space
	RAM Space
	Indirect Address Registers
	Special function registers (SFR)

	Flash Memory
	Accumulator
	B Register, C Register

	Program Status Word (PSW)
	Stack Pointer
	Table Reference Register (TRR)
	CHANGE Instruction
	Format
	Operation
	Sample program

	Peripheral System Configuration
	I/O Ports
	Port 1
	Port 3
	Port 7

	Timer/Counter 0 (T0)
	Functions
	Circuit Configuration
	Related Registers
	Circuit Configuration and Operation Principles

	Timer 1 (T1)
	Functions
	Circuit Configuration
	Related Registers
	Circuit Configuration and Operation Principles

	Base Timer
	Functions
	Circuit Configuration
	Related Registers
	Using the Base Timer

	Serial Interface
	Functions and Features
	Circuit Configuration
	Related Registers
	Serial Interface Operation
	Operation Mode Settings
	Serial transfer clock
	Serial Transfer Timing
	LSB/MSB Switchable Start Sequence
	Overrun Detection
	Transfer Bit Length Control
	Sample Program

	Dot Matrix LCD Controller
	Functions
	Display RAM (XRAM)
	Display Control Registers

	External Interrupt Function
	Circuit Configuration
	Related Registers

	Port Interrupt Functions
	Function
	Circuit Configuration
	Related Registers
	Operation Description
	State Transition

	VMU Work RAM
	Work RAM Control Registers
	Accessing Work RAM
	Precautions for Using Work RAM Address Register

	Flash Memory
	Features and Functions
	Accessing Program/Data Area of Flash Memory

	Control Functions
	Interrupt Functions
	Interrupt Types
	Interrupt Function Operation
	Circuit Configuration
	Related Registers
	Interrupt Priority Ranking

	System Clock Generation
	Features and Functions
	Circuit Configuration
	Related Registers
	System Clock Operation Mode

	Sleep Function
	Related Registers
	Standby Operation Status
	HALT Mode

	Hardware Reset Function
	External Reset Pin Function
	Hardware Status During a Reset

	Programs in ROM
	System Programs
	OS Programs
	Headers

	Memory Space
	System BIOS Functions
	Subroutine Call Procedure
	Processing Contents of Labels
	Interaction Between System BIOS and Application

	Application Shutdown Procedure When MODE Button is Pressed
	Processing Contents of Labels
	Interaction Between System BIOS and Application

	VMU Initialization
	Subroutine Reference
	Flash Memory Access Functions
	Subroutine Use Precautions
	Flash memory routines
	fm_prd_ex(ORG 0120H) Flash memory page data read
	fm_wrt_ex(ORG 0100H) Flash memory data write
	fm_vrf_ex(ORG 0110H) Flash memory page data verify

	Clock Function
	timer_ex Clock count-up timer

	Low Battery Voltage Auto�Detection
	List of Defined Variables
	Sound Output Method
	Timer 1 Outline
	Timer 1 Block Configuration
	Related Registers
	Mode Setting

	8 Bit Counter Mode
	Output Waveform and Parameter Setting
	8 Bit Counter Mode Setting
	Frequency Characteristics
	Output Frequency Table

	Sample Program
	Variable Bit Length Pulse�Generator
	Symbol Table
	VMU Mode Selection
	Calculation of Battery Life
	Methods for Enhancing Battery Life
	Oscillator Circuit and Current Consumption
	Oscillation Control Register
	System Clock Division Ratio Setting
	Oscillator Circuit Selection
	Oscillator Circuit Start/Stop

	Calculating Battery Life
	Calculating Continuous Operating Time
	Calculating Battery Life in Days

	Serial Communication Precautions
	Serial Communication Timing Chart
	Measures to Ensure Problem-Free Serial Transfer
	Mask All Interrupts
	Set Maximum Send Wait Time

	Visual Memory Unit (VMU) Programing Manual
	Table of Contents
	Setup
	Executing the Setup Program
	Post-Installation Overview

	Setting Environment Variables
	Environment Variables for the Development Tools
	Environment Variable Settings

	Specifying Files for Assembly
	Specifying File Names
	Specifying Parameters on the Command Line
	Specifying Parameters at the Prompts

	Option Switches
	Environment Variables and Reserved Word File
	Environment Variables
	Reserved Word File

	Errors
	Warnings
	Non-Fatal Errors
	Fatal Errors

	Listing Format
	Specifying Files for�Linking
	Specifying File Names
	Specifying Parameters on the Command Line
	Specifying Parameters at the Prompts
	Files Referenced During Linking

	Option Switches
	Object Alignment
	-A option
	-A -F options
	-A -O options
	-A -R options

	Errors
	Fatal Errors
	Non-Fatal Errors

	Starting the Program
	Specifying File Names
	Specifying Parameters on the Command Line
	Option
	Examples of Command Line Execution

	Operation with the Prompts
	Prompt Line Extension
	Default Responses

	Error Messages
	Cross-Reference
	Starting the Program
	Specifying File Names
	Specifying Parameters
	Option Specification

	Error Messages
	Fatal Errors

	Starting the Program
	Specifying File Names
	Specifying Parameters

	Error Messages
	Fatal Errors

	Overview of MAKE
	Running MAKE
	Build Priority Sequence
	Command Line Options

	Makefile Syntax
	Generation Rules
	Macros
	Directives

	Implicit Rules
	Makerule file

	Assembler Syntax
	Statements
	Label and Symbol Names
	Comments
	Operators
	Numeric Constants
	Character Constants
	Character String Constants
	Special Symbols

	Assembler Pseudoinstructions
	LC86K Instruction Summary
	Instruction Summary
	Arithmetic Instructions
	Logical Instructions
	Data Transfer Instructions
	Jump Instruction
	Conditional Branch Instructions
	Subroutine Instruction
	Bit Manipulation Instructions
	Other Instructions
	Macro Instruction
	Addressing
	Program Memory Addressing
	RAM and Special Function Register (SFR) Addressing

	Instruction Set Reference
	Arithmetic Instructions
	Logical Instructions
	Data Transfer Instructions

	Jump Instructions
	Conditional Branch Instructions
	Subroutine Instructions
	Bit Manipulation Instructions
	Miscellaneous Instruction
	Macro Instruction

	LC86K Instruction Set�Summary
	Assembler Pseudoinstructions

	Visual Memory Unit (VMU) VMU-BIOS Specifications
	VMU-BIOS Specifications
	Outline
	VMU Outline
	System-BIOS Outline

	Memory Space
	System BIOS Functions
	System BIOS Data and Memory Allocation
	Program Layout
	Subroutine Call Flow
	Returning From User Program to Mode Selection Screen
	VMU Initialization

	Subroutine Description
	Flash Memory Access Functions
	Clock Function

	Automatic low battery detection function
	Automatic low battery detection flag

	Visual Memory Unit (VMU) Sound Development Specifications
	Table of Contents
	VMU Sound Development�Specifications
	VMU Sound Output Hardware Outline
	Sound Output Principle
	Timer 1 Outline
	8-Bit Counter Mode
	Table of Available Output Frequencies

	Sample Program

	Visual Memory Unit (VMU) Simulator Manual
	Table of Contents
	Overview
	Features
	Visual Memory Simulator Operating Environment
	Checking Operation on Actual Visual Memory Hardware
	Notes Concerning Startup for the First Time

	Implemented Devices
	Virtual CPU
	Memory
	LCD Controller (LCDC)
	Serial Interface (SIO)
	Timer
	Interrupt Controller
	I/O Ports

	External Input Devices

	Basic Operation
	Starting Up the Visual Memory Simulator
	Loading the System BIOS
	Loading and Executing Applications
	MAP File
	Drag & Drop

	Descriptions of Windows�and�Panels
	Main Window
	Menus
	Toolbar
	CPU Register Display Function
	Execution Control
	Disassembly Function
	Visual Memory Image
	Status Lamp
	Changing the Size of the Main Window
	System Console

	Memory Control Window
	RAM#0, RAM#1
	FLASH#0
	XRAM
	SFR
	VTRBF

	Break Control Window
	Break by Breakpoint Address Comparison
	Display When an Interrupt Is Received
	Access Reference Monitor

	Special Function Register Control Window
	CPU Control
	LCD
	INT Control
	Timer 0
	Timer 1
	SIO
	PORT1
	PORT3/7
	External INT
	VMU Special
	Base Timer

	LCD Snapshot Window
	Description of Tool Bar Buttons
	Display by STAD Checkbox
	Menus

	Network Monitor Window
	Trace Panel
	Hexadecimal Input Pad
	Environment Settings Window
	Settings
	Work Settings

	Networking
	Related Files
	System Files
	Application Files

	Warning Messages

