Sega@'Dreamcast

Dreamcast (VMU)
Visual Memory Unit

Tutorial Manual
Specifications

Hardware Manual
Programing Manual
VMU-BIOS Specifications

Sound Development Specifications
Simulator Manual

Sega®@'Dreamcast

Table of Contents

Visual NMemory Unit (VMU) Tutorial Manual VMT-i

TableofContents ... VMT-iii
Application Development Procedure.ccciiiiiiiiiiiiiii... VMT-1
WIHNG SOUICE COAE ..ottt VMT-1
Correcting GHEADL.ASMoii ettt VMT-2
Assembly Without USING MAKE ..ot sseee st see st ssessssesessssessssessssessesessenes VMT-2
ASSEIMIDLY ... VMT-3
LINKITIE <ottt VMT-3
Converting an EVA File Into a HEX File ... VMT+4
Converting a HEX File to a Binary File ... VMT-5
Creating a MAKE Fileccccoiiiiiiie e VMT-5
Creating the Information FOTKcoiiiiiiiiiic e VMT-7
Transferring the Program to VISUal MEMOTYc.ccccviueiiuriiieiniieiiieiiieiieeiieeiseieisteessssesessesessesessesesssesssessssesssaes VMT-7
Interfacing between Visual Memory and Dreameast........................... VMT-9
Names of Elements in the Startup SCreen ... VMT-10
Memory Selection SCIEEM ...t VMT-10
File Management SCIEETLc.owrurieiiiicieie ettt VMT-11
Creating @ VOIUIME ICOMc.coiiiiiiiiiiiiic et VMT-13
Creating an Animated ICOMNoouiir s VMT-15
Three File SEIUCTUTESc.iuiiiiiiiici bbb VMT-15
INformation FOTK ... VMT-16
Visual Comment Data STrUCLUTE ..o VMT-20

Game Name Sorting RUIESoouoiiiiiii e VMT-21

Memory Card Utility. ...t i ittt it e eennnns VMT-23

Memory Card Utility Preparation and Startup ... VMT-23
Requirements for TTANSIETccccciiiiiiiiiiiiiiii e VMT-23
Software Preparation ... VMT-24
Memory Card ULty SLATEUP ...c.cceiiiiiiiiiiiiiiccceccccee e VMT-26

Memory Card Utility OPeration ... VMT-27
MaAIN MEIIU .ottt VMT-27
Memory Selection MENUcccuiiiiiiiiiiii e VMT-27
Command Selection MENU ... VMT-28
File Operations MENU ..ot ses s s sasnnas VMT-31

Initializing VISUal MEIMOTYccccciuiiiiiiiiiiiiiiiiiccecie et VMT-33

Transferring Files from a PC to Visual MEMOTYcccccoiiiviiiiiiniiiiiiiiisssse e VMT-34

LCD Pattern DISPLAYccccuiiiiiiiiiiiieiiiiiieiceciecee et VMT—-40

LCD Character Pattern DISPLAYc.cvreeeuerrurerieeierriiiieretnirieeietstseseeesereesesesesessesestaesessestaesesssnescsesessssestassessesesssesessens VMT-44

Counter That Uses Base Timer INTEITUPLSc.ovcuicuiciricieicieicieieieitieicie ettt ssessesese s sssesssencaes VMT-50

Button Press Detection ... s VMT-58

UsIng the PWM SOUNA SOULCEvuvieiiiiiiiiiiciicie ettt VMT-64

Interrupt Using TImeT Oc.coiiiiiiiiiec sttt es VMT-66

Serial Communications (SENAING SIAE)ccwueuiuiuriueiriucirieiriciriei ettt saeaes VMT-72

Serial Communications (RECEIVING SIAE)cucueurireiueuerrinieeieiririieieiniceeeretnieeetessesestiese e sessesesebesessesessaesesnescacaes VMT-80

General-purpose Serial DITVET ... VMT-88

Reading and Writing FIash MEMOTYccccoiuiiiiiiiiniiciciicic e saes VMT-102

Low Battery Detection and Saving Dataccccccevuiiiiiiiriniiiiiiiiiiiccireseeeesse e VMT-111

Dreamcast VMU Specificationsc:ccccecnus=sa= VMU=

Tableof Contents i i VMU-iii
VMU Specifications.o i VMU-1
OVEIVIEW .ttt ettt ettt sttt ettt et s et bt b et st b e s st b et b e e b e e b e e bt st esenae st st eneseenenesreneene VMU-1
VIMU OVEIVIEW ...oueiinitiieiirieiirtetnteetstetetetese ettt st st se e se b se e s s s st st s et ese e se e se e sesaesesnenenne VMU-1
VMU CONFIGUIATION ..cviviiiiiiiiiieieieiciccieieieieeetee ettt e VMU-2
VMU FUNCHONS ...ttt et saen et VMU—+4
MO SELLINGSvvviiiiiiiiiicc ettt VMU-7
File ManagemEItc.ccciuiuiiiiiieiiicieieieieeetete ettt ettt et e nene VMU-9
MaNagemMENt ATEAcccuvuiuiuiiiiiiiiiiicc s VMU-10
DAtA ATA ..ttt ettt s ettt a et b et n e ne e enen VMU-10
RESEIVEA ATEA ..ottt ettt ettt sttt n st s et n et b e ne e enennenen VMU-10
LCD DESPIAY ettt bbb VMU-11
XIRAM ettt b ettt b bttt bttt b Rttt b btk k ettt h ettt b e st bebe et et senen VMU-11
SCIEEN MO ...ttt ettt ettt ettt b ettt b et bbbt e st be st et et b et ebenteben VMU-11
TCOMIS ettt ettt sb st b ettt ettt ettt et s a e bt s ae bbb e e e VMU-12
Screen ConfigUIationccoiiiiiiiiicci s VMU-12
LCD CRaTaCteriSHICS ..veueueueveueuereueieteiereueiesesesesesesesetesesesssasesesesesesssesesasesssssesesssssssssssesssssssssesensnsasssnsssnsnsasasasns VMU-12

IMISCEILATICOUS ...ttt ettt e ettt e et e et e e s et e e e saaeesesaeeesseesssaaeesanseeesnseessssseesanseeesnseesssseesasseeans VMU-12

| EDTCaib 8 =Y o) (S0 51 (N0 6V a T=X (o) s TSN VMU-13

Downloading an Executable File ... VMU-13
FALE SZE .ottt ettt ettt et e e e bt ettt e et e eate e et e e bt e atteaaeseteeeaneeteeaaeeereeeneean VMU-13
o 101 03 40161 b s <IN VMU-13
INEEITUPLS oo s VMU-14
N LY SRR VMU-14
Save Processing During Executable File Operations ... VMU-14
J N Lo 3 o <) O O ORI VMU-14
(@) 0 0a e RETaNTar=X)0 130 210 0 L To) o WRRU R VMU-15
Maple Bus Protoco] ... s VMU-15
Synchronous Serial COMMUINICAIONSvuevimiurimieeiiieiiieireieireiesseeeisese sttt eseae e sese s sseaesseaenns VMU-15
(@11 Yl 0 30 H'a Tt T) o NPT VMU-16
SEHHINEGS oot VMU-16
AN BV o0 o B T o Ul 0 o) o NS VMU-17
bo] I 20 20 Sl 2y B3 Vet To) s EOUUUU U TSRS VMU-18
SLEEP OPEIationc.cccoviiiiiiiiiiiiiiiiiiic st VMU-18
530 U ¢ o) o 1< SRR E TR PPN VMU-19
BattOIIES .oeveeeeeeee ettt et e et e et e et e et e e e e et e e ee—aeeeat e e et eteea—eeeaateeeateteea—eeeareeeataeeenareeeatreeennreeeanrens VMU-20
BatteT Life ..o VMU-20
Processing When Battery Power Is Exhaustedccoccvieiniiiniiinicnicnccececieceeeeeee e VMU-20
Battery RePlacementcccociuiiiiiiiiiiiiiiiicccccc e VMU-20
POSESCIIPL ..ttt VMU-20

Visual NMiemory Unit (VMU) Hardware Mlanual VNID-i

TableofContents................o i VMD-iii
Visual Memory Unit Overviewc.cnniiiiiiiiiiiiiiiiiiiinennnannns VMD-1
VMU SPECIfICAtIONSouviiiiiiiiiiiiiii s VMD-2
VMU FUNCHONS oottt a e s a s bbb a bbb bbb b ns VMD-6
File MAanaEIMENtc.cccuiiiiiiiiiieeceeeeee et nene VMD-7
Liquid-Crystal DISPIac.cccoceuiuimiiieeieieieceieeeeeteieeie e ese et e e nene VMD-7
Starting VMU appliCatiOnsc.c.cccuceueueuiuiemeieieieeiceieieeeere et sese s sesesese e sesesesesesesenesenens VMD-7
Data trANSLET ... e VMD-7
(G Lo o) TR VMD-7
BUZZET e VMD-8
Operation MOAe SWItCRINGccuviciiiiriciriciriciececece ettt VMD-8
Integrated Character fONLccvcuiciniciriciricircecece ettt ettt VMD-8
IMOAE SELLING ...t VMD-9
SYSLEIM MOAE ... VMD-9
GAIMNE TNOAE ..ttt ettt ettt et s bbb et et b et e b et et bt b e e bt e b e st e st naene VMD-9
FILE TNOME .ttt ettt ettt bbb be e VMD-10
CIOCK TNOAE ittt ettt ettt bbbt et b bbbt b et bt e bt e b e ebe e VMD-10
File Mana@emMEItc.cccoeuiiiuiuiiiiiiiieiciceeeteeeeeie et e e neee VMD-11
Flash memory management areac.cceeeeeeuriernicunicunicrnieieieieeesesesessese s et seessssessesesesscsesesens VMD-11
Data Ar€accvoviiiiiiiiiiii s VMD-13

T AL <re B=V 4 <L NSRSt VMD-13

LCD DISPLAY ...ttt et VMD-14

XRAM Lot VMD-14
IMAGE MOME ... e VMD-14
JEOMU ettt st n et n et n e ne e enen VMD-14
Image CONfIGUIALIONc.c.ciuiiiiiiiiiiiiiiccce e VMD-14
LCD CharacteriSHICS .eeueueeueueereriieeteirineeeetetseeaeee ettt easae s s eese st e e sae et s et aeses et eaeaeses et seaeasseseseasasaes VMD-15
Other IMPOTTANE POINESvuvieiieiecieieieiieeieeiee ettt sttt seeans VMD-15
Starting an Executable File ... VMD-16
Writing applications for the VMU ..o VMD-16
Transferring an executable file ... VMD-16
EXECULADIE fI1€ SIZE ...cueviuiiiieieici ettt ettt bttt nn VMD-16
OS programs usable by applications ..o VMD-16
RAM bbb VMD-17
Saving application data ... s VMD-17
AULO POWET-OFf ..o VMD-18
Communication FUNCHONS ...t VMD-19
Maple DUS PIOLOCOLviiiiiiicicicee e VMD-19
SyNChronous Serial trANSIETccoieiiueiieiieiicreie ettt senans VMD-19
ClOCK FUNCHON ..o s VMD-20
AJAIm FUNCHON. ..ottt VMD-21
S1EEP FUNCHOT w..voiiiieet ettt bbb bbbt s VMD-22
BULEOIIS oottt a e e e VMD-23
Batteries ..oceoeeieeiie bbbt VMD-24
BatteTy 1ife ...c.ovoviiiiii e VMD-25
Battery statts MONItOTINGcoviviiiiiiiiiiiiic s VMD-25
Battery replacement ... e VMD-25
CPUFeatures.t s i e VMD-27
Differences to Conventional CPUS ... VMD-28
SPOCIHICATIONS ..eoveiieet ettt VMD-29
System BlOCK dIAGTAMc.c.cuiuiiiiiiiiiiiiiiicccece ettt VMD-33
Internal System Configuration................... ... VMD-35
IMEIMOTY SPACE .o.veviieieiitteecte ettt b e a bbb bbb bbbttt VMD-35
Program COUNLET (PC)c.cciieiiieiieinieiieieicieectseese ettt sttt seaenns VMD-36
ROM SPACE ...ttt b e bbb bbbttt VMD-38
RAM SPACE ...t VMD-38
Indirect Address ReZISTEIS ..ot VMD-39
Special function registers (SFR)ccccoviiiiiuiiiiciicii s VMD-40
FIASH MEIMOTY ...ttt et VMD-43
ACCUIMUIATOT <.ttt sttt et et e st e a e e st e ae e bt e b e e ae st e b et et et et e s entenbententententeneenteneenesaeebesseene VMD-43
B Register, C REGISOT ..ot e VMD-43
Program Stattis WOId (PSWW)ccceuiieircceiriceeerceiere et sseseesae e st seasessas s eseasaenensenis VMD-44
SHACK POINEET ...ttt VMD-46
Table Reference Register (TRR)cccoceeueurerierierienieerenriieiereeieeeiesseseeeseseesesesesessesesssesesseseaesesessesesesessesesssessssessacses VMD-47
CHANGE INSLIUCHON .o s VMD-48
FOTMAL <ot VMD-48
OPEIALION. ...t VMD-48

SaMPIE PIOZIAIMN ..ottt bbb bbb VMD-48

Peripheral System Configuration, VMD-49

| L Y < v TR VMD—49
o3 A OO VMD-50
03 & SR TSRO VMD-54
POTE 7 oottt ettt ettt ettt ettt ettt et e ettt eateteeat et e ea e et e et e teeateatseateettenteete et e eateteerteteeateersentees VMD-56
TIMET / COUNLET 0 (TO) oottt ettt et et et et et s e e e e e ssesseesessessensensentensententsntensesesseeseasessesseesensessessensensensan VMD-58
FUNCHONS ..ttt e ettt e e tr e e s tae e e ttee e ataeesasaeaasssaeeassaaesssasaassaeeassasessssaaanssaennnsns VMD-58
Circuit CONFIGUIATIONcuiuiuiiiiiiiiiiicceeecce e e VMD-59
Related REZISTETScucuuuiiiiiiiiiiiiiicicciceeecee et e VMD-60
Circuit Configuration and Operation Principles ... VMD-69
THMET T (TL) oottt ettt ettt e et e et et e sae e s e s e sa et e st et e st ensententensensensensensenesaeessesessessessensensessensensansan VMD-76
FUNGCHONS .ottt ee et e e e e e e e e aaeeeeaaeeeetaeeeeaseeeeseeeetsseeesseeeesseeeesseeeenseeeennes VMD-76
Circuit CONfIGUIAtIONc.ouiiiiiiiiiiiiiiiii e VMD-77
Related REGISTETSc.ccuiiiiiiiiiiiiiiiiiiicici e VMD-78
Circuit Configuration and Operation Principles ... VMD-82
BaSE TIIMET ...veiieeiieeeee et et e et e e et e e et e e e tteeeeebaee e taeaesseeeassaeaassasaassseearssaeasssssaanssasarssesessseeeasssesasseaanssaeansens VMD-9%4
FUNCHONS ..ttt e ettt e e ta e e e tae e e tbee e ataeesasaeaasssaseassasesssaeaasseeeassasessssaasssseenassns VMD-94
Circuit CONFIGUIATION.cuiuiiiuiiiiiiiiiiecececce e e e VMD-95
Related REZISTETScucuuuiiiiiiiiiieiciiieicieceie e e e e VMD-96
USING the BASE TIIMIETceuvuuieiiincieiiieitieineicieicte ettt ettt ettt seescaeeae VMD-99
SETIAL INEEITACE ..ottt ettt et e et e et e et e e teeeaeeeteeeaseeeseeeaseeeteeenseeesesenseeesesenteeesseenteesaseenseensnas VMD-100
FUNCHONS QN FEATUTES ...ttt ettt et e et eae e e te e aeeeteseveeseeeaseensseeseeenseeseeeneas VMD-100
Circuit CONfigUIation ..ot VMD-102
Related REGISLEIScouiiuiiiiiicict s VMD-103
Serial Interface OPeTation ...t e VMD-109
Operation Mode SEtHNgGSccoeuiiiiiiiieicce s VMD-109
o T) W F=1 B0 =V a 1] (<) el (ool <SSR VMD-111
Serial Transfer TIMINEG ... VMD-113
LSB/MSB Switchable Start SEQUENCEc.cccuruiuriiiriiiiiciieicicieie it sas VMD-114
OVEITUIN DIEEECHION .ot ettt ee e e et e e eeaa e e eeaaeeeteeeeesseeeeaseeeeseseeenseseesseeeseeeens VMD-116
Transfer Bit Length CONtIolccccoiiiiiiiiiniiiici s VMD-117
SaMPIE PTOZIAIMNocuiiiiiicii et VMD-117
Dot MatrixX LCD CONTLOIIEToouvieiieeiietieeeeteeteete ettt ete et eteeete et eeteeeesaeeseeseessesssenseesseseessesseesseeseessesseenseessensesnes VMD-120
0T o ol n (o) o -SSR VMD-120
Display RAM (XRAM)coouriieieiiieiereeneteiesneeeeesessesteesessssesteesessestassessssestsssessentssaesesentassesessentscsessaens VMD-120
Display Control REGISLETSccuvvriririririririririeeeeerereer e nennen VMD-121
External Interrupt FUNCHONooiiiiiiiic e VMD-128
Circuit CONfigurationcooiiiiiiiiic s VMD-129
Related REGISLEIScouiiiuiiiiiicici e VMD-129
Port Interrupt FUNCHONScovviiiiiiiiiiiiii s VMD-135
0T o ol n (o) o NURU RS USOTRN VMD-135
Circuit CONFIGUIATION.cuiuiuiuiiiiiiiiiecccecccee e e VMD-135
Related REGISTETSc.cucuuiuiiiiiiiiiiiiciccciecceee e VMD-136
Operation Description ... s VMD-137
SEALE TTANSIHION Loiutiiiiiiitii ittt ettt et eetr e e teeeae e beeebeebeesebeesaessseebeessssenseesasaensesenbeessseenseesssessaensnes VMD-137
VIMU WOTK RAM ..ottt ettt ettt ettt ettt et ett et s eatetssaseaseateasensasssenteessensesssenseessenssessenssensenssensesssennesns VMD-139
Work RAM Control REGISTETSccocuiiiiiiiiiieiiicicie e VMD-139
Accessing WOrk RAM.ooiiiiiic ettt VMD-140
Precautions for Using Work RAM Address Register ... VMD-140
FLASH MIEIMOTY ...ttt ettt sneaes VMD-142
Features and FUNCHONSccooiiiieieieeeceeeee ettt ettt ettt e v et eveete b e eteeereesseeseesseessensesasenseensenseensensean VMD-142

Accessing Program/Data Area of Flash MemOTYc.ccccvvcunieinicnicnienicnceeeeeeeeeenseeesseeeneeens VMD-142

Control FUNCHIONS. . . oottt it ittt ettt et e as e as e ensnnennensnnsnnns VMD-143

Interrupt FUNCHONS ...o.oiiiiiiii e s VMD-143
INtEITUPE TYPES o VMD-144
Interrupt Function OPeration ... VMD-145
Circuit CONFIGUIAtION ..o VMD-146
Related REGISTETSc.ccuiuiiiiiiiiiiiiiiiiccc e VMD-147
Interrupt Priority RaNKINg ... VMD-150

System Clock GENETAtIONcceviiiiiiiiiiiiiiiiii e VMD-151
Features and FUNCHONScoiiiiiiiiiiiicc e VMD-153
Circuit CONfiGUIAtiONccovuiiiiiiiiiiiiii e VMD-154
Related REGISLETSc.ccciiiiiiiiiiiiiiciiii e VMD-156
System Clock Operation MOde ..o VMD-159

S1EEP FUNCHON ..ottt VMD-161
Related REGISTETSc.ccuiuiiiiiiiiiiiiiiicccccc e VMD-162
Standby Operation SLAtUSccccciiiiiiiiii e VMD-163
HALT MOGE .ottt st VMD-164

Hardware Reset FUNCHONcccooiiiiiiiiiiiiiiii s VMD-165
External Reset Pin FUNCHONcooviiimiiiiiiiiic e VMD-166
Hardware Status During a Reset ... VMD-167

Programsin ROM. i i i i i i ittt it eannnnnnns VMD-171

SYStEM PTOZIAIMNS ...ovviiiiiiiiiicc s VMD-172

O PIOZIAINS ...ovviiiiiiiiiiecicc ettt ea b VMD-173

HEAAETS ..ot VMD-174

Memory Space ..o e VMD-175

SystemBIOS Functions. e e VMD-177

Subroutine Call Procedure. ... VMD-179

Processing Contents Of Labels ... s VMD-180

Interaction Between System BIOS and AppLicationcccccccccuiiiiriiiiiiinininiiiiicceccceeeeias VMD-181

Application Shutdown Procedure When MODE Button is Pressed. VMD-183

Processing Contents Of Labels ... s VMD-184

Interaction Between System BIOS and AppLicationcccccccciiiiviiiiiiiiniiiniiiiiiccecceeees VMD-185

VMU Initializationcot ittt e i e ettt e e asasenensnsnsnnnnns VMD-187

Subroutine ReferencCe.t i e e e e e e VMD-189

Flash Memory Access FUNCHONSc.ccoiuiiiiiiciiiiiciccic s VMD-189
Subroutine Use Precattions ... ss s sa s sans VMD-190
Flash MemMOIY FOULINEScuoiuiiiiiiiiiicic s VMD-192
fm_prd_ex(ORG 0120H) Flash memory page data readccccocvuriiiirinininiiciicicccccne VMD-192
fm_wrt_ex(ORG 0100H) Flash memory data Write ..o VMD-194
fm_vrf_ex(ORG 0110H) Flash memory page data Verifycccccoovvriinininiiciciinccicccecne VMD-195
ClOCK FUNCHON o.viviiiiiiiiiciiii s s e VMD-198
timer_eX Clock COUNt-UP tIMETc.cooiuiiiiiiiiicccccccee e VMD-198
Low Battery Voltage Auto Detectionccoiiiiiiiiiiiiiiinn... VMD-199
List of Defined Variablescooiinnnnn VMD-201
Sound QutputMethod oo VMD-203
TIMET T OULHNE ..o VMD-203
Timer 1 Block Configuration ... e VMD-203
Related REGISLETSccoviiiuiiiieiiciie e VMD-204
MOAE SEHHNGovrieeic s VMD-205
8 Bit CoUuNter MOAEcocviiiiiiiiiiii s VMD-206
Output Waveform and Parameter SEtHNEcccccoeiiiiiiiiiiiiicccceeceeeeeeeee e VMD-206
8 Bit Counter Mode SEtNGccceiiiiiiiiiiicccccee e VMD-207
Frequency CharacteriStiCSscoc et sans VMD-208
Output Frequency Table ... e VMD-208
Sample Program. i i e s VMD-211
Variable Bit Length Pulse Generator....................... ...t VMD-213
SymbolTable i e e VMD-217
VMU Mode Selection ..ottt VMD-221
Calculationof BatteryLife................oooiiiiii i s VMD-223
Methods for ENhancing Battery Lifeccccviieiriieiieieeiiciiciseesseiessesesssseaessesessesessesessesessesessssesssacsenaes VMD-223
Oscillator Circuit and Current CONSUMPLIONc.oiuiviiiiiiiiiiiiiic s VMD-224
Oscillation Control REGISLETcciiiiiiiiiiiiiiiicc e VMD-224
System Clock Division Ratio SEttng ... VMD-224
Oscillator Circuit SElECIONcciiiiiiiiiiiiiiic e VMD-224
OScillator CIrCUit STATT/ STOPcuuevureeeeerciiiiieicieireie ettt VMD-225
Calculating Battery Lifecccociiiiiiiiiccecceeccecee e VMD-225
Calculating Continuous Operating Timeccccccoiiiiiiiiiiiiiicceeeeeeeeeee s VMD-225
Calculating Battery Life in Days ..o VMD-226
Serial Communication Precautions.......................coocinnn VMD-229
Serial Communication Timing CRATtcceeueieuriieiieiiecect ettt naes VMD-229
Measures to Ensure Problem-Free Serial Transfer ... VMD-230
Mask Al INEEITUPLES ...uuvmiiiiiieieiiiiciccceeeeeete e e VMD-230

Set Maximuim SENA WALt TIINIEooveeiiieeie ettt eeee e et e e et e e ese e e seaaeesenseeeeneeeennneessnseeeens VMD-231

Visual Memory Unit (VMU) Programing ManualVMC-i

TableofContents............ ..o VMC—iii
£ 1 VMC-1
Executing the SEtup PIOGIAIMccccuiiuiiiiiiiiiicicii it VMC-1
Post-Installation OVETVIEWc.ccciiiiiiiiiiiiiiiiiiiicceee e VMC-7
Setting Environment Variables i i VMC-9
Environment Variables for the Development TOOLSccccceiiiriiniiiciciiiniieicicicieee e sseeesens VMC-9

Environment Variable Settings ... VMC-10
Specifying FilesforAssembly............ VMC-11
Specifying File INAIMESc.cccciiiiiiiiiiiiiiccc e VMC-11
Specifying Parameters on the Command LiNecccoceieiiiniiiiririiininiecccieicecieiesiesseesses e VMC-12
Specifying Parameters at the PrOMPLSccccciiiiiiiiiciiciciteitci ettt saesees VMC-13
Option Switches.o e VMC-15
Environment Variables and Reserved Word File.............................. VMC-17
Environment Variables ... s VMC-18
Reserved WOrd Filec.ccoiiiiiiiiiii e VMC-19
ErrOrS . VMC-21
WAATTHIIES ...t et VMC-22
INON-Fatal EITOTS ..o VMC-25
Fatal EITOTS ..ooiiiiiiic bbb bbb bbb bbb s VMC-31
ListingFormat. i i i ittt VMC-35
Specifying FilesforLinking............ VMC-39
Specifying File INAIMEScccciiiiiiiiiiiiiiiicccc e VMC—40
Specifying Parameters on the Command LiNecccocoieiiiiiiirieiniiniiciccicieeeeeiseessieeessss e VMC—41
Specifying Parameters at the PrOMPLScccciiiiiiiiiiciicicietei ettt sacsees VMC—42
Files Referenced DUring LINKINg ..o seese e s eses s sessseaes VMC-44

Option Switches. ... i ittt e VMC-45

a2 Q&) o116 o OO OO VMC-50
“A SF OPHIONS o VMC-51
“A 2O OPLIONS ettt ettt a ettt et VMC-52
SA FROPHONS o VMC-53
Errors ..o VMC-55
Fatal EITOTLS ..o VMC-55
INON-Fatal EITOTSccuviiiiiiiiii s VMC-56
Startingthe Program. i i ittt VMC-57
Specifying File NAMEScoccoiiiiiiicc et VMC-57
Specifying Parameters on the Command LiNec..cccoeurieuricuriiueiieeniieieeineeetseeetseesseesseesessesesesessesessesesseses VMC-58

OPHION e VMC-59

Examples of Command Line EXECUIONccceuiuiiiiiiiiiiiiiiicceeeeeeeeeeee e senene VMC-59
Operation with the PTOMPES ..o VMC-60

Prompt Line EXteNSIONc.oiuiiiiiiiiiiiiiiiictcitittctt ittt VMC-60

Default RESPONSEScuoviiiiiiiiicici ettt VMC-60
Error Messages VMC-61
Cross-Referenceo i VMC-63
Startingthe Program. i e e VMC-65
SPecifying File INAIMESc.c.ceiuiiiiiiiiieceeccccce et e VMC-66
Specifying Parameters ... VMC-67
OPHiON SPECIICALIONeviiiiiiiiiieiicecce e e e e nae VMC-68
Error MesSagesot VMC-69
Fatal EITOTS ...oviiiiiiicicii ettt h ettt n e VMC-69
Startingthe Program. i i e e e VMC-71
SPecifying File INAIMEScciiiiiiiiiicecececcceee e e e VMC-71
Specifying Parameters ... VMC-72
Error Messagesttt VMC-73

FAtAl EITOIS .vviinviiieeieeee ettt ettt ettt e e et e et e et e e eateeat e e sabeeatsesseseaseeasesaseaaeesateesatesnseessseanseesssesnseenssesnseesasesnns VMC-73

OvervieW Of MIAKE. e e ettt e ea s anennensnnens VMC-75

RUnning MAKEcoiiiii s bbbt VMC-76
Build Priority SEQUETIICEc.c.ciuiuiiiiiiiiiiiiiiiciccc e VMC-76
Command Line OPHiONSccoiiiiiiiiiiiii s VMC-76

IMAKEFILE SYIIEAX ..ovvviiiieieieieieieieteiete ettt ettt e be bbb bbbt se e s s s aeseaene VMC-78
GENETAION RULES ..ottt e e et e e et s s aa e e s sate e e saatessaaeessnseessasesssneeeesnseeesnes VMC-78
IMLACTOS .ttt s b h b a e a et ettt s ae s aesrenes VMC-80
| =T A=Y TSR VMC-81

IMPLCIE RULES ..o VM(C-82
Y 1 o 01 L 1 LR VMC-82

Assembler Syntax ...t e e e VMC-85

[72111 1<) 0 L 1< SRRSO VMC-85

Label and SYmDbOL NAMEScccciuiiiiiiiiiiiiciiiciieceee e VMC-86

(7070010 011 4 5= SRR VMC-86

OPETALOTS ..t a et VMC-86

AR T 0Ty Ll @0) a1o] =1 L o SRRSO VMC-87

CRaracter CONSLANS ...voveeeieeiieeieeteteeeete ettt et et eete st et et et et et entestsssesessesaessessessessesesessesensensensansensensensenesnssnsanes VMC-88

Character String CONSLANLEScccuiuiuiciciiieiicieititiie et VMC-89

SPECIial SYMDOIS ... VMC-89

Assembler Pseudoinstructionscciiiii ittt ittt i, VMC-91

LC86K Instruction Summary...............o ittt it VMC-147

INStruction SUMMATYccviiiiiiiiiiiii e VMC-147
ATTHRIMEIC INSEIUCHIONS vttt ettt et et et e ee e e e eteeseesesseeseesesteseneeneeaeeseasessesseesessessensensessensennens VMC-147
Logical INSIUCHONSc.ciiiiiiiiiiiiciiii s VMC-148
Data Transfer INSTITUCHONS ...oc.viiuiiieiiciieie ettt ettt ettt e st e e sat e st e e satesateebtesasesnseessseesssessseasanesnes VMC-148
JumMp INSEIUCHION .. VMC-148
Conditional Branch INStITUCHONS ..ee.veeveeeeeeeeieeeeeeeeeeereeeeeteeteeeeeteeeeetesteetesteseseeseereesessessessessessessessessessensens VMC-149
o101 0300 01 NaT<J) BuT<]u b Tei nto) o NNRRR RO VMC-149
Bit Manipulation INSrUCHONS ..o VMC-149
OET TNSTIUCHONS «evvvieeeeeeeteeteee et eeteeeeeteeteeteeteeteseseeseeseesesseeseesessesseesentensenteneeneeseesessessessessessensessessensensens VMC-149
J\Y/ X0 o 30 g 116 4 6 Lai 7o) o KU USSR RURRORSTURRRRRRRNY VMC-149
AAIESSING ..o VMC-149
Program Memory AddIesSing ... VMC-150
RAM and Special Function Register (SFR) Addressingcccoccuveeunininicinicinininicinicsiceincennens VMC-152

Instruction SetReferenceciiiiiiiiiiiiii ittt iain s VMC-155

ATTHRMEIC INSEIUCHONS ..ottt ettt ettt ettt e e st e et e s s e st et et et e st ensentensensenesnesaseseesesaessessessensensensenean VMC-156
Logical INSEIUCHONSc.cocviviiiiiiiiciiiiiciciciciccc st VMC-173
Data Transfer INSTIUCHONSc.voooviiiiieiieeie ettt et ete et e ete e et s eteeeseeeaeseeteeesesesesenseessessreeeneeenns VMC-186

JUMP INSEIUCHONS et VMC-197

Conditional Branch INSEITUCHONSc.ovvevuiieieeiieeeeieeeeet ettt ettt ettt st et et e st et et et ssseseesesasessesessessessessesesensons VMC-201

[S101 03 e 10NN a <l BT u b Ta nTo) o =R VMC-214

Bit Manipulation INSTIUCHONSc.ceuiiiiiiiiiiiiiicicic s VMC-219

MISCEIIANEOUS TNSEIUCHION ..ttt ettt ettt e e et e et e e sttesaae e et e sateeasessbeesssessseesseesnseaseesnseesanesnes VMC-222

Y/ F=Tei o 30 Ha T3 w8 Lot u [0 o KON SRRSO VMC-223

LC86K Instruction SetSummaryttt VMC-225

Assembler PseudoinstruCtions.oviiiitir it it i et VMC-227

Visual Memory Unit (VMU) VMU-BIOS SpecificationsVME-i

VMU-BIOS Specificationso VME-1
OULLINE .ottt VME-1
VIMU OULINE ...ttt e bbb aenst s VME-2
System-BIOS OULINEc.cuiuimimiiiiiiiieceece e VME-2
IMEIMOTY SPACE «...viviieieieciiete ettt bbb bbb bbb bbb bbbttt VME-3
System BIOS FUNCHONScooiiiiiiiiiiiiiiiiici s s VME-5
System BIOS Data and Memory ALIOCAIONc.cvviuiiiiiicicieecee et VME-6
Program LayOuLl ... s VME-6
Subroutine Call FIOWcoiiiiiiiiiiiiiic et VME-7
Returning From User Program to Mode Selection Screen ... VME-9
VMU INitialiZationcovciiiii e VME-10
SUbTouting DESCIIPTION.vviiiiiiiiiciccccecc e VME-12
Flash Memory Acess FUNCHONSceuiueiiieiieeiieiieieeieeieicie et saesessesessesesseaens VME-12
CloCk FUNCHON ..ot VME-19
Automatic low battery detection fUNCHONc.oooiiiiiii VME-20
Automatic low battery detection flag ..o VME-20

Visual NMiemory Unit (VMU)
Sound Development Specifications. - . s s s c o= VMA-I

TableofContents.................co i VMA-iii
VMU Sound Development Specifications...................... ... VMA-1
VMU Sound Output Hardware OUtlNeccouoviiiiiiiii e VMA-1
Sound OUtPut PIINCIPIE ... et sne VMA-2
TImMer 1 OULHNE ...ovieiiiiii s VMA-2
8-Bit COUNET MOAE ...ttt VMA-5
Table of Available Output FIEQUENCIEScccccuiuiuiiiiiiiiiiiiiceiccccieeeeieee e nenes VMA-8
SAMPIE PTOZTAIN ...ttt bbbt a s VMA-13

Visual Memory Unit (VMU) Simulator Manual VNMB-i

TableofContents................oo i VMB-iii
OVeIVIBW . ..o VMB-1
FOATULES .e.vivtttttttt ettt VMB-1
Visual Memory Simulator Operating ENvironmentccooiiiiiiiceccc s VMB-2
Checking Operation on Actual Visual Memory Hardwarecoccecurcuricinrceeieeieeenneeneienseesseesesesennes VMB-3

Notes Concerning Startup for the First TIMEccccooviiiiiiiiiiiniiciec s VMB—+4

Implemented Devices......... ...ttt e e VMB-5

VATTUAL CPU .ottt VMB-5
A0 T OO OO VMB-6
LCD CONtroller (LCDIC) ..ouiiiuiieeieeeeeeteeeetetetet ettt te e ete et e et et st ts et essete s etessetessetessetassesessessetessesessesensesannas VMB-6
S o T Y B B Ty e e s (o) () TR VMB-7
TIINET oot VMB-7
INterrupt CONEIOLIET ...cooviiiiiiiiiiicic e snas VMB-7
T/ O POTS ettt ettt e e eeeeae et e et et et e st et et eseeaeeneeneesesaeeseesess et ees et et et et et et et et et et et eaeeneenenne VMB-7
External INput DEVICESc.c.ccuiiiiiiiiiiiiii e VMB-8
BasicOperation.............. ..o VMB-9
Starting Up the Visual MemMOTY SIMUIALOTc.c.cueuiuciiieiriicinieciricirieieeteeeieteie et ssese st ssesessesesesesnes VMB-9
Loading the SYStem BIOSc.cccviiiiiiieiiciicieieieicie ettt et VMB-10
Loading and Executing Applications ... s VMB-11
IMAP FIE oo VMB-12
DIag & DITOP .vveviiietetc ettt a ettt es VMB-12
Descriptions of Windowsand Panelsot VMB-13
MaAIN WINAOW ...t nne VMB-14
MEIIUS ..ot VMB-14
TOOIDAT ... VMB-17
CPU Register Display FUNCHONcccoviiiiiiiiiiiiriiiinnsr e VMB-18
EXecttion CONLIOLc.oouiiiiiiiiiiic e VMB-19
Disassembly FUNCHONc.cciiiiiiiiiiiiiic e VMB-20
Visual MemoTy IMAGEcceuiuiiiiiiiiiiiiiiiicccccc e VMB-21
StAtUus LamP oo VMB-21
Changing the Size of the Main WINAOWccocccuiiiiiiiniiiniicieceiicee et VMB-22
SYSEEM COMNSOLE ...t VMB-22
Memory Control WINAOW ... VMB-23
RAMAOD, RAMEAT ..ocviiiiiicci s VMB-24
FLASHAHD oo VMB-25
XRAM i VMB-26
SER .o VMB-27
VTRBE o s VMB-28
Break Control WINAOWc.cciiiiiiiiiiiic et VMB-29
Break by Breakpoint Address COMPATiSONcccciimiiiiiiiiiiiiiiiiiiiccceeceeeeecseeeaeaes VMB-29
Display When an Interrupt Is RECEIVEAcocueuiuiiiueiiciieciiciriciecisiciseeeseeie e seesenae VMB-32
Access Reference MOMILOTc.cccuiuiuiiiiiiiiiiiiiccee e VMB-33
Special Function Register Control WINAOW ... s VMB-34
CPU CONETOL ... VMB-35
LCD bbb VMB-35
INT CONIOL . e VMB-36
TIMET O o VMB-36
TIMET T oo VMB-37
STO s VMB-37
PORTT ot VMB-38
PORT3/7 ottt s VMB-38
EXternal INT ..o s VMB-39
VMU SPECIAL ...ttt VMB-40

LS T TSIl T 0 1 1) RSOOSR VMB-40

LCD SNapshot WINAOWccuiiiiiiiciricieciecietie sttt VMB—41

Description of Tool Bar BULLONScccciiiiiiiiiiiiiiicc e VMB-41
Display by STAD CRECKDOXc.vueuiuiiiiieiiieiiieiiieireie ettt saeaees VMB-42
IMIETIUS ..ottt a s ens VMB-42
Network Monitor WINAOW ..o VMB-43
TTACE PANE] ...t VMB-45
Hexadecimal INPut Padccoiiiiiiiiii s VMB-47
Environment Settings WINAOWccciiiiiiiiiiiiiiccce e VMB—49
SEHHINGS ...t VMB—49
WOTK SEEHINES ...t VMB-51
Networking. ... ittt VMB-55
Related Files........... ..o VMB-57
SYSEEIMN FILES ..ot VMB-58
APPLHCAION FIIES ... VMB-59

Warning Messagesoviiiiiiiiii i iiie i e VMB-61

Sega®@'Dreamcast

Visual Memory Unit (VMU)
Tutorial Manual

Sega®@'Dreamcast

Table of Contents

Application Development Procedure................ccoiiiiiiiiiiiii s, VMT-1
WIHNG SOUICE COAE ..ottt e e e VMT-1
Correcting GHEAD.ASM ... VMT-2
Assembly Without USING MAKEc..cccveueiiiinicinieieieieieeeseeeeeiesese st ssssessssesstaesssaessssesessesesesessesessesesseaes VMT-2
ASSEIMIDLY ...t e VMT-3
LINKITIG <ottt e VMT-3
Converting an EVA File Into a HEX FIleccccooiiiiiiiicccceccceceee s VMT—+4
Converting a HEX File to a BINary Filecccooiiccccceccccceceece s VMT-5
Creating @ MAKE FIleccoiiec e VMT-5
Creating the INfOrmation FOTKcccoiiiiiiiiiiicc s VMT-7
Transferring the Program to VISUal MEMOTYc.cccviueiiirieieiiieiieiieeieeeisteeisesessesessesessssessssesessesesesessesessesesseaes VMT-7
Interfacing between Visual Memory and Dreamcast........................... VMT-9
Names of Elements in the Startup SCIreen ... VMT-10
Memory Selection SCIEEM ..o VMT-10
File Management SCIEETLcccuiieiiiieieiiccte ettt VMT-11
Creating a VOIUME ICOMcoviiiiiiiiiiiii s VMT-13
Creating an Animated ICOMNcooioiiiii e VMT-15
Three File SEEUCTUTESc.cuiiiiiiiiciicic bbb VMT-15
INformation FOTKcccccoiiiiiiiiiiiiiiiii VMT-16
Visual Comment Data STrUCLUTE ... VMT-20

Game Name Sorting RUIEScouiiiiiiiiii e VMT-21

MemoryCard Utility.ooi it i ittt et e nnnas VMT-23

Memory Card Utility Preparation and Startipcccccccciiiiiiiiiicccccccceeccecceeseenns VMT-23
Requirements for TTANSLETcccccociiiiiiiiiiiiiccccc e VMT-23
Software Preparation ... e VMT-24
Memory Card ULty SLATtUPccccuiuiiiiiiiiiiccccccccc e VMT-26

Memory Card Utility OPerationc.ccccocceueeueueueueueceeueiereeeereseeseseseseseseseeseseesesesesesesesesesesesesesssssssssesessessesssens VMT-27
IMLAIN IVIEIIUL <.ttt ettt ettt st ettt b ettt e st e st e s st e s bt eaaesbeembe e bt e b e emtenbeeatenbeensenbeentenne VMT-27
Memory Selection MENU ..o s VMT-27
Command SEleCtiON METIULccueuerueuirieirieinieirictrtetetete ettt e ettt se st se st s b se e seneenen VMT-28
File Operations MEeNU ..ot VMT-31

Initializing VIiSUal MEIMOTYcccccoiuiiiiiiiiiiiiiiiiiicciccccee e VMT-33

Transferring Files from a PC to Visual MEMOTY ... VMT-34

LCD Pattern DISPLAYcccuiiiiiiiiiiiieiiieicicieieeec e VMT—40

LCD Character Pattern DISPIAYc.coccueurererieeieiriieciereiriteeietnesestieteeseseeesessesesesessssestessessesescsesessstscuesessetassessasescsesens VMT-44

Counter That Uses Base Timer INTEITUPLESc.vucuiiuriiurieieiiieicicieieistie ettt sens VMT-50

Button Press DeteCtion ... VMT-58

Using the PWM SOUNA SOUICEcucuiuiiiiiicieicieicicicict ettt VMT-64

Interrupt Using TIMET Oc.coviiiiiiiiiietcieee ettt ae e VMT-66

Serial Communications (SENAING SIAE)cccueuiueuiucirieiiciieiicirictre ettt VMT-72

Serial Communications (RECEIVING S1AE) ...cueveurireriuereiriiicieriiriieietriceietetreceetetseeetie e sseseseaesesseeseseseaescacsens VMT-80

General-purpose Serial DITVET ... VMT-88

Reading and Writing FIash MEMOTYcccccuiuiiiiciniiiiiieicieiiicict e VMT-102

Low Battery Detection and Saving Datac.ccccceiiiiiiiiiiiiiccecceeece s VMT-111

Sega@'Dreamcast

Application
Development Procedure

This chapter explains the application development procedure, from coding the program to checking the program
on an actual machine. This section assumes that the application specifications have already been established.

Writing Source Code

The following declarations must be made at the start of the program:

chip LC868700
World external
Public main

Extern _game_end

Because all Visual Memory applications will be stored in flash memory, "external” must be declared in the
"world" statement.

When an application is called from system BIOS, address 0000H in flash memory is called. Because "jump
main" is written in 0000H by GHEAD.ASMthe application provides the label "main" for entry into game

mode. Because "main" is referenced from GHEAD.ASMthe "public” declaration is used.

Conversely, when an application ends, it jumps to "_game_end" in GHEAD.ASWMso the "extern"

declaration is used to indicate that this label is external to the application.

When an application calls a flash memory-related BIOS or a clock-related BIOS, the "extern" declaration is

1

used to indicate that "fm_wrt_ex ", "fm_vrf_ex ", "fm_prd_ex ", etc., are external programs.

Next, the structure of the indirect address register for the data segment (DSEG) is defined. The entire data
segment is expanded in RAM. Because addresses 0000 to 000FH in RAM are indirect address registers, 16
bytes of RAM should be allocated for these registers, whether or not the application will use the indirect
address registers. The area in RAM that can be used by an application starts from address 0010H.

Reference: For details on indirect address registers, refer to the “Visual Memory Hardware Manual.”

VMT-1

Application Development Procedure

Start the code segment (CSEG) from an address higher than 0280H (org 280H). GHEAD.ASMises 0000H to 01FFH,
and the information fork uses 0200H to 027FH (minimum).

GHEAD.ASMontains interrupt vector definitions, and BIOS cal and return destinations. The information fork data
such as the application name and icon. The size of the information fork is variable because of choices that the
designer can make: the icon may or may not be animated, or one application's icon may be larger than another's.

If the information fork image is pre-determined, add the size of the information fork image to 0200H and start the
program from that address.

Reference: For details on the information fork, refer to Chapter 2, “Interfacing between Visual Memory
and Dreamcast.”

Correcting GHEAD.ASM

Once you have written the application source code, it is necessary to correct GHEAD.ASM
If the application uses interrupts, describe the vector table for the interrupts that are to be used in GHEAD.ASM

Even if interrupts are not to be used, it is still necessary to define an interrupt vector table. Also write the interrupt
handler so that it does nothing except execute "RETI".

Because the program jumps to the start (0000H) of GHEAD.ASME the user selects game mode, a jump instruction to
the main routine of the game should be written at the start of GHEAD.ASM

The processing that is to be performed for BIOS calls is described starting from address 100H. Do not change this
processing. Because the BIOS in ROM specifies addresses directly and then returns control to flash memory, BIOS
calls will not be made correctly if addresses change by even one byte.

When writing to flash memory in particular, it is necessary to use 1/6 RC for the system clock. Make this change
within the application program by calling fm_wrt_ex , fm_vrf_ex , fm_prd_ex , and then changing over to
crystal oscillation when control returns to the main program.

Note: When loading from flash memory, it does not matter if 1/6 or 1/12 RC is used.

Also be careful not to change the "org" instruction that specifies each BIOS start address.

Assembly Without Using MAKE

This section explains how to assemble and link the source code, and then build a file in a format that can be actually
executed in Visual Memory.

Caution: The Assembler and Linker use EMS. Before starting, display the MS-DOS prompt properties and enable
EMS memory usage in the "EMS Memory" group under the "Memory" tab.
EMS memory cannot be used when EMM386.EXEis embedded in CONFIG.SYS and the NOEMS
option is specified, so the NOEMS option must be removed.

VMT-2

Application Development Procedure

Assembly

Execute the "M86K" command from the MS-DOS command prompt to assemble the source code.

For example, if the source code file name is "TEST.ASM;, set the current drive and the current directory to the
directory where "TEST.ASM ' resides, and then perform the assembly process by executing the following command:

C>M86K TEST.ASM
SANYO (R) LC86K series Macro Assembler Version 4.0K
Copyright () SANYO Electric Co., Ltd. 1989-1995. All rights reserved.

Source file: TEST

Chip name: LC868700
ROM size: 60K bytes
RAM size: 512 bytes
XRAM size: 196 bytes

When assembly is completed, an object file with the extension ".OBJ" is created.
Assembling GHEAD.ASMn the same manner creates GHEAD.OBJ

If an error message similar to the following appears during the assembly process, a problem exists in the line
indicated by the line number in the message.

TEST.ASM(93): move #080h,b
** Error, syntax error near #
0 warning(s) and 1 error(s) were detected. Further execution aborted.

Correct the source code so that no warnings or errors are generated.

Reference: For details on the M86K assembler's warning messages and error messages, refer to “Visual Memory
Programmer's Manual.”

Caution: Except when incorporating source code equivalent to GHEAD.ASM into your own source code,
GHEAD.OB]J and the user program object file are both required. Note that interrupt vectors, interrupt
service routines, BIOS call programs, etc., are described in GHEAD.ASM, and are placed in addresses
below the user program by the Linker that is executed next.

Linking

After preparing an object file (created by the Assembler) and a GDUMMY .OBfile that indicates the addresses in
internal ROM where BIOS is written, use the Linker to create an EVA-format file.

Note: An EVA-format file is a file that uses special debugging hardware. Because the Visual Memory Simulator
is used in the development of applications for Visual Memory, think of the EVA file as a temporary file.

VMT-3

Visual Memory Unit (VMU) Tutorial Revision

Before executing the linker, make a note of the GDUMMY.OBpath. Then input the following command line to link
each of the object files.

D>L86K GHEAD.OBJ IFORK.OBJ TEST.OBJ -C=200 C:\VM_SDK\LC86K\OBJ\GDUMMY.OBJ,
TEST.EVA,,

SANYO (R) LC86K series Linkage Loader Version 6.00c
Copyright (c) SANYO Electric Co., Ltd. 1989-1997. All right reserved.

Pass1...

Pass2...

Pass 3 ...

Link process complete !!

TEST.EVA created
The option "-C=200" specifies the address in flash memory where the user program that is specified immediately
afterwards is to be placed.

If an error message is displayed, review GHEAD.ASMnd the user program. Check the labels that are used for BIOS
calls in particular.

Converting an EVA File Into a HEX File

The Linker combines all of the object files into a single file with the ".EVA" extension. The next step is to convert this
file into a file that can be loaded into Visual Memory or the Visual Memory Simulator. Input the following
command line.

D>E2H86K TEST.EVA
SANYO LC86000 Series EVA-file to HEX-file generator V1.21A
Copyright (C) SANYO Electric Co.,Ltd. 1992-1997

EVA file name: TEST.EVA
ROM data packed: FF(hex)
Chip name: LC868716

records: 03875
records: 04096

All ROM(64KB) block
All ROM(64KB) block

There are no option switches.

Module name: GHEAD External CSEG(In) 0000 — 0002 records: 00001
Module name: External CSEG(In) 0003 — 0004 records: 00001

Module name: External CSEG(In) 000B - 000C records: 00001
Module name: External CSEG(In) 0013-0014 records: 00001
Module name: External CSEG(In) 001B - 001C records: 00001
Module name: External CSEG(In) 0023 -0024 records: 00001
Module name: External CSEG(In) 002B - 002C records: 00001
Module name: External CSEG(In) 0033 -0034 records: 00001
Module name: External CSEG(In) 003B - 003C records: 00001
Module name: External CSEG(In) 0043 -0044 records: 00001
Module name: External CSEG(In) 004B — 0057 records: 00002
Module name: External CSEG(In) 0100 -0105 records: 00001
Module name: External CSEG(In) 0110-0115 records: 00001
Module name: External CSEG(In) 0120-0125 records: 00001
Module name: External CSEG(In) 0130-013B records: 00001

Module name: External CSEG(In) 01F0-01F4 records: 00001

Module name: IFORK External CSEG(In) 01F5-0474 records: 00041

Module name: TEST External CSEG(In) 0475-051C records: 00011

VMT-4

Application Development Procedure

Executing this command results in the creation of a file with the ".H00" extension and a file with the
".HEX" extension.

Extension Description

HOO This file can be loaded into the Visual Memory Simulator. The loading time is
reduced because only the code itself is saved.

HEX The 64K-byte image of bank 0 in flash memory is stored in this file. No matter
how small the program is, a 64K file is created. Whatever portion that is not
filled by the program is filled with "00H". This file can be loaded into the Visual
Memory Simulator, but it will not function properly.

Caution: Normally, only the HOO file is used.

Once the HOO file has been created, an operation check is performed in the Visual Memory Simulator. However,
because the Visual Memory Simulator does not have the same clock as the actual machine, a timing check is
not appropriate.

Divide the debugging phase so that the program logic is checked in the simulator and the timing and speed are
checked on the actual machine.

Reference: For details on the Visual Memory Simulator, refer to the “Visual Memory Simulator Guide.”

Converting a HEX File to a Binary File

This procedure uses H2BIN.EXE to convert an HOO file that was created by the E2H86K into a binary file
(extension ".BIN").

Input the following command line.
H2BIN TEST.HOO TEST.BIN

There are no option switches. The second parameter "TEST.BIN " may be omitted. If it is omitted, the extension
".BIN" is automatically used.

This procedure creates a file that can be loaded into Visual Memory on the actual machine.

Creating a MAKE File

If a MAKE file is created for the MAKE command, it is possible to perform the assembly, linking, and file format
conversion processes through batch processing.

If the dependence information, such as which files to insert in which commands and which files are output, is
described in the MAKE file and the MAKE command is executed, the command compares the time stamps of the
files that are to be inserted and are to be output, and then assembles and links only those files that have

been updated.

For details on the MAKE command, refer to the “Visual Memory Programmer’s Manual.”

Caution: Because the MAKE command is provided for a variety of development environments, when the
computer that you are using has multiple development environments installed, either change the
command retrieval path (the environment variable "PATH") or change the file name of the
MAKE command.

VMT-5

Visual Memory Unit (VMU) Tutorial Revision

The following file is an example of the type of MAKE file to create in order to MAKE the series of procedures
described up to this point. For this example, we will assume that file name is "TEST.MAK".

TARGET =test

OBJECTS = ifork.obj test.obj
HEADOBJ = ghead.obj

SYSOBJ = $(TOOL86)\obj\gdummy.obj

.asm.obyj:
m86k $*

$(TARGET).eva: $(HEADOBJ) $(OBJECTS)
186k $(HEADOBJ) $(SYSOBJ) $(OBJECTS) $(TARGET).eva,,,

$(TARGET).h00: $(TARGET).eva
e2h86k $(TARGET)

$(TARGET).hex: $(TARGET).h00
h2bin $(TARGET).h00

This MAKE file is built by specifying MAKE as shown below. This assembles and builds the source files that have
been updated.

Caution: Specify the "/F" option when executing the MAKE file. Input the command line in this format: "MAKE
/F <MAKE file name>".

D>MAKE /F TEST.MAK

SANYO LC86000 Series MAKE Utility Version 1.00A
Copyright (C) SANYO Electric Co.,Ltd. 1993-1994 All rights reserved.

m86k GHEAD

SANYO (R) LC86K series Macro Assembler Version 4.0K
Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.

Pass1...

Source file: GHEAD

Chip name: LC868700
ROM size: 60K bytes
RAM size: 512 bytes
XRAM size: 196 bytes
Pass?2.....

m86k IFORK

SANYO (R) LC86K series Macro Assembler Version 4.0K
Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.

(Subsequently, the Linker, E2H86K, and then H2BIN are executed and a binary file is created.)

VMT-6

Application Development Procedure

Creating the Information Fork

In the sample in the Visual Memory SDK, IFORK.ASM is created and then a binary file is created. It is also possible
to use a binary editor, etc., to fill the information fork of the binary file that was produced.

The information fork is filled with the icons and application names that are displayed on the Dreamcast file
management screen, the comments that are displayed in Visual Memory file mode, the game names (sort keys), and
comments that use larger icons.

Of these, the required items are VM comment data, GUI comment data, game names, the number of icons, visual
types, and icon information (for a minimum of one icon).

Refer to chapter on, “Interfacing between Visual Memory and Dreamcast,” while editing the information fork.

Transferring the Program to Visual Memory

Once editing of the information fork is complete, transfer the file to Visual Memory. The “Memory Card Utility”
that is provided in the Visual Memory SDK is used to transfer the program.

Caution: The Memory Card Utility is provided in ELF file format as a Dev.Box application. It is not a program
for general-purpose personal computers.

The following hardware and software is needed in order to transfer a program to Visual Memory:

1) An RS-232C cross cable

2) A communications program that runs under Windows

4) GD Workshop

)
)
3) A debugger, such as CodeScape
)
5) Dev.Box (Set 5.2X or later)

Note that items 1) and 2) are not provided in our SDK, and must be obtained separately.

Reference: For details on the transfer method, refer to chapter on, “Memory Card Utility.”

VMT-7

Visual Memory Unit (VMU) Tutorial Revision

VMT-8

Sega@'Dreamcast

Interfacing between Visual
Memory and Dreamcast

This chapter describes the interface between the Dreamcast startup screen with Visual Memory. This interface is
installed in boot ROM, and is deeply inter-related with the menu screen that is displayed when Dreamcast is
started up.

Following the explanation of the menu screen is a description of the data structure of the file that implements that
menu screen.

P 1.001.00
©'Dreamcast 1997/12/12 04132

Caution: The descriptions in this manual are based on boot ROM version 1.001. Some functions or names may be
different in future upgrades.

Note that the version number is not displayed in the upper right corner on the actual machine.

VMT-9

Interfacing between Visual Memory and Dreamcast

Names of Elements in the Startup Screen

After the opening animation that is displayed when the Dreamcast power is turned on, the screen shown on the
previous page is displayed. This screen is called the "Main Menu." The Main Menu is controlled and administered
by the boot ROM in Dreamcast.

Memory Selection Screen

If a file for which Visual Memory is displayed is selected from the Main Menu, the following screen appears.

This screen is called the "Memory Selection Screen.” As of November 30, 1998, the term "memory" refers to "Visual
Memory," but other storage media may be available in the future.

When there is more than one controller or memory module connected to Dreamcast or a controller, a list of these
devices is displayed.

Caution: Devices other than storage media, such as a voice recognition device, are not displayed.

When you look at the list, you will notice some icons that have an image of a monster in them, some that have an
image of an animal, and others that are empty. Unique icons can be assigned to each memory module. (One icon
per module.)

There are two types of icons: those that the end user uniquely assigns, and those that are displayed by writing a
special file in Visual Memory. The icon in the lower center indicates memory that has not been initialized.

Label Icons

Those icons that the end user uniquely assigns are called "label icons." when memory has been initialized,
the user can freely assign any of the 124 icons stored in boot ROM. In the case of Visual Memory, the same
icon that is displayed on the screen is also displayed on the LCD on the Visual Memory unit.

Note that when both a label icon and a volume icon (explained later) are assigned to one memory module,
the volume icon takes precedence and is displayed.

Reference: The pattern data for the icons in boot ROM can be read by using the boot ROM font function. For details
on the boot ROM font function, refer to the “Sega Library Manual Vol. 2.” For a list of labels, refer to the
Appendix, “List of Label Icons.”

Volume Icons

The monster icons are called "volume icons." Volume icons can be implemented by storing a file called
"ICONDATA_VMS"in Visual Memory. Accordingly, the end user cannot assign volume icons.

These icons are 32 x 32 graphic images that use 16 colors out of a possible 65,536 (ARGB4444). In the case
of Visual Memory, when the unit is connected to a Dreamcast controller, the same graphic as the volume

icon that is displayed on the screen is displayed on the LCD of the Visual Memory unit in monochrome. In
order to display volume icons, the file "ICONDATA_VMUmust be prepared and the Memory Card Utility
must be used to transfer that file into memory.

Reference: For details on how to transfer the volume icon file, refer to the Chapter on, “Memory Card Utility.”

VMT-10

Interfacing between Visual Memory and Dreamcast

File Management Screen

Once a memory module is selected from the Memory Selection screen, the following screen is displayed. This screen
is called the “File Management Screen.”

XH-N-F ZBATOF 528U TSRS,

This screen displays a list of the applications that are stored in the memory module that was selected, and a list of
the Dreamcast game save data.

When a file is selected, detailed information on that file is displayed on the bottom portion of the screen.

® Body Color

A single color can be assigned to a single memory module. This color can be specified when initializing the
memory. The end user can also change the color. Note that because the color information is stored within
Visual Memory, it cannot be changed through Dreamcast in real time.

@ Animated Icon

The 32 x 32 icons can be displayed with a graphic that uses 16 colors out of a possible 65,536. Data for up
to three patterns can be used to display animation.

One icon represents one file. When an icon is selected, the border flashes yellow and detailed information
on the selected file is displayed on the bottom portion of the screen. Application files are displayed with
green borders and data files are displayed with black borders.

Note:

When multiple files are selected by using the X button and the Y button, the GUI comments and the total
number of blocks for all of the selected files are displayed.

® GUI Comments

GUI comments can be displayed using normal-width letters numbers, symbols, and kana, and double-
width characters. The character string length is 32 bytes. The normal-width characters that can be displayed
are ASCII codes 20H to 7EH and 0A1H to ODFH. The double-width characters are the Shift JIS codes.

Note:

IS Level 2 characters are also supported. JIS X 0208-1983 is supported, so musical notes and other symbols
can also be displayed.

VMT-11

Visual Memory Unit (VMU) Tutorial Revision

@ File Names

Alist of the files that are stored in that memory module is displayed. The characters that are not shaded in
the following table can be used in file names.

Characters That Can Be Used in File Names

Note:

Lower-case letters may not be used.
Although a "-" can be input in the Memory Card Utility, do not use this character in file names. Such an
application will not be in conformance with the software creation standards.

® VM Comments

These are comments that are displayed in Visual Memory file mode. In addition to the characters that can
be used in file names, lower-case letters can also be used in VM commands.

® Save Time

The date and time at which a file was saved are displayed. This data cannot be changed from within
an application.

@ Number of Blocks Used

The file size is shown in blocks. Since one block is 512 bytes, in the case of Visual Memory (HKT-7000) a
maximum of 200 blocks can be used for data storage, and a maximum of 128 blocks can be used for the
game. This data cannot be changed from within an application.

VMT-12

Interfacing between Visual Memory and Dreamcast

Data Type

This indicates whether the file in question is an application or Dreamcast save data. This data cannot be
changed from within an application.

Caution: Changes are possible only when the Memory Card Utility was used.

® Visual Comments

A 72 x 56 graphic that uses up to 65,536 colors (ARGB4444) can be displayed. It is also possible to not
display visual comments.

Creating a Volume Icon

In order to display a volume icon on the Memory Selection Screen, create a file named ICONDATA.VMUwith the file
specifications described below.

Reference: In the Visual Memory SDK, samples are contained in the "Volumeicon" folder. The assembly source
code is also provided for reference.

Qo
38
3

OO Color icon paldte data {16 cofors

00co Color icon pateen data (32 % 32 dts)

VM Comment Data

This is filled with a 16-byte comment. This is displayed when ICONDATA.VMUs selected on the Visual
Memory File Management Screen or the Dreamcast File Management Screen.

Comments are displayed in Visual Memory file mode. See “File Management Screen” on page 11.for the
characters that can be used in a VMU comment. Fill any unused bytes with the space character (20H).

VMT-13

Visual Memory Unit (VMU) Tutorial Revision

Monochrome Icon Data Start Address

This specifies the starting address of pattern data for a monochrome icon as an offset address from the start
of the file.

Normally, this data is 00000020H. (20 00 00 00" in a memory dump.)

Caution:

Specify the data in Little Endian format. For details, see appendix.

Color Icon Data Start Address

This specifies the starting address of palette data for a color icon as an offset address from the start of the file.

Normally, this data is 000000A0H. ("A0 00 00 00" in a memory dump.)

Caution:

Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix,
"Little Endian Format."

Note that this offset address points to the starting address of the palette data for color icons, not the
pattern data.

Reserved Area

This area is reserved for future expansion. Fill this eight-byte area with "00".

Monochrome Icon Pattern Data

This data specifies the 32 x 32-dot monochrome volume icon that is displayed on the LCD of the Visual
Memory unit while the Memory Selection Screen or the File Management Screen is displayed.

This data is pattern data, starting from the upper right of the LCD and heading towards the lower left. One
byte contains the pattern data for eight dots. The MSB of the data is the left-hand bit, and the LSB is the
right-hand bit. Setting a bit to "1" causes the corresponding dot to be displayed as black (blue) on the LCD.

One line (32 dots) requires four bytes of data, so the 32-dot x 32-line pattern requires 128 bytes of
pattern data.

128 bytes of pattern dta intatal

Color Icon Palette Data
Color icons can be displayed with a 16-color graphic. Write the 16-color palette in this area with ARGB4444
palette data. Each palette data entry consists of two bytes.

A value from "0" to "0FH" can be specified for each of A, R, G, and B. Note that a value of "0" for A makes
the color transparent, and a value of "0OFH" makes the color opaque.

VMT-14

Interfacing between Visual Memory and Dreamcast

Color Icon Pattern Data

This is the pattern data for the icon that is displayed on the Memory Selection Screen or the File
Management Screen.

This data is specified with palette numbers, starting from the upper right and heading towards the lower
left. Four bits of data specify the palette number for one dot. The upper four bits are the palette number for
the right-hand dot, and the lower four bits are the palette number for the left-hand dot.

One line consists of 32 dots, which requires 16 bytes of data, so the 32-dot x 32-line pattern requires 512
bytes of pattern data.

Creating an Animated Icon

The data for animated icons and GUI comments that are displayed on the File Management Screen must be
included in the files themselves. Because there are three different file structures, this section explains the file types
and the file structures.

Three File Structures

There are three files stored in memory, and each has its own file structure.

ICONDATA_VMS Format

This is the structure that was described in the previous section. This file does not have an information fork.

Note:

For details, refer to ”"Section , ”Creating a Volume Icon”

Visual Memory Application Format

Files that can be executed in Visual Memory game mode must have the following file structure:

Address Contents

0000 Visual Memory header (equivalent to GHEAD.ASM)
0200 Information fork

XXXX Application code

VMT-15

Visual Memory Unit (VMU) Tutorial Revision

Data File Format

A file that stores game data for a Dreamcast application must have the following file structure:

Address Contents
0000 Information fork
0200 Game data

Information Fork

Files other than the "ICONDATA_VMUile have a section called an "information fork." This information is the colored
portion of a file dump displayed by the Memory Card Utility. All detailed file information is contained in this
information fork.

Caution: The data area for an animated icon is not displayed in color.

Note: Refer to the Visual Memory SDK sample “total”, since it includes an information fork for an animated icon
and visual comments.

The structure of the information fork is described below. Note that the addresses in the table are given as offset
addresses from the start of the information fork.

0 | 41 | +2 | 45 | <4 | +B | +& | 47 | +8 | +B | s | 48 | +C | +D | & | +F

G000 VM commert dza
oono GLE commert data
GO0
G050 Gamo nama (zor keyh
0040 | Nmbar o icons | Animation pecd] Wisusbype cRe Sove doto siee Raserad
G080 Fsarvod
9080 bcon pakite data (16 colrs)
aoro
oo lecn @1 pattern data (32 32 dats)
G0e0

|
G260
G20
0280 lenn 2 pattern data (32 < 32 dets)

i
G40
@470
() fcon #3 pattern data (32 < 32 dets)
0420

|
G
agnn
ogEn Visual comment {paicte and paltern datg)
e
XA

VM Comment Data

This contains a 16-byte comment. This comment is displayed when the file is selected on the Visual Memory
File Management Screen or the Dreamcast File Management Screen.

The comment is displayed in Visual Memory File Mode. The characters that are not shaded in the following
table can be used in VM comments. Note that any bytes that are not used should be filled with space
characters (20H).

VMT-16

Interfacing between Visual Memory and Dreamcast

Lower 4 bits

2.3 45

Upper 4 bits

(=]

|

6 7 8 0

|

m‘h L\I‘M

I o mm o o m »

W @, B M

N<xi<:4m::9\

GUI Comment Data

A B

[+
4;4
4;‘;4
:‘;

Characters That Can Be Used in VM Comments

This contains a 32-byte comment that is displayed on the File Management Screen. The comment is
displayed when the file is selected on the Dreamcast File Management Screen.

The normal-width characters that can be used are those that are not shaded in the following table. The
double-width characters are the Shift JIS codes; JIS Level 2 characters are also supported. JIS X 0208-1983 is
supported, so musical notes and other symbols can also be displayed.

Note that any bytes that are not used should be filled with space characters (20H).

Lower 4 bits

3.4 5
0 me 0@ | P[]
T}‘ vl A G a
L
2 "2 B R b
Y # 3. C S ¢
4 $ 4 DT d
5 % 5 E U e
9 6 & 6 F V. f
8
; 7.6 W
§ 8 H X
9ty
Jizj
KDk
< L ¥
= M 1 m
>N "
? °

78 9

@

I
E

How o

&

T

NERURE S R

W=

R]

~—
=

~
-

wip A% H 3 A N

E

S-S EACEE-SRTRE SR SR AR N RN

ERE- NIV R ARy

Normal-width Characters That Can Be Used in GUI Comments

VMT-17

Visual Memory Unit (VMU) Tutorial Revision

Game Name (Sort Key)

File names are sorted when they are listed on the Dreamcast File Management Screen. This area is used for
the sort key. 16 bytes of data are specified for this area; fill this area with unique character code display data.

Reference: For details on assigning game names and the unique code table, refer to

Section , “Game Name Sorting Rules”.

Number of Icons

For an animated icon, specify either "2" or "3" in this field. Specify "1" for a still-image (normal) icon.

The range of values that can be specified in this field is "1" to "3," so an animation pattern can consist of a
maximum of three patterns.

Caution:

Do not specify a value outside the range of "1" to "3". Operation is not guaranteed if "0" or a value of "4"
or more is specified.

Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix, "Little
Endian Format."

Animation Speed

This specifies the speed at which the icons are switched when using an animated icon. The range of values
that can be specified is from "1" to "65,535." If the specified value is "n," the animation patterns are switched
every n/30 seconds.

For example, if "1" is specified, the animation patterns are switched every 1/30 of a second. If "30" is
specified, the animation patterns are switched every second. If "65,535" is specified, the animation patterns
are switched roughly every 36 minutes.

When there are three animation patterns, they are displayed in the sequence1 - 2 —» 3 — 1 - ... If there are
two animation patterns, they are displayed alternately. If there is only one icon, this value is meaningless.

Caution:

Do not specify a value of "0." Operation is not guaranteed if "0" is specified.

Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix, "Little
Endian Format."

Visual Type

This specifies the type of the visual comment that is displayed in the lower right corner of the Dreamcast
File Management Screen. A 72 x 56-dot graphic can be displayed for a visual comment.

Caution:

Animation cannot be used for the visual comment. Also note that using a graphic with a lot of colors
will consume more memory.

Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix, "Little
Endian Format."

VMT-18

Interfacing between Visual Memory and Dreamcast

The specifiable values and the corresponding visual comment types, number of bytes required, and number of
blocks used are listed in the following table.

Specified value Visual comment type Number of bytes required | For data For palette Number of blocks used
0 None 0 0 0 0

1 Direct color (type A) 8064 8064 0 16

2 256-color graphic (type B) 4544 4032 512 9

3 16-color graphic (type C) 2048 2016 32 4

Reference: For details on visual comments, refer to section 2.3.3, “Visual Comment Data Structure.”

CRC

Write the CRC (error checking/ correction code) in this field.

When a file is saved by using the backup utility function "buMakeBackupFilelmage ()" from the Sega
Library, the CRC is calculated automatically, and that value is written in this field. Note that the CRC
applies only to the data portion, and not to the information fork.

Caution:

When a Visual Memory application is transferred by using the Memory Card Utility, there is no need
to write the CRC value or to perform a CRC check. In this case, fill this field with "00 00."

Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix,
"Little Endian Format."

Save Data Size

Specify the size of the data area (not including the information fork) in bytes.

Caution:

When a Visual Memory application is transferred by using the Memory Card Utility, there is no need
to write the data size. In this case, fill this field with "00 00."

Specify the data in Little Endian format. For details on Little Endian format, refer to the Appendix, "Little
Endian Format."

Reserved Area

This area is reserved for future expansion. Fill this 20-byte area with "00."

Icon Palette Data

This specifies the 16 colors of the palette that is used for the icon pattern that follows.
Specify the palette data in ARGB4444 format. Specify two bytes for each color.

A value from "0" to "0FH" can be specified for each of A, R, G, and B. Note that a value of "0" for A makes
the color transparent, and a value of "0FH" makes the color opaque.

This palette also is used for icons #2 and #3. Note that it is not possible to change the palette for each icon.

VMT-19

Visual Memory Unit (VMU) Tutorial Revision

Icon #n Pattern Data

This is the pattern data for a 32 x 32-dot, 16-color icon.

This data is specified with palette numbers, starting from the upper right and heading towards the lower
left. Four bits of data specify the palette number for one dot. The upper four bits are the palette number for
the right-hand dot, and the lower four bits are the palette number for the left-hand dot.

One line consists of 32 dots, which requires 16 bytes of data, so the 32-dot x 32-line pattern requires 512 bytes
of pattern data.

If animation is not to be used, create pattern data for one pattern. If animation is to be used, provide pattern
data for up to three patterns.

Visual Comment Data

When using a visual comment (when a value other than "0" was specified for the visual type), specify the
data in this field. The visual comment data is the data for a 72 x 56-dot graphic.

Visual Comment Data Structure

The visual types and the visual comment data structures are described below.

Direct Color (Type A)

This type has no palette data. Specify the palette data using ARGB4444 values. Two bytes of data are used
for one dot.

+0 21 +2 3 +4 +5 +5 <7 +i +5 A +0 +G D | 4 +
OOCHN A FIBs0s s 0[5 | A FODORE dew & (504 | A RIIDAAE deake [} - A REBALA a2 T
OO G2 PN e 1§)

170 B - T - . - _ Tinmie wvor i

256-color Graphic (Type B)

This has palette data for 256 colors. The palette colors are specified in ARGB4444. The pattern data is
specified by specifying a palette number (one byte) for each dot.

+0 21 +2 3 +4 +5 +5 <7 + +5 A +0 +G D | 4 F
000 Pakied Palatie 1 - - . . - Paleze 7

Figtn| Pdem | Paods

1100

16-color Graphic (Type C)

This has palette data for 16 colors. The palette colors are specified in ARGB4444.

The pattern data is specified with four bits for each dot. One byte contains data for two dots; the upper four
bits specify the palette number for the left-hand dot, and the lower four bits specify the palette number for
the right-hand dot.

VMT-20

Interfacing between Visual Memory and Dreamcast

Game Name Sorting Rules

The game name (sort key) in the information fork is used to determine the order in which icons are displayed on
the Dreamcast File Management Screen. Therefore, it is necessary to create a game naming scheme that will cause
titles of games that are a series of sequels to be displayed in order.

Example:
“DreamPassport01” DreamPassport02”

VMT-21

Visual Memory Unit (VMU) Tutorial Revision

VMT-22

Sega@'Dreamcast

Memory Card Utility

This chapter explains how to use the Memory Card Utility program, which is used to transfer files between a PC
and the Dev.Box, and between the Dev.Box and Visual Memory.

Memory Card Utility Preparation and Startup

The Memory Card Utility is a Dreamcast program. A file called "mem_util.elf " is provided in the "utility" folder
in the folder where the Visual Memory SDK was installed. Executing this program requires a program that is
included in the Dreamcast SDK, such as CodeScape or GD Workshop.

Requirements for Transfer

The Memory Card Utility exchanges files with a PC through an RS-232C serial interface. Therefore, the following
items are required in addition to the SDK provided by Sega:

1) An RS-232C reverse cable

2) A communications program that runs under Windows

Item 1) can be purchased at most computer stores. The cable should be connected between the RS-232C interface on
the PC and the connector labeled "SERIAL" on the back of the Dev.Box.

RS-232C Serial Interface Connector on the Computer

SERIAL Connector on the Dev.Box

Caution: Be certain to use a reverse cable. A straight cable will not work.

VMT-23

Memory Card Utility

“HyperTerminal,” which is provided with Windows, suffices for item 2). If you use other communications software,
it must support file transfers using the Xmodem protocol.

If you do not have HyperTerminal in your Windows environment, you can install it by following this procedure:

1) In the "Control Panel" window, double-click on the "Add /Remove Programs" icon.
2) Click the "Windows Setup" tab.

3) Double click "Communications".

4) Check the box next to "HyperTerminal."

HyperTerminal will now be installed in your system.

Note: The version of HyperTerminal that is provided with Windows 98 may not be able to recognize path and file
names correctly if they contain Kanji characters, or a file with corrupted characters may be stored in the next
higher folder. In this case, we recommend either not using file names that contain Kanji characters, or else
using another communications program.

Also prepare the following items, which are included in Sega's SDK:

1) Dev.Box (Set 5.2X or higher)
2) CodeScape

3) GD Workshop

4) Visual Memory

5) Dreamcast controller

For details on connections and setup, refer to the "Setup Guide." The explanations in this manual will assume that
setup has been completed properly.

Caution: The Memory Card Utility will not run on a Set 5.1X or earlier Dev.Box.

Software Preparation

Once the PC has been connected to the Dev.Box through the RS-232C interface and software setup has been
completed, it is necessary to set the properties, etc.

Communications Protocol Setup

This setting specifies which communications profile is to be used for transferring data between the PC and
the Dev.Box.

Make this setting in the application that you will be using. Refer to the manual for that application for
details on making that setting.

Caution: When the Memory Card Utility is started up, a startup message is displayed on the communications
screen. If this message is not displayed correctly, recheck the communications protocol and make sure
that the interface to which the cross cable is connected is selected.

VMT-24

Memory Card Utility

Setting Item Setting
Communications speed 38,400bps
Data length 8 bits

Stop bit length 1 bit

Parity checking None

Flow control None

Kanji codes Shift JIS codes

When using HyperTerminal, set the dialog boxes as shown below.

Caution: Flow control must be set to "None." Do not specify "Xon/off" or hardware control.

If there are multiple RS-232C interfaces, select the interface to which the cross cable is connected.

GD Workshop Setup

At startup, the Memory Card Utility detects the door on the GD-ROM drive being closed (i.e., that a
GD-ROM is mounted). Therefore, it is necessary to create a dummy GD-ROM to emulate the door
being closed.

Reference: For details on the operation of GD Workshop, refer to the "GD Workshop Manual."

Create a dummy GD-ROM according to the procedure described below.

1) Start up GD Workshop.
2) Create a new project. For this example, we will create a project named "DoorClose."

3) Drag files suitable for three tracks.
Since emulation is not possible if the file is too small, copy an execution file for a large application, etc.
For example, drag the warning sound file that is supplied with the Dreamcast SDK to an audio track.

4) Save the project.
Confirm that the dummy GD-ROM was created properly.
5) Start up DA Checker and restart the Dev.Box in OS mode.
6) Start up GD Workshop, and load the project named "DoorClose."
7) Select "Sound" from the Dreamcast main menu.
8) In GD Workshop, change the GD-ROM to emulation mode.

9) Press the "Door Close/Open" button to close the GD-ROM door and mount the GD-ROM.
If the dummy GD-ROM has been created properly, the CD-ROM graphic will appear in the Sound
menu. If the "CD-ROM" is played back, the warning sound should be heard.

In the future, dummy GD-ROM emulation can be initiated simply by loading the project.

VMT-25

Visual Memory Unit (VMU) Tutorial Revision

Mem

ory Card Utility Startup

This section describes how to execute the Memory Card Utility using CodeScape.

1) Before starting up the Memory Card Utility, start up GD Workshop.
Once GD Workshop has been started up, load the "DoorClose" project and start initialization. Press the
"Door Close/Open" button to mount the GD-ROM.

2) Start up the communications software. Confirm the settings for the communications protocol, the
interface number, etc.

3) Start up CodeScape.
4) Select "Load Program File..." from the "File" menu.

5) Click the [Browse] button and select "mem.util.elf".
The file "mem.util.elf" in the "utility" folder in the folder where the Visual Memory SDK was installed.

6) Select the "Load Binary Only" option.

7) Check the "Enable Reset Options" box and select the "Perform Hard Reset of Target" option.
8) Check the "Enable Run Options" box and select the "Run" option.

9) Once the dialog box settings have been made, click the [OK] button.

10) A graph bar is displayed; when it reaches 100%, the Memory Card Utility starts up. At this point, the
following startup message is displayed in the communications software window:

If the message does not appear or if it is corrupted, recheck the communications protocol settings.

The main menu of the Memory Card Utility appears on the Dev.Box display (an NTSC or VGA monitor).

Note:

If "Session Save" is selected from the "File" menu at this point, the Memory Card utility can be started up
next time simply by opening the session.

11) Except for file transfers between a PC and the Dev.Box, subsequent Memory Card Utilities are
performed by the Dreamcast controller.

VMT-26

Memory Card Utility

Memory Card Utility Operation

This section explains how to operate the Memory Card Utility. Note that the manual is based on version 0.64.1.

Operations are performed by using the direction button to select a menu item and then pressing the A button to
enter that selection. Pressing the B button cancels the operation and returns you to the previous menu. On some
menus, the functions of the buttons sometimes differ, or other buttons are used. In those cases, the functions of the
buttons will explained for each menu.

Main Menu

The following screen appears when the Memory Card Utility is started up. This is called the "Main Menu."

Menu items that are grayed out are items that have not been implemented and cannot be selected.

BACKUP UTILITY

If this menu item is selected, the Memory Selection Menu is displayed.
This menu is normally selected when transferring a file to Visual Memory, or to work with a file that has
already been saved.

SYSTEM CONFIG

This menu item is used to set Visual Memory's internal clock according to the Dev.Box's internal clock.

If this menu item is selected, the System Configuration Menu appears. If "MEMORY CARD TIME" is
selected, a confirmation message appears and the clocks in all of the Visual Memory units that are
connected are set according to the Dev.Box clock.

Note: Only "MEMORY CARD TIME" can be selected in the System Configuration Menu.

EXIT

This menu item terminates the Memory Card Utility and passes control to boot ROM. The Dreamcast
startup menu is displayed.

Memory Selection Menu

If "BACKUP UTILITY" is selected from the Main Menu, the Memory Selection Menu is displayed.

Caution: Visual Memory can be inserted or removed until this screen.
When inserting or removing Visual Memory, set the operation mode to a mode other than game mode.
If Visual Memory is connected while it is in game mode, the connection status will not be
recognized correctly.

This menu is used to select the memory unit that is to be the object of subsequent operations.

All of the memory units that are currently connected are displayed on this screen. "A," "B," "C," and "D" represent
the controller ports. Upper and lower tiers are displayed when multiple memory units are connected to
one controller.

VMT-27

Visual Memory Unit (VMU) Tutorial Revision

Note that in the case of a Visual Memory unit, a number that corresponds to the screen is displayed on the LCD.

After selecting the desired memory unit, press the A button. The Command Selection Screen now appears.

USED

Displays only the number of blocks already in use in the data storage area.
FREE

Displays the number of free blocks in the data storage area.

GAME

Indicates the usage status of the Visual Memory application area, in the format:
«number of blocks in use» / «<maximum number of blocks that can be used by an application»

For example, a display of "128/128" indicates that an application has already been written in the Visual
Memory unit. A display of "0/128" indicates that no application has been written in the Visual
Memory unit.

Command Selection Menu

This menu is used to transfer data to Visual Memory and to manipulate files that have been written in memory.

The right side of the screen shows a list of files written in Visual Memory. If the entire list cannot be displayed on
one screen, make the file list active (move the s mark to the file list) and then press the right-hand direction button
to display the rest of the list.

INFO

If this menu item is selected, the following screen appears:
This screen displays information concerning the capacity of Visual Memory, body color information,

volume icon information, and information on the date and time of initialization.

RECV DATA

This menu item is used to transfer applications, volume icon files, and data files from a PC to a Dev.Box. If
"RECV DATA" is selected, the following screen appears:

On this screen, specify the type of file that is to be received from the PC. when receiving a Visual Memory
application, select "GAME BUFFER;" when receiving volume icon data, select "ICON BUFFER." When
receiving a data file, select "NORMAL BUFFER."

Reference: For details on data transfers from a PC to Visual Memory, refer to section, “File Transfers from a PC to

Visual Memory.”

VMT-28

Memory Card Utility

SAVE DATA

This menu writes data that was previously received in the Dev.Box buffer into Visual Memory. If SAVE
DATA is selected, the following screen appears.

On this screen, specify which file (buffer data) to write in Visual Memory.

Caution:

"GAME BUFFER" cannot be selected for Visual Memory in which an application has already been
written. Delete the application file first.

To write a Visual Memory application, select "GAME BUFFER;" to write volume icon data, select "ICON
BUFFER." To write a data file, select "NORMAL BUFFER."

DUPLICATE

This menu item makes an exact copy of the contents of the currently selected Visual Memory unit in
another Visual Memory unit. This function is equivalent to the disk copy functions in Windows and
MS-DOS.

If this menu item is selected, the following screen appears:

Once the destination Visual Memory unit has been selected, a confirmation message is displayed.

Caution:

The DUPLICATE function copies the contents of flash memory exactly. All data previously saved in the
destination Visual Memory unit will be lost.

When you select "OK," the contents of memory are copied exactly.

DEFRAG

Selecting this menu item eliminates fragments (defrags) that develop when files are repeatedly saved
and deleted.

Caution:

This menu item cannot be selected for a Visual Memory unit in which an application has been written.

Because the FAT system is used for file management in Visual Memory, the data storage area becomes
fragmented as files of different sizes are written and deleted over the course of time. This function
reorganizes the data so that the fragments are eliminated.

Note:

Because applications have to be allocated in a continuous area in memory, execute the DEFRAG function
before transferring an application into Visual Memory.

If an application cannot be stored even though there is sufficient space, it is likely that fragmentation is the
culprit. Execute the DEFRAG function to create continuous free space.

If "DEFRAG" is selected, a confirmation message appears and then the defragmentation processing
is performed.

VMT-29

Visual Memory Unit (VMU) Tutorial Revision

FORMAT

If this menu item is selected, the following screen appears and the selected Visual Memory unit can
be initialized.

This screen is used to specify the body color and label icon, to set the date and time of initialization, etc.
After making all of the necessary settings, a confirmation message appears; selecting "OK" causes the Visual
Memory unit to be initialized. All files stored in the Visual Memory unit that is being initialized will be lost.

Reference: For details on the initialization procedure, see “Initializing Visual Memory” on page 33.

UNFORMAT

This menu item can be selected in order to create an uninitialized visual memory unit. The system BIOS
determines whether a Visual Memory unit has been initialized or not by checking a management area (an
upper address in bank 1 in flash memory), such as the FAT.

Just as data cannot be written on a floppy disk that has not been initialized, data and applications cannot
be stored in a Visual Memory unit that has not been initialized.

Caution:

Visual Memory that is purchased commercially is shipped in an initialized state. Rarely, a lot might be
shipped in an uninitialized state.

If "UNFORMAT" is selected, the following screen appears:

If "COMPLETE" is executed, 00H is written to every address in the flash memory to put it into the
uninitialized state. If "QUICK" is selected, just the management area is cleared.

Caution:

The "QUICK" function is not implemented in Memory Card Utility Version 0.64.1 and therefore cannot
be selected.

Whether "COMPLETE" or "QUICK" is used, all data stored in Visual Memory is deleted. Even if "QUICK"
is selected, there is no means for salvaging the data after initialization.

CHECK DISK

If this menu item is executed, the following screen appears and a check is made of FAT conformance,
missing data bits, etc. This function is equivalent to the scan disk function in Windows and the CHKDSK
function in MS-DOS.

However, this function does not have an error correction capability.

This function also conducts a CRC check of the information fork of each file, and checks for missing bits
in files.

Note:

If the CRC value was omitted from an information fork, this check returns an error for that information fork,
but this error can be ignored.

The results of these checks are also displayed in the communications software window as shown below.

VMT-30

Memory Card Utility

File Operations Menu

If the s mark is moved on the file list, a file is selected, and the A button is pressed, the File Operations Menu
is displayed.

Multiple files can be selected by pressing the X button after selecting each file. If the A button is pressed while
multiple files are selected, the menu operation that is performed is performed on all selected files.

If the Y button is pressed, all files that are currently selected are deselected, and all files that are currently not
selected are selected.

COPY

If "COPY" is selected, the following screen appears, and the selected file is copied to a different Visual
Memory unit.

DELETE
This deletes the selected file. A confirmation message is displayed when "DELETE" is selected.
RENAME

This changes a file name. This item cannot be selected when multiple files are selected. If "RENAME" is
selected, the following screen appears; the file name can now be changed.

Caution:

"non

The Memory Card Utility is designed to permit the "-" character to be used in file names, but do not use

the character.

non

Although it poses no problem for the debugger, do not use the "-" character in file names in final products.
Such an application will not be in conformance with the software creation standards.

Use"~"and " " to move the cursor. Select "OK" to change the file name to the new file name that was
input. "CANCEL" is equivalent to the B button. If "RESET" is selected, the file name that was being input is
cleared and the original file name is restored.

On this screen, the R trigger and the L trigger can be used to move the cursor, and pressing the Start button
has the same effect as selecting "OK."

ATTRIBUTE

If "ATTRIBUTE" is selected, the following screen appears and the file attribute (copying prohibited /
permitted) can be changed.

If the COPY FLAG is set to "FE" copying that file is prohibited. A file for which copying is prohibited can
not be copied through the Dreamcast File Management Screen. If COPY FLAG is set to any other value (00
to FE), copying that file is permitted. Because any value other than FF can be used, a program can be created
that uses this field to determine what generation of copying a given file is.

Caution:

Note that when a file for which the COPY FLAG is set to any value from 00 to FE is copied through the
Dreamcast File Management Screen, the COPY FLAG in the newly copied file is set to "00."

HEADER OFFSET cannot be changed.

VMT-31

Visual Memory Unit (VMU) Tutorial Revision

UPLOAD

This can be used to transfer a selected file to a PC.

Before selecting "UPLOAD," execute an Xmodem download using the file transfer function of the
communications software. As long as the Xmodem protocol is used, it does not matter if it is CRC or 1024.
When the file name input screen appears, enter an appropriate file name. The file name that is input does
not have to be identical to the file name that is used in Visual Memory.

When "UPLOAD" is selected, the message "NOW LOADING..." appears and the file transfer to the
PC begins.

Caution: "UPLOAD" cannot be aborted. To abort, first complete the file transfer that is in progress.
"UPLOAD" cannot be selected while multiple files are selected.

INFO
If "INFO" is selected, the message "NOW LOADING..." is displayed, and then the following screen appears.

The contents of the information fork are displayed on this screen.

Because the game name (sort key) is also displayed, this screen can be used to check the game name after it
has been input.

DUMP

If "DUMP" is selected, the message "NOW LOADING..." is displayed, and then the file dump

screen appears.

The portion that is the information fork is displayed in color. A character dump is also displayed on the
right-hand side.

Caution: DUMP cannot be selected when multiple files are selected.
Kanji cannot be displayed in the character dump.

The following buttons can be used on the file dump screen:

Up button Scrolls towards the beginning of the file.
Down button Scrolls towards the end of the file.
Left button Scrolls rapidly towards the beginning of the file.
Right button Scrolls rapidly towards the end of the file.
L trigger Displays the beginning of the file.
R trigger Displays the end of the file.
X button Each time this button is pressed, the display delimiting unit switches between BYTE, WORD (2 bytes), and DWORD (4 bytes).
Start button Halts the file dump.
EDIT

This is for future expansion. This menu item cannot be selected because the editing function is not
implemented in Ver. 0.64.1.

VMT-32

Memory Card Utility

Initializing Visual Memory

This section describes the procedure for initializing Visual Memory.

1) Select the Visual Memory unit that is to be initialized, and then display the Command Selection Menu.
2) Select "FORMAT," and the following screen appears.

3) In the "ICON NO." field, specify the label icon number. Specifying "00" specifies the default Visual
Memory icon. Specify a value from 000 to 123. Do not set a value of 124 or higher.

Reference: For a list of the label icon designs and numbers, refer to the Appendix, "List of Label Icons."

4) Set whether the body color information (which is set next) is valid or not.
If the body color information is valid, select "ENABLE." If the body color information is invalid, select
"DISABLE." If "DISABLE" is selected, the body color is white and the color information setting
becomes unavailable.

5) Set the color information. "COLOR A" specifies the transparency. A value of "FF" is completely opaque,
and a value of "00" is completely transparent.
COLORR, G, and B specify the intensity of the red, green, and blue components. A value of "FF" is the
maximum intensity, and a value of "00" is the minimum intensity.

Caution: Note that if a value of "00" is set for COLOR A, the other colors will be transparent.

6) "OPERATION" specifies whether to initialize just the FAT, or to initialize all of memory.
Select "QUICK" to initialize just the FAT, and select "COMPLETE" to initialize all of memory.

7) Select "NEXT" and the following screen appears.

Set the date and time of initialization. Use the left and right buttons to set the date and time, and then use
the up and down buttons to change the value.

8) Lastly, select "SET" and a confirmation message appears. Select "OK" to begin the initialization process.

Caution: If a Visual Memory unit is initialized, all files that were written in that unit are deleted. Even if "QUICK"
is selected for "OPERATION," there is no means for salvaging the data after initialization.

VMT-33

Visual Memory Unit (VMU) Tutorial Revision

Transferring Files from a PC to Visual Memory

This section explains the procedure for transferring files from a PC to Visual Memory. In this example,
HyperTerminal, which is provided with Windows, will be used as the communications software.

1) Select the Visual Memory unit to which the file is to be transferred, and then display the Command
Selection Menu.

2) Select "RECV DATA," and then select the buffer for the file that is to be transferred.
When transferring an application, select "GAME BUFFER."
When transferring a volume icon ("ICONDATA_VMU, select "ICON BUFFER."
When transferring a data file, select "NORMAL BUFFER."

3) When the confirmation message is displayed, select "OK."

4) Select the file transfer operation in the communications software. In the "Transfer" menu, select
"Send File..."

5) Select "Xmodem" for the protocol. Then click the [Browse] button and specify the file that is to be
transferred. Finally, click the [Send] button.

6) While the file transfer is in progress, the following screens appear.
In the communications software screen
In the Dev.Box screen

7) When the file transfer is completed, the following screen appears on the Dev.Box side. Press the A button.

8) Select "SAVE DATA" and specify which buffer's contents to write in Visual Memory.
When writing an application, select "GAME BUFFER."
When writing a volume icon ("ICONDATA_VMU, select "ICON BUFFER."
When writing a data file, select "NORMAL BUFFER."

Caution:

If an application has already been written in the Visual Memory unit, "GAME BUFFER" cannot be
selected. Delete the old file and then select "SAVE DATA" again.

9) If a buffer other than "ICON BUFFER" was selected, the following screen appears.

Input the file name and select "OK." The file name does not have to be in "8.3" format (an eight-character file
name, a period, and a three-character extension).

If a file with the same name already exists, the program asks whether or not to overwrite the old file.
The PC-to-Visual Memory file transfer process is now complete.

If an application was transferred, return to the Memory Selection Screen, disconnect the Visual Memory
unit, set the Visual Memory unit to game mode, and then execute the application.

VMT-34

Sega@'Dreamcast

A. Little Endian Format

When storing multiple bytes of data in memory, some CPUs use a format that starts from the high-order byte and
stores it in the high-order byte in memory, while other CPUs use a format that starts from the high-order byte and
stores it in the low-order byte in memory.

For example, when storing the data "00 FE 2E EF" in memory as an "unsigned long int" value (an unsigned 32-bit
integer), the following two methods could be used:

Table A.1 Big Endian Format

+00 +01 +02 +03
0000 00 FE 2E EF
Table A.2 Little Endian Format
+00 +01 +02 +03
0000 EF 2E FE 00

This format, in which the upper and lower bytes of data are stored in reverse order is called "Little Endian Format."
The format in which data is stored in its normal order is called "Big Endian Format."

Because the SH4 CPU that is inside the Dreamcast uses Little Endian format, all data other than byte data must be
stored in memory in Little Endian format.

For example, because the value "00 00 00 20" must be specified for the "monochrome icon data starting address" in
ICONDATA_VMU the value is stored in memory in the order "20 00 00 00". In addition, when storing unsigned 16-bit
data ("00 FF") in memory, it should be stored in the order "FF 00"

VMT-35

A. Little Endian Format

VMT-36

Sega®@'Dreamcast

B. List of Label Icons

The label icons that are built into the Dreamcast boot ROM are listed on the following page.

VMT-37

B. List of Label Icons

olg|lw|lo|ln|lw|lolQ sl t|vw|lolr|l|a/lolr|d|olt|v]|o~Nlo|o|o-|AN|@
3138185188 |e|jc|je|e|o|o|o|lec|loc|lolrs|=|-|=|=|l=|lsl=|=|-|Q|a|a

|-l =|~|~| |||~ |~|~|~|~]|=|~| |+
O|lw|w 9ol |w|lo|s|o|a o|lo|laolw|lL | olr|o|o|¥|w| lolN|o|lo|<|m
BB 585|838 |3|8|8|6|8|83|35|8|33|8|6|R|IF|IN|R|X|IR|R|IKIR|R|X|R

¢ .

]

K

L
o
5!

O (O[N] || O |- N O F (OO (N0 | O | - | N O F(OOQ || Q| D Q| = | N
&66666667777 N~~~ MN] 0|0 0| 0| ®©|(®©|®© | ©|©0| 0| O | OO
w|lw o — | o ol v o (N0 | <0 0Ol Wl ol || | 0|O|N| || < |mo| O
[P I NI R B S | ¥ T T[T T T < | | S| | F | T | O OO OO |0 |0 L[| L|W|WL|Wn

KK

- N | | | OO |N| O | O - N o | 0 © (N0 OO0 | - | A [20 B o A Vo T I o N I A B « o T B e > B (R o T B)
O @ O/ o o/ oo o o Mo < A S B S R S R S I A R N A o N o TN I Vo J N Vo I o T V' T Vo O ¥ B A o T O V> I B 7@ 2 O (e}
Lol rldN|lolxt(wvw]jo| N0 |lo| < o000 W|lL|o|lr-|oN|om|< wl ol oo | < | Ol O A
- | N | NN | NN | N N NN NN NN N N N | N N | N[O OO O O 0o 0O O O 0o O 0o|m
KOTHE-=0q% 0O JF 10 D O=C QDo BROER

ol-|alo|ls|o|e|r|eloje|z|a|e|z|leleireleg|a|y|0]3 8|85 8[R(8
gls|s|a|ls|s|8|5(8|8|s|2|8|s|y|s |22zl |2|2|2|2|e|o|y
7 2 C e - W, S2\|| oy i L - | s

®EIER 9 O I X ENEBEEEEEEETEE Q3 XS Q #< O <

VMT-38

Sega®@'Dreamcast

C. Sample Program Listings

This section includes listings of the sample programs that are included with the Visual Memory SDK.
Explanations of the information fork source file "IFORK.ASM" and details of "GHEAD.ASM"are not included.

Caution: When viewing the sample programs, set the tab (09H) to "4" (byte).

VMT-39

C. Sample Program Listings

LCD Pattern Display

This sample program displays a simple pattern on the LCD (XRAM).
Lines 51, 55, 59, 63, and 67 specify the pattern, and the "matrix" routine draws this pattern on the LCD.

001 ;Tabwidth=4
002
003 ;
004 ;*LCD display processing sample 1 **

005 ;

006 ; Transfers data to display RAM and displays a simple pattern on the display
007 ;
008 ;1.00 981208 SEGA Enterprises,LTD.
009 ;
010
011 chip Lc868700 ; Specifies the chip type for the assembler
012 world external ; External memory program

013

014 publicmain ; Symbol referenced from ghead.asm

015

016 extern_game_end ; Application end

017

018

019 ;*** Definition of System Constants
020

021 ; OCR (Oscillation Control Register) settings

022 osc_rcequ 081h ; Specifies internal RC oscillation for the System clock
023 osc_xtequ 082h; Specifies crystal oscillation for the system Clock

024

025

026 ;** Data Segment

027

028 dseg ; Data segment start

029

030 r0: ds 1 ; Indirect addressing register rO
031 rl: ds 1 ; Indirect addressing register r1
032 r2. ds 1 ; Indirect addressing register r2
033 r3: ds 1 ; Indirect addressing register r3
034 ds 12 ; Other registers reserved for the system
035

036

VMT-40

C. Sample Program Listings

037 ;**Code Segment * * ok ok ok ok

038

039 cseg ; Code segment start

040

041 ;* *

042 ;*User program *

043 ;* *

044 main:

045 mov #0fOh,c ; Display data

046 call matrix ; Display pattern on the LCD

047 setl PCON,0 ; Enters HALT mode and waits for an interrupt.
048 ; HALT mode is cancelled and processing continues
049 ; when a base timer interrupt is generated.
050

051 mov #00fh,c ; Thefollowinglines display different patternsinthe same manner
052 call matrix

053 setl PCON,0

054

055 mov #0cch,c

056 call matrix

057 setl PCON,0

058

059 mov #033h,c

060 call matrix

061 setl PCON,0

062

063 mov #055h,c

064 call matrix

065 setl PCON,0

066

067 mov #0aah,c

068 call matrix

069 setl PCON,0

070

071 ; ** [M] (mode) Button Check **
072 Id P3

073 bn acc,6,finish ; If the [M] button is pressed, the application ends
074

075 jmp main ; Repeat

076

077 finish: ; ** Application End Processing **
078 jmp _game_end ; Application end

079

080

VMT-41

Visual Memory Unit (VMU) Tutorial Revision

081 ¥ *
082 ;* Displays pattern on entire LCD *

083 ;*Input c: Basic display pattern *

084 ;* *

085 matrix: ; *** Draws one LCD screen ***

086

087 push acc ; Pushes each register onto the stack
088 push b

089 push ¢

090 push XBNK

091

092 xb0_a: mov #000h,XBNK ; Specifies the display RAM bank address (BANKO)
093 mov #080h,b

094

095 lal: Id C ; C: Display data

096 cal line2 ; 2-line display

097 ld b ; Advances address two lines ahead
098 add #010h :

099 st b ;

100 bnz lal ; Repeats until end of bank is reached
101

102 xbl a: mov #001h,XBNK ; Specifies the display RAM bank address (BANK1)
103 mov #080h,b

104

105 a2z c ; C: Display data

106 call line2 ; 2-line display

107 ld b ; Advances address two lines ahead
108 add #010h ;

109 st b ;

110 bnz a2 ; Repeats until end of bank is reached
111

112 pop XBNK ; Pops the registers from the stack
113 pop c

114 pop b

115 pop acc

116

117 ret ; Matrix end

118

119

120 line2: ; ¥+ | CD 2-line display ****

121

122 push acc ; Pushes each register onto the stack
123 push b ;

124 push ¢ ;

125 push PSW ;

126 push OCR ;

127 mov #osc_rc,OCR ; Specifies the system clock

128 setl PSW,1 : Selects data RAM bank 1

129 st c ; Stores display data in ¢

130 Id b ; Sets the display RAM address in r2

VMT-42

C. Sample Program Listings

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161
162
163

Ipl:

Ip2:

st

st
inc

and
xor
bnz

Xor
st

st
inc

and

Xor
bnz

pop
pop
pop
pop
pop

ret

end

r2 ;
; ¥+ First line display processing ****

C ; Transfers the display data to display RAM

@2
r2 ; Advances the address to the next display position
r2

#00fh ; Ifthedisplaypositionisnotattherightendofthefirstiine...
#006h ;

Ip1 ; .repeat

c ; Inverts the bit pattern in the c register

#0ffh

C ;

; ¥+ Second line display processing

c ; Transfers the display data to display RAM

@2
r2 ; Advances the address to the next display position
r2 ;

#00fh ; If the display position is not at the right end of the second

line...
#00ch ;
Ip2 ; ..repeat

OCR ; Pops registers off of the stack
PSW ;

;line2 end

VMT-43

Visual Memory Unit (VMU) Tutorial Revision

LCD Character Pattern Display

This sample program displays the text “SEGA 1998" on the LCD (XRAM).
Because the built-in fonts cannot be used from an application, the font pattern data must be prepared beforehand.

This program calls "putch", which writes the specified font pattern at the coordinates specified by registers B and C
in the main routine. The font information (8 x 8 dot data) starts in line 222.

001; Tab width =4
002
003;
004 ; * LCD display processing sample 2 **

005;

006 ; -Clears the display image by filling display RAM with zeroes
007 ; -Displays character pattern in a specified position

008 ;

009 ; 1.00 981208 SEGA Enterprises,LTD.

010;

011

012 chip Lc868700 ; Specifies the chip type for the assembler

013 world external ; External memory program

014

015 public main ; Symbol referenced from ghead.asm

016

017 extern _game_end ; Application end

018

019

020 ; ®* Definition of System Constants

021

022 ; OCR (Oscillation Control Register) settings
023 osc_rc equ081lh ; Specifies internal RC oscillation for the system clock
024 osc_xt equ082h ; Specifies crystal oscillation for the system clock
025

026

027 ; ** Data Segment * * * * *

028

029 dseg ; Data segment start

030

031 r0: ds 1 ; Indirect addressing register rO

032 rl: ds 1 ; Indirect addressing register r1

033 rz2 ds 1 ; Indirect addressing register r2

034 r3: ds 1 ; Indirect addressing register r3

035 ds 12 ; Other registers reserved for the system
036

037

VMT-44

C. Sample Program Listings

038 ; ** Code Segment

039
040
041
042 ; *

cseg

*k

*k * * *kkk * *k

; Code segment start

043 ; * User program

044 ; *

045 main:

046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
os1
082
083
084
085
086
087

call

mov
mov
mov
call

mov
mov
mov
call

mov
mov
mov
call

mov
mov
mov
call

mov
mov
mov
call

mov
mov
mov
call

mov
mov
mov
call

mov
mov
mov
call

cls

#1,.c

#1,b

#0ah,acc
putch

#2,c

#1,b

#0bh,acc
putch

#3,C

#1,b

#0ch,acc
putch

#4.c

#1,b

#0dh,acc
putch

#1,c

#2,b

#1,acc
putch

#2,.c

#2,b

#9,acc
putch

#3,c

#2,b

#9,acc
putch

#4.c

#2,b

#8,acc
putch

; Clears the LCD display image

; Horizontal coordinate
: Vertical coordinate
; Character code 'S'
; Single character display

*k

VMT-45

Visual Memory Unit (VMU) Tutorial Revision

088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124

loopO:

finish:

. %,

Id
bn

jmp

jmp

; * [M] (mode) Button Check **
P3
acc,6,finish ; If the [M] button is pressed, the application ends

loop0 ; Repeat

; ** Application End Processing **
_game_end; Application end

; * Clearing the LCD Display Image *

.k,

)

cls:

cls_s:

loop3:

push
mov

mov
call

mov
call

pop

ret

mov

mov
mov
inc

dbnz

ret

OCR ; Pushes the OCR value onto the stack
#osc_rc,0CR ; Specifies the system clock
#0,XBNK ; Specifies the display RAM bank address (BANKO)
cls_s ; Clears the data in that bank
#1,XBNK ; Specifies the display RAM bank address (BANK1)
cls_s ; Clears the data in that bank
OCR ; Pops the OCR value off of the stack
; Cls end
; ** Clearing One Bank of Display RAM ***
#30h,r2 ; Points the indirect addressing register at the start
of display RAM
#30h,b ; Sets the number of loops in loop counter b
#0,@r2 ; Writes "0" while incrementing the address
r2 ;
bloop3 ; Repeats until b is "0"
;cls_send

VMT-46

C. Sample Program Listings

125;* *

126 ; * Displaying One Character in a Specified Position *

127 ;* Inputs: acc: Character code *
128;* c: Horizontal position of character *
129;* b: Vertical position of character *
130;* *

131 putch:

132 push XBNK

133 push acc

134 call locate ; Calculates display RAM address according to coordinates
135 pop acc

136 call put_chara ; Displays one character

137 pop XBNK

138

139 ret ; putch end

140

141

142 locate: ; *** Calculating the Display RAM Address According to the Display

143
144
145
146
147
148
149
150
151
152
153 nextl:
154
155
156 next2:
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

Position Specification ****
; * Inputs: ¢: Horizontal position (0 to 5) b: Vertical position (O to 3)
; ¥ Outputs: r2: RAM address XBNK: Display RAM bank

; ** Determining the Display RAM Bank Address ***

Id b ; Jump to nextl when b >=2

sub #2 ;

bn PSW,7,nextl ;

mov #00h,XBNK ; Specifies the display RAM bank address (BANKO)
br next2

st b

mov #01h,XBNK ; Specifies the display RAM bank address (BANK1)

; ¥* Calculating the RAM Address for a Specified Position on the Display ***

Id b ;b *40h + ¢ +80h
rol ;

rol ;

rol :

rol ;

rol ;

rol ;

add c ;

add #80h ;

st 2 : Stores the RAM address in r2
ret ; locate end

VMT-47

Visual Memory Unit (VMU) Tutorial Revision

173 put_chara:

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

loop1:

push
setl

rol
rol
rol
add
st
mov
addc
st

push
mov

mov
mov

Idc
inc
st

add
st

Idc
inc
st

add
st

dec

bnz

pop
pop

ret

PSW ; Pushes the PSW value onto the stack
PSW,1 ; Selects data RAM bank 1
; ¥* Calculating the Character Data Address ***
; (TRH,TRL) = acc*8 + fontdata
#ow(fontdata) ;
TRL ;
#0,acc ;
#high(fontdata) ;
TRH ;
OCR ; Pushes the OCR value onto the stack
#osc_rc,OCR ; Specifies the system clock
#0,b ; Offset value for loading the character data
#4,c ; Loop counter
b ; Loads the display data for the first line
b ; Increments the load data offset by 1
@r2 ; Transfers the display data to display RAM
r2 ; Adds 6 to the display RAM address
#6 ;
r2 ;
b ; Loads the display data for the second line
b ; Increments the load data offset by 1
@r2 ; Transfers the display data to display RAM
r2 ; Adds 10 to the display RAM address
#10 ;
r2 ;
c ; Decrements the loop counter
c
loopl ; Repeats for 8 lines (four times)
OCR ; Pops the OCR value off of the stack
PSW ; Pops the PSW value off of the stack

; put_chara end

VMT-48

C. Sample Program Listings

219;* *

220 ; * Character Bit Image Data *

221 ;* *

222 fontdata:

223 db 07ch, 0e6h, Oc6h, Oc6h, Oc6h, Oceh, 07ch, 000h ;'0'00
224 db 018h, 038h, 018h, 018h, 018h, 018h, 03ch, 000h ;'1'01
225 db 07ch, Oc6h, Oc6h, 00ch, 038h, 060h, Ofeh, 000h ;'2'02
226 db 07ch, Oe6h, 006h, 01ch, 006h, Oe6h, 07ch, 000h ;'3'03
227 db 00ch, 01ch, 03ch, 06¢h, Occh, Ofeh, 00ch, 000h ;'4'04
228 db Ofeh, 0cOh, Ofch, 006h, 006h, Oc6h, 07ch, 000h ;'5'05
229 db 01ch, 030h, 060h, Ofch, 0c6h, 0c6h, 07ch, 000h ;'6' 06
230 db Ofeh, Oc6h, 004h, 00ch, 018h, 018h, 038h, 000h ;707
231 db 07ch, Oc6h, 0c6h, 07ch, 0c6h, 0c6h, 07ch, 000h ;'8'08
232 db 07ch, Oc6h, 0c6h, 07eh, 006h, 00ch, 078h, 000h ;'9'09
233

234 db 07ch, Oe6h, 076h, 038h, Odch, Oceh, 07ch, 000h ;'S'0a
235 db Ofeh, 0cOh, OcOh, 0f8h, 0cOh, 0cOh, Ofeh, 000h ;'E'Ob
236 db 07ch, 0e6h, 0cOh, Odch, Oc6h, 0e6h, 07ch, 000h :'G'Oc
237 db 01eh, 036h, 066h, Oc6h, Oc6h, Ofeh, 0c6h, 000h ;'A'0d

VMT-49

Visual Memory Unit (VMU) Tutorial Revision

Counter That Uses Base Timer Interrupts

This sample program detects and counts interrupts that are generated by the base timer every 0.5 seconds.

When an interrupt is generated, the program jumps to line 35 of "GHEAD.ASM', and then jumps from there to the
label "INT_1B ". Base timer interrupt processing starts in line 108, but here internal clock processing is performed.

After performing the clock processing in ROM once up to line 112, control jumps to the label "int_BaseTimer "in
"B_TIMERLASM".

In "B_TIMER1.ASM", the label "int_BaseTimer ", which is referenced by an external program, is declared with a
PUBLIC declaration (line 16). The user's base timer interrupt handler starts from line 242. The counter is
incremented within this interrupt handler.

Control returns to "GHEAD.ASM", the contents of the IE register are returned to the value that it had when "int_1b"
was called, and then control returns from the interrupt (IRET).

The counter value is always displayed on the LCD by the main routine.

GHEAD.ASM
001 chip Lc868700
002 world external
003 ; * *

004 ; * External header program Ver 1.00*
005 ; * 05/20-'98*

006 ; * *

007

008 public fm_wrt_ex_exit,fm_wrf_ex_exit

009 public fm_prd_ex_exittimer_ex_exit, game_start, game_end
010 other_side_symbol fm_wrt_in,fm_vrf_in

011 other_side_symbol fm_prd_in,timer_in,game_end

012

013 extern main ; Symbol in the user program
014 extern int_BaseTimer ; Symbol in the user program
015

016; * *

017 ; * Vector table(?)*

018 ;* *

019 cseg

020 org 0000h

021 _game_start:

022 ;reset:

023 jmpfmain ; main program jump
024 org 0003h

025 ;int_03:

026 jmpint_03

027 org 000bh

028 ;int_0b:

029 jmpint_Ob

030 org 0013h

031 jint_13:

032 jmpint_13

033 org 001bh

VMT-50

C. Sample Program Listings

034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077

;int_1b:

jmpint_1b
org 0023h
;int_23:

jmpint_23
org 002bh
;int_2b:

jmp int_2b
org 0033h
;int_33:

jmpint_33
org 003bh
;int_3b:

jmp int_3b
org 0043h
;int_43:

jmpint_43
org 004bh
;int_4b:

jmp int_4b

.k

; ¥ interrupt programs*

.k

int_03:
reti
int_Ob:
reti
int_13:
reti
int_23:
reti
int_2b:
reti
int_33:
reti
int_3b:

reti
.k

int_43:
reti
int_4b:

clrlp3int,1; interrupt flag clear

reti

VMT-51

Visual Memory Unit (VMU) Tutorial Revision

078 org 0100h

079 P* *
080 ; * flash memory write external program*
081 P * *
082 fm_wrt_ex:

083 change fm_wrt_in

084 fm_wrt_ex_exit:

085 ret

086 org 0110h

087 ;* *
088 ; * flash memory verify external program*
089 ;* *
090 fm_vrf_ex:

091 change fm_wif_in

092 fm_vrf_ex_exit:

093 ret

094

095 org 0120h

096 ;* *
097 ; * flash memory page read external program*
098 ;* *
099 fm_prd_ex:

100 change fm_prd_in

101 fm_prd_ex_exit:

102 ret

103

104 org 0130h

105 ;* *
106 ; * flash memory => timer call external program *
107 P * *
108 int_1b:

109 timer_ex:

110 pushie

111 clrlie,7 ;interrupt prohibition

112 changetimer_in

113 timer_ex_exit:

114 callint_BaseTimer; (User base timer interrupt processing)
115 pop ie

116 reti

117

118 org 01fOh

119 _game_end:

120 change game_end
121 end

VMT-52

C. Sample Program Listings

B_TIMER1.ASM

001
002

003 ;

004

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

: Tab width =4

; ** Base Timer Interrupt Usage Sample 1 **
005 ;
; -Counts base timer interrupts (every 0.5 seconds)

; -Displays the counter value as a two digit decimal number on the LCD

; 1.00 981208 SEGA Enterprises,LTD.

; Specifies the chip type for the assembler

chip LC868700
world external ; External memory program
public main

public int_BaseTimer

extern_game_end

; #* Definition of System Constants

osc_rcequ 081h
osc_xtequ 082h

; Symbol referenced from ghead.asm
; Symbol referenced from ghead.asm

; Symbol reference to ghead.asm

; OCR (Oscillation Control Register) settings
; Specifies internal RC oscillation for the system clock
; Specifies crystal oscillation for the system clock

; ** Data Segment

dsezz ; Data segment start
r0: ds 1 ; Indirect addressing register rO
rl: ds 1 ; Indirect addressing register r1
r2: ds 1 ; Indirect addressing register r2
r3: ds 1 ; Indirect addressing register r3
ds 12 ; Other registers reserved for the system
counter:ds 1 ; Base timer interrupt counter
work1: ds 1 ; For work (put2digit)
; ** Code Segment ok * * koo * ok
cseg ; Code segment start
-k *
; * User program *
-k *
main:
mov #0,counter ; Resets the counter value

VMT-53

Visual Memory Unit (VMU) Tutorial Revision

052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071

072;

073
074
075
076

077;

078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101

cal cls
loop0:
mov #2,c
mov #1b
Id counter
call put2digit
setl pcon,0
Id P3

bn acc,6,finish
br loop0

finish:
jmp

; Clears the LCD display image

; Display position (horizontal)
; Display position (vertical)
: Moves the counter value to acc
; Displays the acc value (two digits)
; Waits in HALT mode until the next interrupt
; ¥ [M] (mode) Button Check **
; Ifthe [M] button is pressed, the application ends

; Repeat

; ¥ Application End Processing **

_game_end ; Application end

; * Displaying a Two-digit Value
; * Inputs: acc: Numeric value
P x ¢. Horizontal position of character *
;¥ b: Vertical position of character *
*
put2digit:
push b ; Pushes the coordinate data onto the stack
push ¢ ;
st c ; Calculates the tens digit and the ones digit
xor a ; (acc = acc/10, workl = acc mod 10)
mov #10,b ;
div ;
ld b ;
st workl ; Stores the ones digit in work1
Id c :
pop C ; Pops the coordinate values into (c, b)
pop b ;
push b ; Pushes the coordinates onto the stack again
push ¢ ;
call putch ; Displays the tens digit
Id workl ; Loads the ones digit
pop c ; Pops the coordinate values into (c, b)
pop b ;
inc c ; Moves the display coordinates to the right
call putch ; Displays the ones digit
ret ; put2digit end

VMT-54

C. Sample Program Listings

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128

129;

130
131

132;
133;
134;

135
136
137
138
139
140
141
142
143
144
145
146

147
148
149

-k

; * Clearing the LCD Display Image *

.k

cls:

cls_s:

loop3:

*,

push OCR ; Pushes the OCR value onto the stack
mov #osc_rc,0OCR ; Specifies the system clock

mov #0,XBNK ; Specifies the display RAM bank address (BANKO)
cal cls_s ; Clears the data in that bank

mov #1,XBNK ; Specifies the display RAM bank address (BANK1)
cal cls_s ; Clears the data in that bank

pop OCR ; Pops the OCR value off of the stack

ret ; clsend

; Clearing One Bank of Display RAM

mov #80h,r2 ; Points the indirect addressing register at the start
of display RAM

mov #80h,b ; Sets the number of loops in loop counter b

mov #0,@r2 ; Writes "0" while incrementing the address

inc r2 ;

dbnzb,loop3 ; Repeats until b is "0"

ret ;cls_send

)

; * Displaying One Character in a Specified Position*

; * Inputs: acc:Character code *
* ¢: Horizontal position of character*
i * b: Vertical position of character*
*, *
putch:
push XBNK
push acc
call locate ; Calculates display RAM address according to coordinates
pop acc
call put _chara ; Displays one character
pop XBNK
ret ; putch end
locate: ***Calculating the Display RAM Address According to the Display Positi
on Specification***
; ** Inputs: ¢: Horizontal position (O to 5) b: Vertical position (0 to 3)
;¥ Outputs: r2: RAM address XBNK: Display RAM bank

VMT-55

Visual Memory Unit (VMU) Tutorial Revision

150 ;** Determining the Display RAM Bank Address ***

151 Id b ; Jump to nextl when b >=2

152 sub #2 ;

153 bn PSW,7,next1 ;

154

155 mov #00h,XBNK; Specifies the display RAM bank address (BANKO)
156 br next2

157 nextl:

158 st b

159 mov #01h,XBNK; Specifies the display RAM bank address (BANK1)
160 next2:

161

162 ;*=* Calculating the RAM Address for a Specified Position on the Display ***

163 Id b ;b *40h +c +80h

164 rol ;

165 rol ;

166 rol ;

167 rol :

168 rol ;

169 rol ;

170 add C ;

171 add #80h ;

172 st r2 ; Stores the RAM address in r2
173

174 ret ; locate end

175

176

177 put_chara:

178 push PSW ; Pushes the PSW value onto the stack

179 setl PSW,1 : Selects data RAM bank 1

180

181 ; ¥* Calculating the Character Data Address ***

182 rol ; (TRH,TRL) = acc*8 + fontdata

183 rol ;

184 rol ;

185 add #low(fontdata) ;

186 st TRL ;

187 mov #0,acc ;

188 addc #high(fontdata) ;

189 st TRH ;

190

191 push OCR : Pushes the OCR value onto the stack
192 mov #osc_rc,OCR ; Specifies the system clock

193

194 mov #0,b ; Offset value for loading the character data
195 mov #4.c ; Loop counter

196 loopl:

197 Id b ; Loads the display data for the first line
198 Idc ;

199 inc b ; Increments the load data offset by 1

VMT-56

C. Sample Program Listings

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

223;

224

225,

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

st @r2 ; Transfers the display data to display RAM
Id r2 ; Adds 6 to the display RAM address
add #6 ;
st r2 ;
Id b ; Loads the display data for the second line
Idc ;
inc b ; Increments the load data offset by 1
st @r2 ; Transfers the display data to display RAM
Id r2 ; Adds 10 to the display RAM address
add #10 ;
st r2 ;
dec c ; Decrements the loop counter
Id c ;
bnz loopl ; Repeats for 8 lines (four times)
pop OCR ; Pops the OCR value off of the stack
pop PSW ; Pops the PSW value off of the stack
ret ; put_chara end
; * Character Bit Image Data *
*, *
fontdata:
db 07ch, Oe6h, 0c6h, Oc6h, Oc6h, Oceh, 07ch, 000h ;'0'00
db 018h, 038h, 018h, 018h, 018h, 018h, 03ch, 000h ;'1'01
db 07ch, Oc6h, Oc6h, 00ch, 038h, 060h, Ofeh, 000h ;'2'02
db 07ch, Oe6h, 006h, 01ch, 006h, Oe6h, 07ch, 000h ;'3'03
db 00ch, 01ch, 03ch, 06ch, Occh, Ofeh, 00ch, 000h ;404
db Ofeh, 0cOh, Ofch, 006h, 006h, 0c6h, 07ch, 000h ;'5'05
db 01ch, 030h, 060h, Ofch, Oc6h, Oc6h, 07ch, 000h ;'6'06
db Ofeh, 0c6h, 004h, 00ch, 018h, 018h, 038h, 000h ;707
db 07ch, 0c6h, 0ceh, 07ch, Oc6h, Oc6h, 07ch, 000h :'8'08
db 07ch, Oc6h, Oc6h, 07eh, 006h, 00ch, 078h, 000h ;'9'09
; *,
; * Base Timer Interrupt Handler *
.k
int_BaseTimer:
push acc ; Pushes the register that was used onto the stack
inc counter ; Increments the counter
Id counter : If the counter reaches 100...
bne #100,next3 ;
mov #0,counter ; Resets the counter
next3: ;
pop acc ; Pops the register back off of the stack
ret ; (User) interrupt processing end

VMT-57

Visual Memory Unit (VMU) Tutorial Revision

Button Press Detection

This sample program checks the status (pressed or not pressed) of the Visual Memory buttons (except for the reset
button and the mode button), and displays on the LCD any button that was pressed.

Line 46 writes OFFH to port 3, pulling up all bits.

The button press status is loaded in line 51 by loading the status of port 3 into the ACC. If there is a button that is
being pressed at this point, the corresponding bit is reset to "0".

In line 52, the bits are checked to see if they are set (i.e., the corresponding button is not being pressed), and then
control proceeds to the next button check processing. If a button is being pressed, the condition on line 52 becomes
false, and the processing that is indicated for that button is performed.

Note: The port 3 interrupt is enabled immediately after this program is called from the system BIOS.
Furthermore, because the port 3 interrupt is a level interrupt, the interrupt remains in effect while
a button is being pressed.
Disabling the port 3 interrupt improves the overall performance of applications.
Note that in an application that cancels HALT mode in response to a port 3 interrupt, the port 3
interrupt must be enabled beforehand.

001 ;Tabwidth=4

002

003 ;

004 ;** Button Status Detection Sample 1 **

005 ;

006 ;-Reads the button statuses and displays the button that is being pressed on
the LCD

007 ;

008 ;1.00981208 SEGA Enterprises,LTD.

009 ;

010

011 chip LC868700 ; Specifies the chip type for the assemble

012 world external ; External memory program

013

014 public main ; Symbol referenced from ghead.asm

015

016 extern _game_end ; Symbol reference to ghead.asm

017

018

019 ;*** Definition of System Constants

020

021 ; OCR (Oscillation Control Register) settings

022 osc_rc equ04dh ; Specifies internal RC oscillation for the system clock

023 osc_xt equOefh ; Specifies crystal oscillation for the system clock

024

025

VMT-58

C. Sample Program Listings

026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075

; ** Data Segment * * * o o
dseg ; Data segment start
r0 ds 1 ; Indirect addressing register rO
rl ds 1 ; Indirect addressing register r1
r2 ds 1 ; Indirect addressing register r2
r3 ds 1 ; Indirect addressing register r3
ds 12 ; Other registers reserved for the system
; ¥* Code Segment
cseg ; Code segment start
. % *
; * User program
- % *
main:
cal cls ; Clears the LCD display image
mov #0ffh,P3 ; P3 initialization (pull-up setting)
loopO:
; **[A] Button Check **
mov #0,b
Id P3 ; Loads the status of P3
bp acc,4,next3 ; next3 if [A] button is being pressed
mov #1b ; Display character code 'A'
next3:
Id b
mov #4.c ; Display coordinate (horizontal)
mov #3,b ; Display coordinate (vertical)
call putch ; Displays single character
; **[B] Button Check **
mov #0,b
Id P3
bp acc,5,next4 ; next4 if [B] button is being pressed
mov #2,b ; Display character code 'B'
next4:
Id b
mov #5,c
mov #2,b
cal putch
| 1] Button Check **
mov #0,b
Id P3
bp acc,0,nexts5 ; next5 if [1] button is being pressed
mov #3,b ; Display character code ' T

VMT-59

Visual Memory Unit (VMU) Tutorial Revision

076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

nexts:

next6:

next7:

nexts:

nexto:

mov
mov
call

mov

bp
mov

mov
mov
call

mov

bp
mov

mov
mov
call

mov

bp
mov

mov
mov
call

mov

bp
mov

mov
mov
call

b
#1,.c
#1,b

putch

#0,b
P3
acc,3,next6
#4.b

b
#2,c
#2,b

putch

#0,b
P3
acc,1,next7
#5,b

b
#1,c
#3,b

putch

#0,b
P3
acc,2,next8
#6,b

b
#0,c
#2,b

putch

#0,b
P3
acc,7,next9
#8,b

b
#4,.c
#1,b

putch

| -] Button Check **

; nexto if |
; Display character code ' -

-] button is being pressed

| 1] Button Check **

; next7 if |] button is being pressed
; Display character code ' L

|] Button Check **

; next8 if [] button is being pressed
; Display character code ' ~'
; ** [S] Button Check **

; next9 if [S] button is being pressed
; Display character code 'S'

VMT-60

C. Sample Program Listings

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

; ** [M] Button Check **

Id P3
bn acc,6,finish ; Ifthe [M] buttonis pressed, the applicationends
brf loop0 ; Repeat
finish: ; ** Application End Processing **
jmp _game_end ; Application end
-k *
; * Clearing the LCD Display Image *
. % *
cls:
push OCR ; Pushes the OCR value onto the stack
mov #osc_rc,0OCR ; Specifies the system clock
mov #0,XBNK ; Specifies the display RAM bank address (BANKO)
cal cls s ; Clears the data in that bank
mov #1,XBNK ; Specifies the display RAM bank address (BANK1)
cal cls_s ; Clears the data in that bank
pop OCR ; Pops the OCR value off of the stack
ret ;clsend
cls_s: ; ** Clearing One Bank of Display RAM ***
mov #380h,r2 ; Pointsthe indirect addressing register atthe
start of display RAM
mov #80h,b ; Sets the number of loops in loop counter b
loop3:
mov #0,@r2 ; Writes "0" while incrementing the address
inc r2 :
dbnz b,loop3 ; Repeats until b is "0"
ret ;cls_send

.-k

; * Displaying One Character in a Specified Position*

; * Inputs: acc:Character code *
i * C Horizontal position of character *
i * b: Vertical position of character *
o *
putch:
push XBNK
push acc
cal locate ; Calculates display RAM address according to coordinates
pop acc
cal put_chara ; Displays one character

VMT-61

Visual Memory Unit (VMU) Tutorial Revision

175 pop XBNK

176

177 ret ; putch end
178

179

180 locate: ; *** Calculating the Display RAM Address According to the Display
Position Specification **+*

181 ; * Inputs: c¢: Horizontal position (0 to 5) b: Vertical position (0 to 3)
182 ; ¥ Outputs: r2: RAM address XBNK: Display RAM bank
183
184 ; ** Determining the Display RAM Bank Address ***
185 Id b ; Jump to nextl when b >=2
186 sub #2 :
187 bn PSW,7,nextl,
188
189 mov #00h,XBNK; Specifies the display RAM bank address (BANKO)
190 br next2
191 nextl:
192 st b
193 mov #01h,XBNK; Specifies the display RAM bank address (BANK1)
194 next2:
195
196 ; #* Calculating the RAM Address for a Specified
Position on the Display **
197 Id b ;b*40h +c+80h
198 rol ;
199 rol ;
200 rol ;
201 rol ;
202 rol :
203 rol ;
204 add c ;
205 add #30h ;
206 st r2 ; Stores the RAM address in r2
207
208 ret : locate end
209
210
211 put chara:
212 push PSW ; Pushes the PSW value onto the stack
213 setl PSW,1 ; Selects data RAM bank 1
214
215 ; ¥* Calculating the Character Data Address ***
216 rol ; (TRH,TRL) = acc*8 + fontdata
217 rol ;
218 rol ;
219 add #ow(fontdata) ;
220 st TRL ;
221 mov #0,acc ;
222 addc #high(fontdata) ;

VMT-62

C. Sample Program Listings

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

st

push
mov

mov

mov
loop1:

inc
st
add

st

Idc
inc
st

add
st

dec

bnz

pop
pop

ret

.k

OCR

Idc

loopl

OCR
PSW

TRH ;
; Pushes the OCR value onto the stack
#osc_rc,0OCR ; Specifies the system clock
#0,b ; Offset value for loading the character data
#4.c ; Loop counter
b ; Loads the display data for the first line
b ; Increments the load data offset by 1
@r2 ; Transfers the display data to display RAM
r2 ; Adds 6 to the display RAM address
#6 ;
r2 ;
b ; Loads the display data for the second line
b ; Increments the load data offset by 1
@r2 ; Transfers the display data to display RAM
r2 ; Adds 10 to the display RAM address
#10 :

r2 ;
; Decrements the loop counter

; Repeats for 8 lines (four times)

; Pops the OCR value off of the stack
; Pops the PSW value off of the stack

; put_chara end

1

; * Character Bit Image Data

%,

fontdata:

db 000h, 000h, 038h, 038h, 038h, 000h, 000h, 000h ;! *'00
db 01eh, 036h, 066h, 0c6h, Oc6h, Ofeh, Oc6h, 000h J'A'01

db Ofch, 066h, 066h, 07ch, 066h, 066h, Ofch, 000h ;'B'02

db 010h, 038h, 07ch, Ofeh, 038h, 038h, 038h, 000h ;! 1'03
db 010h, 018h, Ofch, Ofeh, Ofch, 018h, 010h, 000h ! ~'04
db 038h, 038h, 038h, Ofeh, 07ch, 038h, 010h, 000h ;! 1'05
db 010h, 030h, 07eh, Ofeh, 07eh, 030h, 010h, 000h . ~'06
db Oc6h, Oeeh, Ofeh, 0d6h, Oc6h, Oceh, Oc6h, 000h 'M 07

db 07ch, Oe6h, 076h, 038h, Odch, Oceh, 07ch, 000h ;'S'08

VMT-63

Visual Memory Unit (VMU) Tutorial Revision

Using the PWM Sound Source

This sample program alternately generates a high tone (781Hz) and a low tone (342Hz).
The important portion of this sample is the subroutine that starts from line 72.

"Sndinit " readies the program to use PWM. "Snd1(2)Start" sets the frequency that is generated by timer 1, and
begins the counting operation. "SndStop " stops the counting operation and stops the audio output.

001 ;Tabwidth=4

002

003 ;

004 ;* Sound Usage Sample 1 **

005 ;

006 ; -Intermittently outputs two tones (high/low)

007 ; (Low tone for 0.5 seconds - Silence for 0.5 seconds - High tone for 0.5
seconds - Silence for 0.5 seconds...)

008 ;

009 ;1.00981208 SEGA Enterprises,LTD.

010 ;

011

012 chip LC868700 ; Specifies the chip type for the assembler
013 world external ; External memory program

014

015 public main ; Symbol referenced from ghead.asm

016

017 extern _game_end ; Application end

018

019

020 ;*** Definition of System Constants

021

022 ; OCR (Oscillation Control Register) settings
023 osc_rc equ081lh ; Specifies internal RC oscillation for the system clock
024 osc_xt equ082h ; Specifies crystal oscillation for the system clock
025

026

027 ;** Data Segment

028

029 dseg ; Data segment start

030

031 r0: ds 1 ; Indirect addressing register rO

032 rlL: ds 1 ; Indirect addressing register r1

033 r2 ds 1 ; Indirect addressing register r2

034 r3: ds 1 ; Indirect addressing register r3

035 ds 12 ; Other registers reserved for the system
036

037

038 ;**Code Segment

039

040 cseg ; Code segment start

041

042 : *, *

043 ;*User program *
044 : *, *

VMT-64

C. Sample Program Listings

045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
o077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097

main:
call Sndinit ; Sound initialization
loop0:
cal SndiStart ; Starts generating tone at approximately 342Hz
setl PCON,0 ; HALT mode until base timer interrupt (0.5 seconds)
call SndStop ; Buzzer sound off
setl PCON,0 ; HALT mode until base timer interrupt (0.5 seconds)
cal Snd2Start ; Starts generating tone at approximately 781
setl PCON,0 ; HALT mode until base timer interrupt (0.5 seconds)
call SndStop ; Buzzer sound off
setl PCON,0 ; HALT mode until base timer interrupt (0.5 seconds)
; ** [M] (mode) Button Check **
Id P3
bn acc,6,finish ; If the [M] button is pressed, the application ends
br loop0 ; Repeat
finish: ; ** Application End Processing **
jmp _game_end ; Application end
.« % *
; * Sound Output-related Routines *
% *
Sndinit: ; ** Sound Output Hardware Initialization ***
crl P17 ; Sets the sound output port
ret
Snd1Start: ; ¥* Start of 342Hz Tone ***
mov #0fOh, TILR ; Cycles =100h - 0Ofoh =16
mov #0f8h, T1LC ; L level width = 100h - 0fsh =8
mov #0DOh,TICNT ; Sound output start
ret
Snd2Start: ; ¥* Start of 781Hz Tone ***
mov #0fOh,T1LR ; Cycles =100h - 0f9h =7
mov #0fch, T1LC : L level width = 100h - Ofch = 4
mov #0DOh,TICNT ; Sound output start
ret
SndStop: ; ¥* Sound Stop ***

mov #0,TICNT ; Stops sound output

ret

Visual Memory Unit (VMU) Tutorial Revision

Interrupt Using Timer 0

This sample program generates an interrupt once every second. The program generates a sound when the interrupt
is generated.

1

The important portion of this program is the routine "TOMode2Init " in lines 78 through 93. This program uses
Timer 0 in mode 2, as a 16-bit counter with prescaler. Because a 32kHz signal is input to the timer, the program sets
up the timer so that the signal causes an overflow in the prescaler and counter approximately every second.

Because Timer 0 generates an interrupt in response to the overflow, the program provides a handler for that
interrupt. This handler increments the count, resets the interrupt source flag to "0", and then terminates
interrupt processing.

The main routine determines whether the counter value is an even or odd number, and uses this information to
output a high tone and a low tone in alternation. In line 61, the CPU is put into HALT mode, and operation stops
until an interrupt is generated. If a timer 0 interrupt or a port 3 interrupt is generated, processing resumes from the
next line.

* GHEAD.ASM

001 chip LC868700
002 world external

003 ;* *

004 ;* External header program Ver 1.00*

005 ;* 05/20-'98*
006 ;* *

007

008 public fm_ wrt ex exit,fm_vrf_ex exit

009 public fm_prd _ex_exittimer_ex_exit, game_start, game_end
010 other_side_symbolfm_wrt_in,fm_vrf_in

011 other_side_symbolfm_prd_in,timer_in,game_end

012

013 extern main ; Symbol in the user program
014 extern int TOH ; Symbol in the user program
015

016 ;* *

017 ;*Vector table(?) *

018 ;* *

019 cseg

020 org 0000h
021 _game_start

022 ;reset:

023 jmpf main ; main program jump
024 org 0003h

025 ;int 03:

026 jmp int_03
027 org 000bh

028 ;int Ob:

029 jmp int_Ob
030 org0013h

031 ;int 13:

032 jmp int_13

033 org 001bh

VMT-66

C. Sample Program Listings

034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077

;int_1b:

jmp
org 0023h
;int_23:

jmp
org 002bh
;int_2b:

jmp
org 0033h
;int_33:

jmp
org 003bh
;int_3b:

jmp
org 0043h
;int_43:

jmp
org 004bh
;int_4b:

jmp

.k

int_1b

int_23

int_2b

int_33

int_3b

int_43

int_4b

; * interrupt programs

.k

int_03:

reti
int_Ob:

reti
int_13:

reti
int_23:

jmp
int_2b:

reti
int_33:

reti
int_3b:

reti
.k

int._ TOH ; (To user interrupt processing)

int_43:
reti
int_4b:
clrl
reti

p3int,1

; interrupt flag clear

VMT-67

Visual Memory Unit (VMU) Tutorial Revision

078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

org 0100h

.k, *
)

; * flash memory write external program*

-k *
’

fm_wrt_ex:

change fm_wrt_in
fm_wrt_ex_exit:
ret
org 0110h

-k *
’

; * flash memory verify external program*

. %, *
’

fm_vrf_ex:

change fm_wrf_in
fm_vrf_ex_exit:
ret

org 0120h

-k, *
)

; * flash memory page read external program*

.k *

fm_prd_ex:
change fm_prd_in
fm_prd_ex_exit:
ret

org 0130h

-k *
’

; * flash memory => timer call external program*

int_1b:
timer_ex:
push ie
crl ie7 ; interrupt prohibition
change timer_in
timer_ex_exit:
pop ie
reti
org 01fOh
_game_end:

change game_end
end

VMT-68

C. Sample Program Listings

* TIMER1.ASM

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043

: Tab width =4

1

; ** Timer/Counter TO Interrupt Usage Sample 1 **

; -Intermittently sounds the buzzer (every two seconds)

; 1.00 981208 SEGA Enterprises,LTD.

1

chip LC868700 ; Specifies the chip type for the assembler
world external ; External memory program

public main ; Symbol referenced from ghead.asm
public int_TOH ; Symbol referenced from ghead.asm
extern _game_end ; Application end

; ¥ Definition of System Constants

; OCR (Oscillation Control Register) settings
0sC_rc equ 04dh ; Specifiesinternal RC oscillation forthe system clock
osc_xt equ Oefh ; Specifies crystal oscillation for the system clock

; ** Data Segment

dseg ; Data segment start
r0: ds 1 ; Indirect addressing register rO
rl: ds 1 ; Indirect addressing register r1
r2: ds 1 ; Indirect addressing register r2
r3: ds 1 ; Indirect addressing register r3
ds 12 ; Other registers reserved for the system
counter: ds 1 ; Timer interrupt counter
; ¥* Code Segment
cseg ; Code segment start

VMT-69

Visual Memory Unit (VMU) Tutorial Revision

044 o * *

045 ;*User program *

046 : *, *

047 main:

048 call Sndinit ; Sound output initialization

049 cal TOMode2lnit : Timer TO initialization

050 mov #0,counter ; Clears counter

051

052 loopO:

053 Id counter ; Loads the counter value

054 bp acc,1,nextl ; nextl if bit O of the counter is "1"

055

056 cal Snd2Start ; Starts sound

057 br next2

058 nextl:

059 call SndStop ; Stops sound

060 next2:

061 setl PCON,0 ; HALT mode until next interrupt

062

063

064 ; ¥ [M] (mode) Button Check **

065 Id P3

066 bn acc,6,finish ; If the [M] button is pressed, the application ends

067

068 br loop0 ; Repeat

069

070 finish: ; ¥ Application End Processing **

071 jmp _game_end ; Application end

072

073

074 ;* *

075 ;*Timer/Counter TO Initialization *

076 ;* Applied an interrupt about once per second in mode 2 (16-bit counter)*

077 ;* *

078 TOMode2Init:

079 mov #255,TOPRR ; Sets the prescaler value

080 ; Since this is an 8-bit prescaler:

081 ; Cycle=(256-255)*0.000183=0.000183(sec.)

082 mov #high(65536-5464), TOHR; Sets preset value (H)

083 mov #low(65536-5464),TOLR ; Sets preset value (L)

084 ; As a set with the prescaler:

085 ;0.000183 * 5464 = 0.999912 (®1sec)

086 ; An overflow occurs about once per second

087 mov #0ffh, TOL ; Sets up an immediate initial overflow

088 mov #0ffh, TOH ;

089 mov #0e4h, TOCNT ; Mode 2 (16-bit counter)

090 ; Generates an interrupt according to
the TOH overflow

091 ; TO operation start

092

VMT-70

C. Sample Program Listings

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

ret

TOHStop:

clrl TOCNT,7
ret

.k

; TOMode2Init end

; ¥* TOH timer stop ***

; TOH count operation stop

1

; * Timer TOH Interrupt Handler

%

*

int_TOH:
inc counter

crl TOCNT,3
reti

.k

; ¥** TOH Interrupt Handler ***

; Clears the timer TOH interrupt source

; * Sound Output-related Routines

.k

*

Sndlnit;

crl P17
ret

Snd1Start:
mov #0fOh, TILR
mov #0f8h,T1LC
mov #0D4h, TICNT
ret

Snd2Start:
mov #0f9h, T1LR
mov #0fch, T1LC
mov #0D4h,TICNT
ret

SndStop:

mov #0,TICNT

ret

; ¥* Sound Output Hardware Initialization ***
; Sets the sound output port

; ¥ Start of 342Hz Tone ***
; Cycles = 100h - 0f0h =16
: L level width = 100h - 0f8h =8
; Sound output start

; ®* Start of 781Hz Tone ***
; Cycles =100h - 0foh =7
: L level width = 100h - Ofch = 4
; Sound output start

; ¥* Sound Stop ***
; Stops sound output

VMT-71

Visual Memory Unit (VMU) Tutorial Revision

Serial Communications (Sending Side)

This sample program uses the serial interface to send data values from 0 to 99.

Caution: Conduct serial communications with crystal oscillation.

Perform reception with the "Serial Communications (Receiving Side)" that is described on the following page.

Line 53 disables automatic low battery detection. The actual routines are "BattChkOn " and "BattChkOff "in line
158 and beyond.

Line 56 initializes the serial interface. The actual initialization routine starts in line 95. This routine is very detailed,
so we recommend simply copying this code and using it as is.

After initialization, a counter is incremented by the base timer interrupt, which is generated every 0.5 seconds. The
value of this counter is sent through the serial interface.

If this program is halted by pressing the MODE button, the standard value is written for the serial interface again
(in the "SioEnd " routine that starts from line 126), automatic low battery detection is enabled again, and the
program ends.

* GHEAD.ASM

001 chip LC868700
002 world external

003 ;* *

004 ;*External header program Ver 1.00*

005 ;* 05/20-'98*
006 ;* *

007

008 public fm_wrt_ex_exit,fm_vrf_ex_exit

009 public fm_prd_ex_exittimer_ex_exit, game_start, game_end
010 other_side_symbolfm_wrt_in,fm_vrf_in

011 other_side_symbolfm_prd_in,timer_in,game_end

012

013 extern main ; Symbol in the user program
014 extern int_BaseTimer ; Symbol in the user program
015

016 ;* *

017 ;*Vector table(?) *

018 ;* *

019 cseg

020 org 0000h
021 _game_start:

022 reset:

023 jmpf main ; main program jump
024 org 0003h

025 ;int 03

026 jmp int_03

027 org 000bh

028 ;int _Ob:

029 jmp int_Ob

VMT-72

C. Sample Program Listings

030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
o077

org 0013h
;int_13:

jmp
org 001bh
;int_1b:

jmp
org 0023h
;int_23:

jmp
org 002bh
;int_2b:

jmp
org 0033h
;int_33:

jmp
org 003bh
;int_3b:

jmp
org 0043h
;int_43:

jmp
org 004bh
;int_4b:

jmp

.k

int_ 13

int_1b

int_23

int_2b

int_33

int_3b

int_43

int_4b

; ¥ interrupt programs

.k

int_03:

reti
int_Ob:

reti
int_13:

reti
int_23:

reti
int_2b:

reti
int_33:

reti
int_3b:

reti

%

int_43:
reti
int_4b:
clrl
reti

p3int,1

; interrupt flag clear

VMT-73

Visual Memory Unit (VMU) Tutorial Revision

078 org 0100h

079 ¥ *
080 ;*flash memory write external program*

081 ;* *

082 fm_wrt_ex:

083 change fm_wrt_in

084 fm_wrt_ex_exit:

085 ret

086 org 0110h

087 ;* *

088 ;*flash memory verify external program®*

089 ;= *

090 fm_wrf_ex:

091 change fm_wrf_in

092 fm_vrf_ex_exit:

093 ret

094

095 org 0120h

096 ;* *

097 ;*flash memory page read external program*
098 ;* *

099 fm_prd_ex:

100 change fm_prd_in

101 fm_prd_ex_exit:

102 ret

103

104 org 0130h

105 ;* *

106 ;*flash memory =>timer call external program*
107 ;* *

108 int_1b:

109 timer_ex:

110 push ie

111 crl ie7 ; interrupt prohibition
112 change timer_in

113 timer_ex_exit:

114 call int_BaseTimer ; User interrupt processing
115 pop ie

116 reti

117

118 org 01f0h

119 _game_end:

120 change game_end
121 end

VMT-74

C. Sample Program Listings

* TIMER1.ASM

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045

: Tab width =4

1

; ®* Serial Communications Sample 1 (Data Transmission) **

; -Sends simple data through the serial communications port on a regular cycle

; 1.01 990208 SEGA Enterprises,LTD.

1

chip LC868700 ; Specifies the chip type for the assembler
world external ; External memory program

public main ; Symbol referenced from ghead.asm
public int_BaseTimer ; Symbol referenced from ghead.asm

extern _game_end ; Application end

; ¥ Definition of System Constants

; OCR (Oscillation Control Register) settings

osc_rc equ 04dh ; Specifiesinternal RC oscillation forthe system clock
osc_ xt equOefh ; Specifies crystal oscillation for the system clock
LowBattChkequ 06eh ; Low battery detection flag (RAM bank 0)

; ** Data Segment

dseg ; Data segment start
r0:ds 1 ; Indirect addressing register rO
rl.ds 1 ; Indirect addressing register r1
r2.ds 1 ; Indirect addressing register r2
r3.ds 1 ; Indirect addressing register r3
ds 12 ; Other registers
counter: ds 1 ; Counter
; ** Code Segment * *

cseg ; Code segment start

VMT-75

Visual Memory Unit (VMU) Tutorial Revision

046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086

ok

; Pushes the PSW value onto the stack
: Selects data RAM bank 1

; Turns off the low battery automatic detection function

; Serial communications initialization

acc,6,finish ; If the [M] button is pressed, the application ends

; Waits until VM is connected

; Waits in HALT mode until next interrupt (0.5 seconds)

; Resets the counter value to "0"

; Waits in HALT mode until next interrupt (0.5 seconds)

; [M] (mode) Button Check

acc,6,finish ; If the [M] button is pressed, the application ends

; ** Application End Processing **
; Serial communications end processing
; Turns on the low battery automatic detection function
; Pops the PSW value off of the stack

; * User program
. %,
main:
push PSW
setl PSW,1
call BattChkOff
cwait:
call Siolnit
bz start : Starts if VM is connected
Id P3 ; [M] button check
bn
jmp cwait
start:
setl pcon,0
mov #0,counter
loopO:
Id counter : Loads the counter value
call SioSendl ; Sends one byte
setl pcon,0
Id P3
bn
jmp loop0 ; Repeat
finish:
cal SioEnd
call BattChkOn
pop PSW
jmp _game_end ; Application end

VMT-76

C. Sample Program Listings

087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

-k

; * Serial Communications Initialization *
; * Outputs:acc =0 : Normal end *
¥ acc = 0Offh: VM not connected *

1

%

*

: Serial communications initialization
; This sample assumes that the system clock is in crystal mode.

Siolnit:

; = \/M Connection Check ***
Id P7 ; Checks the connection status
and #%00001101 : Checks P70, P72, P73
sub #%00001000 ;P70=0,P72=0,P73=1
bz next2 ; To next2 if connected
mov #0ffh,acc; If not connected, abnormal end with acc = Offth
ret ; Siolnit end

next2:

; ¥** Serial Communications Initialization ***
mov #0,SCONO ; Specifies output as 'LSB first'
mov #0,SCON1 ; Specifies input as 'LSB first'
mov #0ddh,SBR ; Sets the transfer rate
crl P10 ; Clears the P10 latch (P10/S00)
crl P12 ; Clears the P12 latch (P12/SCKO)
crl P13 ; Clears the P13 latch (P13/S01)
mov #%00000101,P1FCR ; Sets the pin functions
mov #%00000101,P1DDR ; Sets the pin functions
mov #0,SBUFO ; Clears the transfer buffer
mov #0,SBUF1 ; Clears the transfer buffer
ret ; Siolnit end

. % *
; * Serial Communications End *
. % *
SioEnd: ; ¥ Serial Communications End Processing **
mov #0,SCONO ; SCONO=0
mov #0,SCON1 ;SCON1=0
mov #0bfh,PLIFCR ; P1FCR = 0Obfh
mov #0a4h,P1DDR ; P1DDR =0a4h
ret ; SioEnd end

VMT-77

Visual Memory Unit (VMU) Tutorial Revision

136 ;* *

137 ;*Sending 1 Byte from a Serial Port *

138 ;* Inputs: acc: Transmission data *

139 ;= *

140 SioSend1: ; ¥ Sending 1 Byte ***

141

142 push acc ; Pushes the transmission data onto the stack
143

144 sslpl: d SCONO ; Walts, ifthe previous data is still being sent
145 bp acc,3,sslpl ;

146

147 pop acc ; Pops the transmission data off of the stack
148

149 st SBUFO ; Sets the data to be transferred

150 setl SCONO,3 ; Starts sending

151

152 ret ; SioSend1 end

153

154

155 ;= *

156 ;* Low Battery Automatic Detection Function ON*

157 ;= *

158 BattChkOn:

159 push PSW : Pushes the PSW value onto the stack

160

161 crl PSW,1 ; Selects data RAM bank 0

162 mov #0,acc ; Detects low battery (0)

163 st LowBattChk ; Low battery automatic detection flag (RAM bank 0)
164

165 pop PSW ; Pops the PSW value off of the stack

166 ret ; BattChkOn end

167

168

169 ;= *

170 ;* Low Battery Automatic Detection Function OFF*

171 ;> *

172 BattChkOff:

173 push PSW ; Pushes the PSW value onto the stack

174

175 crl PSW,1 ; Selects data RAM bank O

176 mov #0ffh,acc ; Does not detect low battery (Offh)

177 st LowBattChk ; Low battery automatic detection flag (RAM bank 0)
178

179 pop PSW ; Pops the PSW value off of the stack

180 ret ; BattChkOff end

181

182

VMT-78

C. Sample Program Listings

183 ;*

184 ;*Base Timer Interrupt Handler

185 ;%

186 int_BaseTimer:

187
188
189
190
191
192
193
194
195
196
197 nextl:
198
199
200
201
202

push PSW
push acc
setl PSW,1

inc counter

Id counter
bne #100,nextl
mov #0,counter

pop acc
pop PSW
crl BTCR\1
ret

; Pushes the PSW value onto the stack

; Selects data RAM bank 1
; Increments the counter
: If the counter value is:
: not 100, then nextl
; 100, then reset to '0'

; Pops the PSW value off of the stack

; Clears the base timer interrupt source
; User interrupt processing end

VMT-79

Visual Memory Unit (VMU) Tutorial Revision

Serial Communications (Receiving Side)

This sample program uses the serial interface to receive data.

Because this program is intended to primarily explain serial communications, it does not use SIO interrupts. For
details on serial communications in actual practice, refer to the "General-purpose Serial Driver," described on the
next page.

The program stops automatic low battery detection and initializes the serial interface.

Line 64 checks whether there is a byte of data in the serial interface. If there is, the received data is converted to a
decimal value by the "put2digit " routine and is displayed on the LCD.

If this program is halted by pressing the MODE button, the standard value is written for the serial interface again
(in the "SioEnd " routine that starts from line 121), automatic low battery detection is enabled again, and the
program ends.

Caution: If data is sent before reception processing is completed, a data overflow occurs. This is not a problem in
this sample program because the "Serial Communications (Sending Side)" sample program sends data
every 0.5 seconds.

When receiving data consecutively, use the SIO interrupts.

001 ;Tabwidth=4

002

003 ;

004 ;** Serial Communications Sample 2 (Data Reception) **

005 ;

006 ; -Displays a numeric value that was received from the serial communications
port on the LCD

007 ;

008 ;1.01990208 SEGA Enterprises,LTD.

009 ;

010

011 chip LC868700 ; Specifies the chip type for the assembler

012 world external ; External memory program

013

014 public main ; Symbol referenced from ghead.asm

015

016 extern _game_end ; Application end

017

018

019 ;*** Definition of System Constants

020

021 ; OCR (Oscillation Control Register) settings

022 osc_rc equ04dh ; Specifies internal RC oscillation for the system clock

023 osc_xt equOefh ; Specifies crystal oscillation for the system clock

024

025 LowBattChkequ 06eh ; Low battery detection flag (RAM bank 0)

026

027

028 ;** Data Segment

029

VMT-80

C. Sample Program Listings

030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
o077
078
079
080
081
082

dseg ; Data segment start
r0: ds 1 ; Indirect addressing register rO
rl: ds 1 ; Indirect addressing register r1
r2: ds 1 ; Indirect addressing register r2
r3: ds 1 ; Indirect addressing register r3
ds 12 ; Other registers
counter:ds 1 ; Counter
workl: ds 1 ; Work (used in put2digit)
; ** Code Segment ok * * ok
cseg ; Code segment start
-k *
; * User program *
% *
main:
cal cls ; Clears the LCD display
call BattChkOff ; Turns offthe low battery automatic detection function
cwait:
cal Siolnit ; Serial communications initialization
bz start : Starts if VM is connected
Id P3 ; [M] button check
bn acc,6,finish ; If the [M] button is pressed, the application ends
jmp cwait ; Waits until VM is connected
start:
loopO:
cal SioRecvl ; Receives one byte
bnz next4 ; If there is no received data, then goes to next4
Id b : Loads the received data into acc
mov #2,c ; Display coordinates (horizontal)
mov #1,b ; Display coordinates (vertical)
call put2digit ; Displays the two-digit value on the LCD
next4: ; * [M] (mode) Button Check **
Id P3
bn acc,6,finish ; If the [M] button is pressed, the application ends
jmp loop0 ; Repeat
finish: ; ** Application End Processing **
cal SioEnd ; Serial communications end processing
call BattChkOn ; Turns on the low battery automatic detection function
jmp _game_end ; Application end

VMT-81

Visual Memory Unit (VMU) Tutorial Revision

083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

ok

; * Serial Communications Initialization *
; * Outputs:acc =0 : Normal end *
P * acc = 0ffh: VM not connected *

C %

*

: Serial communications initialization
; This sample assumes that the system clock is in crystal mode.

Siolnit:
; #** \/M Connection Check ***
Id P7 ; Checks the connection status
and #%00001101 : Checks P70, P72, P73
sub #%00001000 :P70=0,P72=0,P73=1
bz next3 ; To next3 if connected
mov #0ffh,acc ; If not connected, abnormal end with acc = Ofth
ret ; Siolnit end
next3:
; =+ Sarial Communications Initialization ***
mov #0,SCONO ; Specifies output as 'LSB first’
mov #0,SCON1 ; Specifies input as 'LSB first'
mov #088h,SBR ; Sets the transfer rate
crl P10 ; Clears the P10 latch (P10/S00)
crl P12 ; Clears the P12 latch (P12/SCKO)
crl P13 ; Clears the P13 latch (P13/S01)
mov #%00000101,P1FCR ; Sets the pin functions
mov #%00000101,P1DDR ; Sets the pin functions
mov #0,SBUFO : Clears the transfer buffer
mov #0,SBUF1 : Clears the transfer buffer
ret ; Siolnit end
; * Serial Communications End *
.- % *
SioEnd: ; * Serial Communications End Processing ****
mov #0,SCONO :SCON0=0
mov #0, SCON1 ; SCON1=0
mov #0bfh,PIFCR ; P1FCR = Obfh
mov #0a4h,P1DDR ;P1DDR =0a4h
ret ; SioEnd end

VMT-82

C. Sample Program Listings

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

-k

; * Receiving 1 Byte from a Serial port *
; * Outputs: b: Received data *

I
,
-k
1
-k

acc =0 : Received data found *
acc = Offh: Received data not found*

*

SioRecv1:

; ¥ Receiving 1 Byte ****
Id SCON1
bp acc,1,nexts ; If received data is found, then go to next5
bp acc,3,next6 ;Iftransferis currently in progress, then goto nexté
setl SCONL1,3 ; Starts transfer
next6:
mov #0ffh,acc; Returns with acc = Offh (received data not found)
ret ; SioRecvl end
nexts:
Id SBUF1 ; Loads the received data
st b ; Copies the data into b
crl SCONL1,1 ; Resets the transfer end flag
mov #0,acc ; Returns with acc = 0 (received data found)
ret ; SioRecvl end
; * Displaying a two-digit value *
; * Inputs: acc: Numeric value *
i ¢: Horizontal position of character*
i * b: Vertical position of character*
. % *
put2digit:
push b ; Pushes the coordinate data onto the stack
push ¢ ;
st c ; Calculates the tens digit and the ones digit
xor a ; (acc = acc/10, workl = acc mod 10)
mov #10,b ;
div :
Id b ;
st workl ; Stores the ones digit in work1
Id c :
pop c ; Pops the coordinate values into (c, b)
pop b ;
push b ; Pushes the coordinates onto the stack again
push ¢ ;
call putch ; Displays the tens digit
Id workl ; Loads the ones digit
pop c ; Pops the coordinate values into (c, b)
pop b ;
inc c ; Moves the display coordinates to the right
cal putch ; Displays the ones digit
ret ; put2digit end

VMT-83

Visual Memory Unit (VMU) Tutorial Revision

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

ok

; * Clearing the LCD Display Image *
.- % *
cls:
push OCR ; Pushes the OCR value onto the stack
mov #osc_rc,OCR ; Specifies the system clock
mov #0,XBNK ; Specifies the display RAM bank address (BANKO)
cal cls s ; Clears the data in that bank
mov #1,XBNK ; Specifies the display RAM bank address (BANK1)
cal cls_s : Clears the data in that bank
pop OCR ; Pops the OCR value off of the stack
ret ; Cls end
cls_s: ; ** Clearing One Bank of Display RAM ***
mov #80h,r2 ; Points the indirect addressing register atthe
start of display RAM
mov #30h,b ; Sets the number of loops in loop counter b
loop3:
mov #0,@r2 ; Writes "0" while incrementing the address
inc r2 ;
donz b,loop3 ; Repeats until b is "0"
ret ; Cls_send

.k,

; * Displaying One Character in a Specified Position*
; * Inputs: acc: Character code *

¢: Horizontal position of character*

b: Vertical position of character*
*

push
push
call
pop
call

pop

ret

XBNK
acc
locate
acc
put_chara
XBNK

; Calculates display RAM address according to coordinates

; Displays one character

; putch end

VMT-84

C. Sample Program Listings

231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

locate: ; **** Calculating the Display RAM Address According to the Display

Position Specification ****

; ** Inputs: ¢: Horizontal position (O to 5) b: Vertical position (0 to 3)
;¥ Outputs: r2: RAM address XBNK: Display RAM bank

nextl:

next2:

; ** Determining the Display RAM Bank Address ***

Id b ; Jump to nextl when b >=2

sub #2 :

bn PSW,7,nextl ;

mov #00h,XBNK ; Specifies the display RAM bank address (BANKO)
br next2

st b

mov #01h,XBNK ; Specifies the display RAM bank address (BANK1)

; ¥* Calculating the RAM Address for a Specified Position on the Display ***

put_chara:

Id b ; b*40h + ¢ +80h
rol ;
rol ;
rol ;
rol ;
rol ;
rol ;
add c ;
add #80h :
st r2 ; Stores the RAM address in r2
ret ; locate end
push PSW ; Pushes the PSW value onto the stack
setl PSW,1 ; Selects data RAM bank 1
; ¥* Calculating the Character Data Address ***

rol ; (TRH,TRL) = acc*8 + fontdata
rol ;

rol ;

add #low(fontdata) ;

st TRL ;

mov #0,acc ;

addc #high(fontdata) ;

st TRH ;

push OCR ; Pushes the OCR value onto the stack
mov #osc_rc,OCR ; Specifies the system clock

mov #0,b ; Offset value for loading the character data

mov #4.c ; Loop counter

VMT-85

Visual Memory Unit (VMU) Tutorial Revision

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

loop1:

-k,

Id b ; Loads the display data for the first line

Idc ;

inc b ; Increments the load data offset by 1

st @r2 ; Transfers the display data to display RAM
Id r2 ; Adds 6 to the display RAM address

add #6 ;

st r2 ;

Id b ; Loads the display data for the second line
Idc ;

inc b ; Increments the load data offset by 1

st @r2 ; Transfers the display data to display RAM
Id r2 ; Adds 10 to the display RAM address

add #10 ;

st r2 ;

dec c ; Decrements the loop counter

Id c ;

bnz loopl ; Repeats for 8 lines (four times)

pop OCR ; Pops the OCR value off of the stack
pop PSW ; Pops the PSW value off of the stack

ret ; put_chara end

; * Character Bit Image Data

%

fontdata:

db 07ch, 0e6h, Oc6h, Oc6h, Oc6h, Oceh, 07ch, 000h
db 018h, 038h, 018h, 018h, 018h, 018h, 03ch, 000h
db 07ch, 0c6h, 0c6h, 00ch, 038h, 060h, Ofeh, 000h
db 07ch, 0e6h, 006h, 01ch, 006h, Oe6h, 07ch, 000h
db 00ch, 01ch, 03ch, 06ch, Occh, Ofeh, 00ch, 000h
db Ofeh, 0cOh, Ofch, 006h, 006h, Oc6h, 07ch, 000h
db 01ch, 030h, 060h, Ofch, Oc6h, 0c6h, 07ch, 000h
db 0Ofeh, Oc6h, 004h, 00ch, 018h, 018h, 038h, 000h
db 07ch, Oc6h, Oc6h, 07ch, Oc6h, Oc6h, 07ch, 000h
db 07ch, 0c6h, 0céh, 07eh, 006h, 00ch, 078h, 000h

;000
;'1'01
;'2'02
;'3'03
;'4'04
;'5'05
;'6'06
;707
;'8'08
;'9'09

VMT-86

C. Sample Program Listings

324 ;> *

325 ;*Low Battery Automatic Detection Function ON*

326 ;* *

327 BattChkOn:

328 push PSW ; Pushes the PSW value onto the stack
329

330 crl PSW,1 ; Selects data RAM bank O

331 mov #0,acc ; Detects low battery (0)

(3;)32 st LowBattChk ; Low battery automatic detection flag (RAM bank
333

334 pop PSW ; Pops the PSW value off of the stack
335 ret ; BattChkOn end

336

337

338 ;* *

339 ;*Low Battery Automatic Detection Function OFF*

340 ;* *

341 BattChkOff:

342 push PSW ; Pushes the PSW value onto the stack
343

344 crl PSW,1 ; Selects data RAM bank 0

345 mov #0ffh,acc; Does not detect low battery (Offh)

(3;)46 st LowBattChk ; Low battery automatic detection flag (RAM bank
347

348 pop PSW ; Pops the PSW value off of the stack
349 ret ; BattChkOff end

VMT-87

Visual Memory Unit (VMU) Tutorial Revision

General-purpose Serial Driver

This is a serial transmission/reception program that uses a general-purpose serial driver with a buffer that uses the
port 3 interrupt.

If this program is executed on two Visual Memory units, it can be used to send data back and forth between the
units and to display the data on their LCDs.

The main routine checks the reception buffer and, if data is found, it gives the highest priority to displaying the
received data on the LCD. If the buffer is empty, the program outputs the data to be sent ("0" to "99"). The data that
is to be sent is incremented once every 0.5 seconds in response to the base timer interrupt.

The "Siolnit " routine in lines 128 to 161 confirm that Visual Memory is connected, initialize the interface, initialize
the buffer (RAM), and enable the SIO interrupts. The "SioGet1" routine in lines 203 to 245 get one byte of data that
is waiting in the reception buffer.

1

The SIO reception handler, which operates when an SIO interrupt is received, is the "int_SioRx " routine in lines

278 to 317. The received data is stored in the buffer.

Caution: ~ When performing communications using this sample program on both the receiving side and the
sending side, no data overflow occurs, but when transferring data consecutively, a wait for a fixed time
period should be inserted after each send.

If this sample program is used with the previous "Serial Communications (Receiving Side)" sample program, data
overflows will occur and smooth communications will not be possible.

* GHEAD.ASM

001 chip LC868700
002 world external

003 ;* *

004 ;*External header program Ver 1.00*

005 ;* 05/20-'98*
006 ;* *

007

008 public fm_wrt_ex_exit,fm_vrf_ex_exit

009 public fm_prd_ex_exittimer_ex_exit, game_start, game_end
010 other_side_symbolfm_wrt_in,fm_vrf_in

011 other_side_symbolfm_prd_in,timer_in,game_end

012

013 extern main ; Symbol in the user program
014 extern int_BaseTimer ; Symbol in the user program

015 extern int_SioRx ; Symbol in the user program

016

VMT-88

C. Sample Program Listings

017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

.k

; * Vector table(?)

.k

cseg
org 0000h
_game_start:
;reset:

org 0003h
;int_03:

org 000bh
;int_0Ob:

org 0013h
;int_13:

org 001bh
;int_1b:

org 0023h
;int_23:

org 002bh
;int_2b:

org 0033h
;int_33:

org 003bh
;int_3b:

org 0043h
;int_43:

org 004bh
;int_4b:

jmpf

jmp

jmp

jmp

jmp

jmp

jmp

jmp

jmp

jmp

jmp

main

int_03

int_Ob

int_13

int_1b

int_23

int_2b

int_33

int_3b

int_43

int_4b

; main program jump

VMT-89

Visual Memory Unit (VMU) Tutorial Revision

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097

. % *
; * interrupt programs *
P *
int_03:

reti
int_Ob:

reti
int_13:

reti
int_23:

reti
int_2b:

reti
int_33:

reti
int_3b:

jmp int_SioRx

* *
int_43:

reti
int_4b:

crl p3int,1

reti
org 0100h
. % *

; * flash memory write external program*

- %, *
’

fm_wrt_ex:

change fm_wrt in
fm_wrt_ex_exit:
ret
org 0110h

-k *
’

; * flash memory verify external program*

-k, *
)

fm_vif_ex:

change fm_wrf_in
fm_wrf_ex_exit:
ret

org 0120h

; SIO reception interrupt handler

; interrupt flag clear

VMT-90

C. Sample Program Listings

098 ;* *

099 ;*flash memory page read external program*
100 ;* *

101 fm_prd_ex:

102 change fm_prd_in

103 fm_prd_ex_exit:

104 ret

105

106 org 0130h

107 ;* *

108 ;*flash memory => timer call external program *
109 ;= *

110 int 1b:

111 timer_ex:

112 push e

113 crl ie7 ; interrupt prohibition
114 change timer_in

115 timer_ex_exit:

116 cal int_BaseTimer ; (User interrupt processing)
117 pop ie

118 reti

119

120 org 01f0h

121 _game_end:

122 change game_end
123 end

* TIMER1.ASM

001 ;Tabwidth=4
002
003 ;
004 ;** Serial Communications Sample 3 (Interrupt-Driven Serial Driver with
Reception Buffer) **
005 ;
006 ;-Demonstrates the usage of a serial communications driver with a 16-byte
reception buffer
007 ; -Displays the received data values
008 ; -Sends simple data on a regular cycle

009 ;

010 ;1.01 990208 SEGA Enterprises,LTD.

011 ;

012

013 chip LC868700 ; Specifies the chip type for the assembler
014 world external ; External memory program

015

016 public main ; Symbol referenced from ghead.asm
017 public int_BaseTimer ; Symbol referenced from ghead.asm
018 public int_SioRx ; Symbol referenced from ghead.asm
019

020 extern _game_end ; Application end

021

022

VMT-91

Visual Memory Unit (VMU) Tutorial Revision

023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062

; ¥+ Definition of System Constants * ok ok ok

; OCR (Oscillation Control Register) settings

osc_rc equ 04dh ; Specifies internal RC oscillation for the system clock
osc_xt equ Oefh ; Specifies crystal oscillation for the system clock
LowBattChk equ 06eh ; Low battery detection flag (RAM bank 0)
SioRxCueSizeequ 16 ; Serial communications buffer size

; ¥ Data Segment

dseg ; Data segment start
r0:ds 1 ; Indirect addressing register rO
rl.ds 1 ; Indirect addressing register r1
r2.ds 1 ; Indirect addressing register r2
r3:ds 1 ; Indirect addressing register r3
ds 12 ; Other registers
; ** For Serial Driver **
SioRxCueBehind: ds 1 ; Amount of received data waiting
SioRxCueRPnt: ds 1 ; Reception buffer reading point
SioRxCueWPnt: ds 1 ; Reception buffer writing point
SioRxCue: ds SioRxCueSize ; Reception buffer
SioOverRun: ds 1 ; Reception overrun flag
; ¥ Work Areas for Usage Sample **
bcount; ds 1 : Base clock counter
work1: ds 1 ;Work 1
work2: ds 1 : Work 2
workO: ds 1 ; Work (put2digit)
; ¥* Code Segment * * * *
cseg ; Code segment start

VMT-92

C. Sample Program Listings

063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

-k

; * Serial Communications Driver Usage Sample *
; * Sends simple data at a regular interval *
; * Displays the received data values on the LCD*

.k

1

main:

stipl:

error:

stnx3:

stnx1:

stnx2:
stnx4:

finish:

br

mov #0,bcount

mov #0,work1 : Initial value of transmission data

crl P3INT,0 ; Masks P3 interrupts

call cls ; Clears the LCD

call BattChkOff ; Turns offthe low battery automatic detection function
call Siolnit ; Serial communications initialization

bnz finish ; Ends if VM is not connected

; ** Displaying If Data Has Been Received ***

cal SioGetl ; 1-byte reception
be #0ffh,stnx1 ; Skip if no data has been received
bz Stnx3 ; If normal received data is found, go to stnx3
finish ; Forcibly terminate if an error is detected
Id b ; Load received data from b -> acc
mov #0,c ; Display coordinate (horizontal)
mov #0,b ; Display coordinate (vertical)
cal put2digit ; Displays numeric value on the LCD
br stipl ; Continues to repeat as long as there is received data
setl pcon,0 ; Waits until next interrupt

; ** Sending Simple Data at a Regular Interval ***

Id bcount : Base timer counter value

be work2,stnx4 ; Does not send if unchanged

st work?2 ; Updates work2

Id workl ; Loads the transmission data

cal SioPutl ; Sends

inc workl ; Updates the transmission data

Id workl ; (Sends values form 0 to 99, in sequence)

bne #100,stnx2 ;
mov #0,work1 ;

; ** [M] (mode) Button Check **

Id P3
bn acc,6,finish ; If the [M] button is pressed, the application ends
jmp stipl ; Repeat
; ** Application End Processing **
cal SioEnd ; Serial communications end processing
call BattChkOn ; Turns on the low battery automatic detection function
jmp _game_end ; Application end

VMT-93

Visual Memory Unit (VMU) Tutorial Revision

119 ;*

120 ;*** Simple Serial Communications Driver =~

121 ;=

122

123 ;* *

124 :* Serial communications initialization *

125 ;*

126 ;* This sample assumes that the system clock is in crystal mode.*

127 ;= *

128 Siolnit:

129 ; ¥+ \/M Connection Check ***
130 Id P7 : Checks the connection status
131 and #%00001101 ; Checks P70, P72, P73

132 be #%000001000,next3 ;P70=0,P72=0,P73=1

133 ; To next3 if connected

134 mov #0ffh,acc ; If not connected, abnormal end with acc = Offh
135 ret ; Siolnit end

136 next3:

137

138 ; ¥ Serial Communications Initialization ***
139 mov #0,SCONO ; Specifies output as 'LSB first’

140 mov #0,SCON1 ; Specifies input as 'LSB first'

141 mov #0ddh,SBR ; Sets the transfer rate

142 crl P10 ; Clears the P10 latch (P10/S00)
143 crl P12 ; Clears the P12 latch (P12/SCKO)
144 crl P13 ; Clears the P13 latch (P13/S01)
145

146 mov #%00000101,P1FCR ; Sets the pin functions

147 mov #%00000101,P1DDR ; Sets the pin functions

148

149 mov #0,SBUFO ; Clears the transfer buffer

150 mov #0,SBUF1 ; Clears the transfer buffer

151

152 mov #0,acc

153 st SioRxCueBehind ; Resets amount of received data waiting
154 st SioRxCueRPnt ; Reception buffer reading point
155 st SioRxCueWPnt ; Reception buffer writing point
156 st SioOverRun ; Resets reception overrun flag
157

158 setl SCONL1,0 ; Receiving side transfer end interrupt enable
159 setl SCONL1,3 ; Receiving standby

160

161 ret ; Siolnit end

162

163

VMT-94

C. Sample Program Listings

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

% *
; * Serial Communications End *
-k *
SioEnd: ; ¥ Serial Communications End Processing **
mov #0,SCONO :SCONO=0
mov #0, SCON1 ;SCON1=0
mov #0bfh,P1FCR ; PIFCR = Obfh
mov #0a4h,P1DDR ; PLDDR = 0a4h
ret ; SioEnd end
% *
; * Sending 1 Byte *
. % *
; * Inputs: acc: Transmission data *
SioPutl:
push acc ; Pushes the transmission data onto the stack
splpl: Id SCONO ; Waits until any previous transfer is completed
bp acc,3,splpl ;
pop acc ; Pops the transmission data off of the stack
st SBUFO ; Sets the data to be transferred
setl SCONO,3 ; Starts sending
ret ; SioPutl end
. % *

; * Reading 1 Byte from the Reception Buffer (Asynchronous Reception)*

. % *
; * Outputs: acc: 0 = Normal end *
i * Offh = No received data *
i Ofeh = Buffer overflow *
i Ofdh = Overrun error *
* b: Received data (Valid only in the case of normal end.)*
. % *
SioGetl:
; ** Waiting Data Amount check**

Id SioRxCueBehind ; Waiting amount of data

bnz sgnx1 ; When waiting amount =0

mov #0ffh,acc ; When waiting amount ==

ret ; Returns when acc = Offh (no received data)

sgnx1:
; ** Buffer Overflow Detection **
: SioRxCueBehind - SioRxCueSize
be #SioRxCueSize,sgnx3 ; SioRxCueBehind == SioRxCueSize
bp PSW,7,sgnx3 ; SioRxCueBehind < SioRxCueSize

VMT-95

Visual Memory Unit (VMU) Tutorial Revision

214 ; SioRxCueBehind > SioRxCueSize
215 mov #0feh,acc ; When the buffer capacity has been exceeded
216 ret ; Return when acc = Ofeh (buffer overflow)
217 sgnx3:

218 ; ** Overrun Error Detection **

219 Id SioOverRun ; Overrun flag

220 bz sgnx4 ; Not detected

221 mov #0fdh,acc ; Detected

222 ret ; Return when acc = 0fdh (overrun error)
223 sgnx4:

224

225 dec SioRxCueBehind ; dec waiting amount

226

227 ; ** Calculating the received data reading point
228 Id SioRxCueRPnt ; 10 = SioRxCue + SioRxCueRPnt

229 add #SioRxCue ;

230 st r0 ;

231

232 inc SioRxCueRPnt ; inc data reading point

233

234 ; ¥ If reading point = buffer size,

235 ; ** then reading point is reset to 0

236 ld SioRxCueRPnt

237 bne #SioRxCueSize,sgnx2 ; When SioRxCueRPnt = SioRxCueSize
238 mov #0,SioRxCueRPnt ; When SioRxCueRPnt == SioRxCueSize
239 sgnx2:

240

241 Id @r0 ; Loads the input data into acc

242 st b ; Stores the value in b

243 mov #0,acc ; acc =acc = 0 (normal end, data exists)
244

245 ret ; SioGetl end

246

247

248 ;% *

249 ;*Reading 1 Byte from the Reception Buffer *

250 ;*(Ifthere is no received data, this routine waits until data is received)*

251 ;*

252 ;*Outputs: acc: 0 = Normal end *

253 ;% Ofeh = Buffer overflow *

254 % 0Ofdh = Overrun error *

255 ;% b: Received data (Valid only in the case of normal end.)*

256 ;% *

257 SioGet1W:

258 call SioGetl ; Asynchronous reception

259 be #0ffh,SioGetlW ; Waits until data is received

260

261 ret : SioGet1W end

262

263

VMT-96

C. Sample Program Listings

264 ;* *

265 ;* Getting the Amount of Data Waiting in the Reception Buffer*

266 ;% *
267 ;*Output: acc: Amount of data (bytes) *

268 ;= *

269 SioGetRxLen:

270 Id SioRxCueBehind ; Amount waiting

271

272 ret ; SioGetRxLen end

273

274

275 ;* *

276 ;* SIO Reception Interrupt Handler *

277 *

278 int_SioRx:

279 push acc ; Pushes the register to be used onto the stack
280 push PSW ;

281 setl PSW,1 ; Selects data RAM bank 1

282 push 10 ; Pushes the register onto the stack
283

284 ; ** Calculating the Writing Point **
285 Id SioRxCueWPnt ; 10 = SioRxCue + SioRxCueWPnt
286 add #SioRxCue ;

287 st r0 ;

288

289 Id SBUF1 ; Loads the received data

290 st @r0 : Writes the data to the buffer

291

292 inc SioRxCueWPnt ; Writing point ++

293

294 ; ** Resets the writing point once it
295 ; ** reaches the buffer size

296 Id SioRxCueWPnt :

297 bne #SioRxCueSize,isnx1 ;

298 mov #0,SioRxCueWPnt ;

299 isnxl:

300

301 inc SioRxCueBehind ; Data Waiting Amount ++

302

303 crl SCON1,1 ; Resets the transfer end flag

304

305 ; * Checking the Overrun Error **
306 bn SCONL1,6,isnx2 ; If an overrun has not occurred, then isnx2
307 mov #1,SioOverRun ; If an overrun has occurred -> Sets flag
308 crl SCONL1,6 ; Resets overrun flag

309 isnx2:

310

311 setl SCON1,3 : Starts the next transfer

312

313 pop r0 ; Pops the register to be used off of the stack
314 pop PSW ;

315 pop acc ;

316

317 reti ;int_SioRx end

318

319

VMT-97

Visual Memory Unit (VMU) Tutorial Revision

320
321
322
323
324
325

326 put2digit:

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

368

ok

; * Displaying a Two-digit Value
; * Inputs: acc: Numeric value
¢: Horizontal position of character *
b: Vertical position of character *

-k
’

-
)

.k,

*

-k,

push
push
st
xor
mov
div

pop
pop
push
push
call

pop
pop
inc

call

ret

O 0o T

#10,b

workO

; Pushes the coordinate data onto the stack

; Calculates the tens digit and the ones digit
; (acc = acc/10, workO = acc mod 10)

; Stores the ones digit in workO

; Pops the coordinate values into (c, b)

; Pushes the coordinates onto the stack again

; Displays the tens digit
; Loads the ones digit
; Pops the coordinate values into (c, b)
; Moves the display coordinates to the right
; Displays the ones digit

; put2digit end

; * Clearing the LCD Display Image

.k,

cls:

cls_s:

push
mov

mov
call

mov
call

pop

ret

mov

mov

OCR

#osc_rc,OCR

#0,XBNK
cls s

#1,XBNK
cls_s
OCR

#80h,r2

#80h,b

; Pushes the OCR value onto the stack
; Specifies the system clock

; Specifies the display RAM bank address (BANKO)
; Clears the data in that bank

; Specifies the display RAM bank address (BANK1)
: Clears the data in that bank
; Pops the OCR value off of the stack

;clsend

; ¥* Clearing One Bank of Display RAM ***

; Points the indirect addressing register at the start
of display RAM

; Sets the number of loops in loop counter b

VMT-98

C. Sample Program Listings

369
370
371
372
373
374
375
376
377
378
379
380
381

382;

383
384
385
386

387
388
389
390
391
392
393
394

395
396
397
398

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

loop3:

mov #0,@r2 ; Writes "0" while incrementing the address
inc r2 ;

dbnz b,loop3 ; Repeats until b is "0"

ret ;cls_send

*

Displaying One Character in a Specified Position*
Inputs: acc: Character code *

¢: Horizontal position of character*
b: Vertical position of character*

*

locate:

push XBNK

push acc

call locate ; Calculates display RAM address according
to coordinates

pop acc

call put_chara ; Displays one character

pop XBNK

ret ; putch end

; ¥+ Calculating the Display RAM Address According to the Display

Position Specification ****

; ** Inputs: ¢: Horizontal position (O to 5) b: Vertical position (0 to 3)
; ** Outputs: r2: RAM address XBNK: Display RAM bank

nextl:

next2:

; ** Determining the Display RAM Bank Address

Id b ; Jump to nextl when b >=2

sub #2 ;

bn PSW,7,next1 ;

mov #00h,XBNK ; Specifies the display RAM bank address (BANKO)
br next2

st b

mov #01h,XBNK ; Specifies the display RAM bank address (BANK1)

; ** Calculating the RAM Address for a Specified Position on the Display ***

Id b ;b*40h + ¢ +80h
rol ;

rol ;

rol ;

rol ;

VMT-99

Visual Memory Unit (VMU) Tutorial Revision

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
a41
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

put_chara:

loopl:

rol
rol
add
add
st

ret

push
setl

rol
rol
rol
add
st
mov
addc
st

push
mov

mov
mov

Idc
inc
st
Id
add
st

Id
Idc
inc
st
Id
add
st

dec

Id
bnz

pop
pop

ret

C
#80h
r2

PSW
PSW,1

; Stores the RAM address in r2

; locate end

; Pushes the PSW value onto the stack
; Selects data RAM bank 1

; * Calculating the Character Data Address ***

#low(fontdata);
TRL

#0,acc
#high(fontdata);
TRH

OCR
#osc_rc,OCR

#0,b
#4.c

b

b
@r2
r2
#6
r2

b

b
@r2
r2

#10
r2

loopl

OCR
PSW

; (TRH,TRL) = acc*8 + fontdata

; Pushes the OCR value onto the stack
; Specifies the system clock

; Offset value for loading the character data
; Loop counter

; Loads the display data for the first line

; Increments the load data offset by 1
; Transfers the display data to display RAM
; Adds 6 to the display RAM address

; Loads the display data for the second line

; Increments the load data offset by 1
; Transfers the display data to display RAM
; Adds 10 to the display RAM address

; Decrements the loop counter
; Repeats for 8 lines (four times)

; Pops the OCR value off of the stack
; Pops the PSW value off of the stack

; put_chara end

VMT-100

C. Sample Program Listings

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

% *
; * Character Bit Image Data *
o *
fontdata:
db 07ch, Oe6h, Oc6h, Oc6h, Oc6h, Oceh, 07ch, 000h ;0
db 018h, 038h, 018h, 018h, 018h, 018h, 03ch, 000h -
db 07ch, Oc6h, Oc6h, 00ch, 038h, 060h, Ofeh, 000h ;
db 07ch, Oe6h, 006h, 01ch, 006h, 0e6h, 07ch, 000h ;3
db 00ch, 01ch, 03ch, 06ch, Occh, Ofeh, 00ch, 000h 4
db Ofeh, 0cOh, Ofch, 006h, 006h, Oc6h, 07ch, 000h ;5
db 01ch, 030h, 060h, Ofch, Oc6h, 0c6h, 07ch, 000h ;6
db Ofeh, 0c6h, 004h, 00ch, 018h, 018h, 038h, 000h 7
db 07ch, Oc6h, Oc6h, 07ch, Oc6h, 0céh, 07ch, 000h ;8
db 07ch, Oc6h, Oc6h, 07eh, 006h, 00ch, 078h, 000h ;9
- % *
; * Low Battery Automatic Detection Function ON*
% *
BattChkOn:
push PSW ; Pushes the PSW value onto the stack
crl PSW,1 ; Selects data RAM bank 0
mov #0,LowBattChk ; Detects low battery (0)
pop PSW ; Pops the PSW value off of the stack
ret ; BattChkOn end
; * Low Battery Automatic Detection Function OFF*
.« % *
BattChkOff:
push PSW ; Pushes the PSW value onto the stack
crl PSW,1 ; Selects data RAM bank 0
mov #0ffh,LowBattChk ; Does not detect low battery (Offh)
pop PSW ; Pops the PSW value off of the stack
ret ; BattChkOff end
o *
; * Base Timer Interrupt Handler *
o *
int_BaseTimer:
crl btcr,l ; Clears the base timer interrupt source
inc bcount : Counter ++
ret ; User interrupt processing end

VMT-101

Visual Memory Unit (VMU) Tutorial Revision

Reading and Writing Flash Memory

This sample program writes, reads, and verifies flash memory, and displays the characters "SEGA" one at a time
upon the completion of each phase.

Lines 60 to 78 prepare, in RAM, the data that will be written in flash memory. The data values range from 0 to 128,
and are set in addresses 10H through 8FH in bank 1 of RAM, using the indirect address register. Once the data
preparation phase is completed, the program displays an "S" on the LCD.

Lines 91 to 102 set the parameters for calling system BIOS, and disable automatic low battery detection.

Lines 104 to 115 switch the system clock to 1/6 RC before calling the system BIOS. The system clock is switched back
to the original clock (crystal oscillation) after the system BIOS has been called.

After switching the clock, the program enables automatic low battery detection and then displays an "E".

Caution: Disable all interrupts, including the base timer, while flash memory is being accessed. Because the
built-in clock function is used by the base timer, keep the length of time that interrupts are disabled as
short as possible.

When writing to flash memory, set the system clock to 1/6 RC. When loading from flash memory, 1/12
RC is also permissible.

Lines 128 to 146 uses the system BIOS' verify function to compare the data that was written into flash memory with
the data in RAM. If the data matches exactly, the program displays a "G" on the LCD. If the data does not match and
the system BIOS returned an error, the program does not display a "G" but does execute the next phase.

Lines 159 to 173 load into RAM the data that was written in flash memory. The data that is loaded is verified by the
program's own compare routine starting in line 172. If the data matches completely, the program displays an "A" on
the LCD and then terminates. If the data does not match, the program terminates without displaying an "A".

If the "G" or "A" is not displayed, it indicates that the data was corrupted by an earlier access t flash memory.

The data in line 357 and beyond is where the data is to be written (flash memory).

Caution: When writing to flash memory, be certain to provide an area within the application itself where the data
can be written. Writing to flash memory outside of the application is prohibited.

Because flash memory accesses are always conducted in units of 128 bytes, "ORG" in line 364 aligns the data with a
128-byte boundary.

Caution: The "DS" command, an assembler pseudo-instruction, cannot be used to allocate an area in flash
memory. The "DS" command can only be used for RAM areas.

VMT-102

C. Sample Program Listings

001
002
003
004
005
006

007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

; Tab width =4

; ** Flash Memory Usage Sample 1 **

; This sample writes and verifies data in flash memory, and then reads and
verifies the data.
; Ifall operations are performed correctly, the characters "SEGA" appear onthe LCD.

; 1.01 990208 SEGA Enterprises,LTD.

chip
world

public

extern
extern

; ¥ Definition of System Constants

0sc_rc

Lc868700
external

main

_game_end
fm_wrt_ex, fm_vrf_ex, fm_prd_ex ; Symbol reference to ghead.asm

0sC_xt equ

; ** Data Segment

r0:ds
rl:ds
r2.ds
r3:ds
ds

; Specifies the chip type for the assembler
; External memory program

; Symbol referenced from ghead.asm

; Symbol reference to ghead.asm

; OCR (Oscillation Control Register) settings
equ 04dh ;Specifiesinternal RC oscillation forthe system clock (1/12)
osc_rcfwequ Ocdh ; Specifiesinternal RC oscillation for the system clock (1/6)
Oefh ; Specifies crystal oscillation for the system clock

LowBattChkequ 06eh

fmflag equ 07ch
fmbank equ 07dh
fmadd_h equ 07eh
fmadd_| equ 07fh

fmbuff equ 080h

e

; Low battery detection flag (RAM bank 0)

; Flash memory write end detection method
; Flash memory bank switching
; Flash memory upper address

; Flash memory lower address

; Start of buffer for flash memory reading/writing

*k *

dseg

12

; Data segment start

; Indirect addressing register rO
; Indirect addressing register r1
; Indirect addressing register r2
; Indirect addressing register r3
; Other registers reserved for the system

VMT-103

Visual Memory Unit (VMU) Tutorial Revision

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089

; ¥* Code Segment * *

C %

cseg

; Code segment start

; * User program

ok

main:

loop4:

cal cls ; Clears the LCD display image
; Preparing Data for the Test Write
; Prepares 128 bytes of data from 10h to 8fh in fmbuff
push PSW ; Pushes the PSW value onto the stack
setl PSW,1 ; Selects data RAM bank 1
mov #mbuff,r0 : Moves the read/write buffer address to rO
mov #128,c ; Loop counter (128 times)

mov #010h,b

Id b

st @r0
inc b

inc r0

dec c

Id c

bnz loop4
pop PSW
mov #1,c
mov #1.b
mov #0ah,acc
call putch

; Initial value of data to be written

; Places the data in the buffer

; Changes the writing test data
; Increments the buffer address
; Decrements the loop counter
; Repeats 128 times

; Pops the PSW value off of the stack

; Displaying "S"

; Horizontal coordinate
; Vertical coordinate
; Character code 'S'
; Displays a single character

VMT-104

C. Sample Program Listings

090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

push
setl

mov
mov
mov

crl
mov
st

pop

push
mov
call

pop

push
clrl
mov
st

pop

mov
mov
mov
call

push
setl

mov

mov
mov

push

pop
pop

bnz

; ¥ \Writing to Flash Memory *+**

PSW : Pushes the PSW value onto the stack
PSW,1 : Selects data RAM bank 1
#0,fmbank ; Flash memory bank specification = 0
#high(fmarea),fmadd_h ; Writing destination address (upper)
#ow(fmarea),fmadd_l ; Writing destination address (lower)
PSW,1 ; Selects data RAM bank 0
#0ffh,acc ; Does not detect low battery (Offh)
LowBattChk ; Lowbattery automatic detectionflag (RAM bank 0)
PSW ; Pops the PSW value off of the stack
OCR ; Pushes the OCR value onto the stack
#osc_rc,0OCR ; Specifies the system clock (RC)
fm_wrt_ex ; BIOS "Writing to flash memory”
OCR ; Pops the OCR value off of the stack
PSW ; Pushes the PSW value onto the stack
PSW,1 ; Selects data RAM bank 0
#0,acc ; Detects low battery (0)
LowBattChk ; Lowbattery automatic detectionflag (RAMbank0)
PSW ; Pops the PSW value off of the stack
; ¥ Displaying "E" ¥
#2,c : Horizontal coordinate
#1b : Vertical coordinate
#0bh,acc ; Character code 'E'
putch ; Displays a single character
; ¥ \erifying Flash Memory **
PSW ; Pushes the PSW value onto the stack
PSW,1 ; Selects data RAM bank 1
#0,fmbank ; Flash memory bank specification = 0
#high(fmarea),fmadd_h ; Address (upper)
#low(fmarea),fmadd_1 ; Address (lower)
OCR ; Pushes the OCR value onto the stack
mov #osc_rc,0OCR ; Specifies the system clock (RC)
cal fm_wrf_ex ; BIOS "Verifying flash memory”
OCR ; Pops the OCR value off of the stack
PSW ; Pops the PSW value off of the stack
vrt_bad : Branches when write failed

; Displays "G" only when successful

VMT-105

Visual Memory Unit (VMU) Tutorial Revision

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

vrt_bad:

loop5:

mov
mov
mov
call

push
setl

mov
mov
mov
push

mov
call

pop

pop

push
setl

mov
mov
mov
Id
sub
bnz
inc
inc
dec

bnz

pop

#3,C

#1,b

#0ch,acc
putch

PSW
PSW,1

#0,fmbank

; ¥ Displaying "G" ****
; Horizontal coordinate
; Vertical coordinate

; Character code 'G'
; Displays a single character

; ¥ Reading Page Data form Flash Memory **

: Pushes the PSW value onto the stack
; Selects data RAM bank 1

; Flash memory bank specification = 0

#high(fmarea),fmadd_h ; Address (upper)
#ow(fmarea),fmadd_| ; Address (lower)

OCR

#osc_rc,OCR

fm_prd_ex
OCR

PSW

PSW
PSW,1

#fmbuff,r0

#128,c
#010h,b

b
@r0
read_bad

b

ro

loop5

PSW

; Pushes the OCR value onto the stack
; Specifies the system clock (RC)
; BIOS "Reading page data from flash memory
; Pops the OCR value off of the stack

; Pops the PSW value off of the stack

; ¥+ \erifying the data that was read ****

; Pushes the PSW value onto the stack
: Selects data RAM bank 1

; Moves the read/write buffer address into rO
; Loop counter (128 times)
; Initial value for comparison data
: Places the data in the buffer
; Compares the data
;Ifacompare errorisfound, endswithoutdisplaying ‘A
; Changes the data for the write test
: Increments the buffer address
; Decrements the loop counter

; Repeats 128 times

; Pops the PSW value off of the stack

VMT-106

C. Sample Program Listings

195 ; ¥ Displaying "A" ¥+

196

197 mov #4.c ; Horizontal coordinate

198 mov #1,b ; Vertical coordinate

199 mov #0dh,acc ; Character code 'A'

200 call putch ; Displays a single character

201

202

203 read bad:

204 loopé: ; ¥ [M] (mode) Button Check **

205 Id P3

206 bn acc,6,finish ; If the [M] button is pressed, the application ends

207

208 br loop6 ; Repeat

209

210 finish: ; ** Application End Processing **

211 jmp _game_end ; Application end

212

213

214 ;% *

215 ;*Clearing the LCD Display Image *

216 ;= *

217 cls:

218 push OCR : Pushes the OCR value onto the stack

219 mov #osc_rc,0OCR ; Specifies the system clock

220

221 mov #0,XBNK ; Specifies the display RAM bank address (BANKO)

222 cal cls_s ; Clears the data in that bank

223

224 mov #1,XBNK ; Specifies the display RAM bank address (BANK1)

225 cal cls s ; Clears the data in that bank

226 pop OCR ; Pops the OCR value off of the stack

227

228 ret ; clsend

229

230 cls_s: ; ¥* Clearing One Bank of Display RAM ***

231 mov #30h,r2 ; Points the indirect addressing register at the start
of display RAM

232 mov #80h,b ; Sets the number of loops in loop counter b

233 loop3:

234 mov #0,@r2 ; Writes "0" while incrementing the address

235 inc r2 ;

236 dbnz b,loop3 ; Repeats until b is "0"

237

238 ret ;cls_send

239

240

VMT-107

Visual Memory Unit (VMU) Tutorial Revision

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

ok

; * Displaying One Character in a Specified Position*
; * Inputs: acc: Character code *

-k
’

-
)

.k,

¢: Horizontal position of character*
b: Vertical position of character*

*

putch:

push XBNK

push acc

call locate ; Calculates display RAM address according to coordinates
pop acc

call put_chara ; Displays one character

pop XBNK

ret ; putch end

locate: ; *** Calculating the Display RAM Address According to the Display Position

nextl:

next2:

Specification ****
; * Inputs: c¢: Horizontal position (0 to 5) b: Vertical position (0 to 3)
; ¥ Outputs: r2: RAM address XBNK: Display RAM bank

; ** Determining the Display RAM Bank Address ***
Id b ; Jump to nextl when b >=2
sub #2 ;
bn PSW,7nextl ;

mov #00h,XBNK ; Specifies the display RAM bank address (BANKO)
br next2

st b

mov #01h,XBNK ; Specifies the display RAM bank address (BANK1)

; ** Calculating the RAM Address for a Specified Position on the Display ***

Id b ;b*40h + ¢ +80h
rol ;

rol ;

rol :

rol ;

rol ;

rol ;

add c ;

add #80h ;

st r2 : Stores the RAM address in r2
ret ; locate end

VMT-108

C. Sample Program Listings

289 put_chara:

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

loop1:

push
setl

rol
rol
rol
add
st
mov
addc
st

push
mov

mov
mov

Idc
inc
st

add
st

Idc
inc
st

add
st

dec

bnz

pop
pop

ret

PSW
PSW,1

#low(fontdata)
TRL

#0,acc
#high(fontdata)
TRH

OCR
#osc_rc,OCR

#0,b
#4,c

@r2
r2
#6
r2

@r2
r2
#10
r2

loopl

OCR
PSW

; Pushes the PSW value onto the stack
; Selects data RAM bank 1

; ¥* Calculating the Character Data Address ***
; (TRH,TRL) = acc*8 + fontdata

; Pushes the OCR value onto the stack
; Specifies the system clock

; Offset value for loading the character data
; Loop counter

; Loads the display data for the first line

; Increments the load data offset by 1
; Transfers the display data to display RAM
; Adds 6 to the display RAM address

; Loads the display data for the second line
; Increments the load data offset by 1

; Transfers the display data to display RAM
; Adds 10 to the display RAM address

; Decrements the loop counter

)

; Repeats for 8 lines (four times)

; Pops the OCR value off of the stack
; Pops the PSW value off of the stack

; put_chara end

VMT-109

Visual Memory Unit (VMU) Tutorial Revision

335 ;% *

336 ;*Character Bit Image Data *

337 ;% *

338 fontdata:

339 db 07ch, 0e6h, Oc6h, Oc6h, Oc6h, Oceh, 07ch, 000h ;'0'00
340 db 018h, 038h, 018h, 018h, 018h, 018h, 03ch, 000h ;'1'01
341 db 07ch, 0c6h, Oc6h, 00ch, 038h, 060h, Ofeh, 000h ;'2'02
342 db 07ch, 0e6h, 006h, 01ch, 006h, Oe6h, 07ch, 000h ;'3'03
343 db 00ch, 01ch, 03ch, 06ch, Occh, Ofeh, 00ch, 000h ;404
344 db Ofeh, 0c0h, Ofch, 006h, 006h, Oc6h, 07ch, 000h ;'5'05
345 db 01ch, 030h, 060h, Ofch, Oc6h, Oc6h, 07ch, 000h ;'6' 06
346 db Ofeh, 0c6h, 004h, 00ch, 018h, 018h, 038h, 000h ;707
347 db 07ch, Oc6h, Oc6h, 07ch, Oceh, Oc6h, 07ch, 000h ;'8'08
348 db 07ch, Oc6h, Océh, 07eh, 006h, 00ch, 078h, 000h ;'9'09
349

350 db 07ch, 0e6h, 076h, 038h, 0dch, Oceh, 07ch, 000h ;'S'0a
351 db Ofeh, 0cOh, OcOh, 0f8h, 0cOh, 0c0h, Ofeh, 000h ;'E'Ob
352 db 07ch, 0e6h, 0cOh, Odch, 0c6h, 0e6h, 07ch, 000h :'G'0c
353 db 01eh, 036h, 066h, Octh, 0c6h, Ofeh, Oc6h, 000h ;'A'0d
354

355

356 ;= *

357 ;*Flash Memory Area for Saving Data

358 ;* *

359 org ((*-1) land 0ff80h) + 80h ; Aligns with 128-byte boundary
360 fmarea:

361 ; Allocates a 128-byte flash memory area

362 db0,0,00,0000000,0,0,0,0,0

363 db0,0,00,000000,0,0,0,0,0,0

364 db0,0,00,000000,0,0,0,0,0,0

365 db0,0,0,000000000,0,0,0,0

366 db0,0,0,00000000,0,0,0,0,0

367 db0,0,00,00000000,0,0,0,0

368 db0,0,00,0000000,0,0,0,0,0

369 db0,0,00,000000,0,0,0,0,0,0

370

371 end

VMT-110

C. Sample Program Listings

Low Battery Detection and Saving Data

Visual Memory has a built-in function that automatically detects the low battery condition, displays a message to
that effect, and then puts the unit into sleep mode. In this sample program, the application detects the low battery
condition on its own, and then saves the data in RAM to flash memory.

The important portion of this program is the low battery detection routine in lines 115 to 125. This routine checks
the port 7 low battery flag.

Although the port 7 interrupt could be used, the interrupt processing routine should be designed so that system
BIOS is not called.
001 ;Tabwidth=4
002
003 ;
004 ;* Low Battery Detection and Data Save Sample 1 **
005 ;
006 ; Detects the low battery condition and saves essential data in flash memory
007 ;
008 ;1.01 990208 SEGA Enterprises,LTD.
009 ;
010
011 chip Lc868700 ; Specifies the chip type for the assembler
012 world external ; External memory program
013
014 public main ; Symbol referenced from ghead.asm
015
016 extern _game_end ; Symbol reference to ghead.asm
017 extern fm_wrt_ex, fm_wrf_ex, fm_prd_ex ; Symbol reference to ghead.asm
018
019
020 ;** Definition of System Constants
021
022 ; OCR (Oscillation Control Register) settings
023 osc_rc equ 04dh ;Specifiesinternal RC oscillationforthe system clock (1/12)
024 osc rcfw equ Ocdh ; Specifies internal RC oscillation for the system clock (1/6)

025 osc_xt equ Oefh ; Specifies crystal oscillation for the system clock
026

027 LowBattChk equ 06eh ; Low battery detection flag (RAM bank 0)

028

029 fmflag equ 07ch ; Flash memory write end detection method
030 fmbank equ 07dh ; Flash memory bank switching

031 fmadd_h equ 07eh ; Flash memory upper address

032 fmadd_| equ 07fh ; Flash memory lower address

033

034 fmbuff equ 080h ; Start of buffer for flash memory reading/writing
035

VMT-111

Visual Memory Unit (VMU) Tutorial Revision

036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071

072
073
074
075

076
077
078
079
080
081

; ¥ Data Segment * * ok ok ok ok *
dseg ; Data segment start
ro: ds 1 ; Indirect addressing register rO
rl; ds 1 ; Indirect addressing register r1
r2: ds 1 ; Indirect addressing register r2
r3: ds 1 ; Indirect addressing register r3
ds 12 ; Other registers reserved for the system

; ¥* Code Segment

cseg ; Code segment start
. % *
; * User program
- % *
main:
cal cls ; Clears the LCD display image
loop0: ; Start of test main loop

finish:

; Application Main Processing

bn

call
bz

call

call

jmp

; ** [M] (mode) Button Check **
P3
acc,6,finish ; If the [M] button is pressed, the application ends

; ** Battery Status Check **
ChkBatt ; Checks the battery status
loop0 ; If acc = 0 then battery normal; loops

; ** Low Battery Processing **
prepare ; Prepares data for test save

; In an actual application, this routine would gather
the data

; that is to be saved and then place the data
: in the flash ROM write buffer.

WriteData ; Writes the data that was prepared in the buffer
(to be saved)

; to flash memory

; ¥ Application End Processing **
_game_end ; Application end

VMT-112

C. Sample Program Listings

082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

prepare: ; ¥** Preparing Data for Test Save ***
; Prepares 128 bytes of data from 10h to 8fh in fmbuff
push PSW : Pushes the PSW value onto the stack
setl PSW,1 ; Selects data RAM bank 1
mov #mbuff,r0 ; Moves the read/write buffer address to rO
mov #128,c ; Loop counter (128 times)
mov #010h,b ; Initial value of data to be written
loop4:
Id b ; Places the data in the buffer
st @r0 ;
inc b ; Changes the writing test data
inc r0 : Increments the buffer address
dec c ; Decrements the loop counter
Id c
bnz loop4 ; Repeats 128 times
pop PSW ; Pops the PSW value off of the stack
ret ; prepare end
- % *
; * Detecting Low Battery Status *
;*Outputs: acc =0 : Battery status normal *
P * acc = Offh: Low battery *
-k *
ChkBatt:
Id P7 ; Checks the status of P71
bn acc,1,next3 ; Branches if there is no battery
; ** Battery Exists **
mov #0,acc ;acc=0
ret ; ChkBatt end. acc = 0 is returned if battery exists
next3: ; * No battery **
mov #0ffh,acc ; acc = Offh
ret ; ChkBatt end. acc = Offh is returned if battery exists

VMT-113

Visual Memory Unit (VMU) Tutorial Revision

128 ;= *
129 ;*Writing Buffer Data to Flash Memory *

130 ;* *

131 WriteData: ; P \Writing to Flash Memory **

132

133 push PSW : Pushes the PSW value onto the stack
134 setl PSW,1 ; Selects data RAM bank 1

135

136 mov #0,fmbank; Flash memory bank specification = 0

137 mov #high(fmarea),fmadd_h ; Writing destination address (upper)
138 mov #ow(fmarea),fmadd_| ; Writing destination address (lower)

139 mov #0,fmflag ; Detects end by toggle bit method

140

141 crl PSW,1 ; Selects data RAM bank 0

142 mov #0ffh,acc ; Does not detect low battery (Offh)

143 st LowBattChk ; Low battery automatic detection flag (RAM bank 0)
144

145 pop PSW ; Pops the PSW value off of the stack

146

147 push OCR ; Pushes the OCR value onto the stack

148 mov #osc_rc,OCR ; Specifies the system clock (RC)

149 cal fm_wrt_ex ; BIOS "Writing to flash memory”

150 pop OCR ; Pops the OCR value off of the stack

151

152 push PSW ; Pushes the PSW value onto the stack

153 crl PSW,1 ; Selects data RAM bank 0

154 mov #0,acc ; Detects low battery (0)

155 st LowBattChk ; Low battery automatic detection flag (RAM bank 0)
156 pop PSW ; Pops the PSW value off of the stack

157

158 ret ; WriteData end

159

160

161 ;= *

162 ;*Clearing the LCD Display Image *

163 ;% *

164 cls:

165 push OCR ; Pushes the OCR value onto the stack
166 mov #osc_rc,OCR ; Specifies the system clock *

167

168 mov #0,XBNK ; Specifies the display RAM bank address (BANKO)
169 cal cls_s : Clears the data in that bank

170

171 mov #1,XBNK ; Specifies the display RAM bank address (BANK1)
172 cal cls_s ; Clears the data in that bank

173 pop OCR ; Pops the OCR value off of the stack
174

175 ret :cls end

176

VMT-114

C. Sample Program Listings

177 cls_s: ; ¥* Clearing One Bank of Display RAM ***
1f78 mov #80h,r2 ; Points the indirect addressing register at the start
0
display RAM
179 mov #80h,b ; Sets the number of loops in loop counter b
180 loop3:
181 mov #0,@r2 ; Writes "0" while incrementing the address
182 inc r2 ;
183 dbnz b,loop3 ; Repeats until b is "0"
184
185 ret ; cls_send
186
187
188 ;* *
189 ;* Flash Memory Area for Saving Data *
190 ;= *
191 org ((*-1) land 0ff80h) + 80h; Aligns with 128-byte boundary
192 fmarea:
193 ; Allocates a 128-byte flash memory area
194 db0,0,0,00,0,0,0,0,0,00,0,0,0,0
195 dh0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
196 dh0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
197 dh0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
198 db0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
199 db0,0,0,0,00,0,0,0,0,0,00,0,0,0
200 db0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
201 dh0,0,0,00,0,0,0,0,0,0,0,0,0,0,0
202
203 end

VMT-115

Visual Memory Unit (VMU) Tutorial Revision

VMT-116

Sega®@'Dreamcast

Dreamcast VMU Specifications

Sega®@'Dreamcast

Table of Contents

VMU Specifications.ottt i VMU-1
OVEIVIEW .ttt ettt ettt ettt b et a ettt e st bt s et a e s et n et b et n et be e ne e ene e enenene VMU-1
VMU OVEIVIEW ...ttt ettt st sttt st st ettt a e s e s et sa et sa et saeneeneneenennen VMU-1
VMU CONfigUIationcccuiuiiiiiiiiiiiiiiiiiiieee e VMU-2
VMU FUNCHOMNS ..veiuiiiiiiiiieiieienieeteeerest ettt ettt ettt st sa e st b s b st et s et e e st e et et eneeneenesnesaees VMU—+4
IMOAE SELLINGS ..ottt VMU-7
File Management ... bbb VMU-9
Management ATEAccccoiuiiiiiiiiiiii e VMU-10
Data ATA ...eoueiieiiiieieeee ettt s a e et a et a et a e eneas VMU-10
RESEIVEA AT ..eieeieiieeieeeteteeeet ettt ettt ettt s b et et e b et et et e st este st e st esaeseesesseesasse st e sensensensensansanean VMU-10
LCD DISPLAY .ttt sttt a e a s ean e VMU-11
XRAM ottt ettt ettt ettt n ekttt n et a et nenenesea VMU-11
SCIEEIN IMOME ...nieieiieiieiietetiette ettt ettt ettt et e et e seesesse st e s e s essensansansanteneaneesseseesesseasassessensensansansensensanean VMU-11
JCOMIS ettt s b bbbttt ettt sttt sa bbb e b b e et ene s VMU-12
Screen CoNnfIgUIAtIONocuiiiiiiiciciec et VMU-12
LCD CRATACEETISTICS evvvuereererieeicereeieeieieests et teesesasee st esssesesseasassesseseassesessessasseseeeasessessessasassessensansesnsncas VMU-12
MISCEILANEOUSeererviiinierciiinieieteitnente ettt ettt sttt b et b ettt a ettt e b bt st e s b esenaesebeneessenenenens VMU-12
Executable File INTHATION ..c..o.eovvuirieiirieiiicicictrtcrt ettt et ettt e et VMU-13
Downloading an Executable Filecccccooiiiiiiiiiiiceeeeeeeeeeeeeeeeeeeseseeeeeeeesee e senennes VMU-13
FALE SIZE .ttt ettt b ettt be e VMU-13
SUDTOULINE ...ttt ettt ettt ettt ettt s st n s st sesnenenenean VMU-13
INEEITUPLS e VMU-14
RAM etttk b ettt bbbkttt b bttt b b et bbb b b ettt ebe s et et ebenenea VMU-14
Save Processing During Executable File Operations ..., VMU-14
AULO POWET Off ..ottt ettt ettt sttt b bt b b ese bbbt e stebenenens VMU-14
CommUNICAtIONS FUNCHIONoiiiiieiiiiiiic ettt ettt et bttt VMU-15
Maple BUs ProtocCo] ... VMU-15
Synchronous Serial COMMUIECAIONSvueurimiuermiieiiieieieirieeireieiseeteeseeseese e sebe s sese e sseaessseeseeaesenns VMU-15
CIOCK FUNCHOMN vttt ettt ettt ettt ettt et b et bbbttt et b et bt b et e b e be st e st s VMU-16
SELHIIES .vvviiiiicc e VMU-16
AJATIN FUNCHON «.evviiiiieieieeee ettt ettt ettt et e a e s e s se st et e s e st et e s sessessenseneeneenseneensesaeseesessesessessensansansansenes VMU-17
SLEEP FUNCHOMN .ttt ettt ettt s b e sttt et et et et e bt et eat e bt e bt s bt st e b e b e e et e s e e eneenis VMU-18
SLEEP OPerationccccviiiiiiiiiiiiiiiiiiiiiii st st VMU-18
BULEONIS et e bbb s VMU-19
BAtEEIIES ..ttt sttt et ettt st e eb e bbb sa et n et e ns VMU-20
BatteT Life ...c.coviiiiiiiiiiii VMU-20
Processing When Battery Power Is EXRausted ..o eeesseseseene VMU-20
Battery REPIACEIMENLc.ciuiiiiiiiiiiiicieiiccceieee et VMU-20

POSESCIIPE ettt VMU-20

Sega@'Dreamcast

VMU Specifications

Overview
This document describes the VMU, a peripheral device for the next-generation game system KATANA (Dreamcast).

VMU Overview

The VMU (Visual Memory Unit) is a memory cartridge that not only stores data, but also includes an LCD display
that visually expresses that data.

The VMU connects to KATANA's (preliminary name) special controller, called “SEED” (preliminary name), and can
be used to display subscreens during a game and as a memory card that stores game data files.

The VMU can be connected or disconnected while the game machine is on.

When not connected to a controller, the data files stored in the VMU's memory can be displayed and deleted. Files
can also be copied from one VMU to another by connecting two VMUs to each other.

Furthermore, by downloading special executable files (programs) from KATANA, the VMU becomes a compact
portable game player; two-player games are also possible.

Figure 1.1 Conceptual Image of the VMU

In the top portion of Fig. 1.1, two VMUs are shown connected to each other as they exchange data.

VMU-1

VMU Specifications

VMU Configuration

This section describes the VMU configuration.

e Potato Chip (custom IC for the VMU)

Core CPU: | 8hits: Instruction cycle time:
When connected to game machine = 1[micro]s
When operating on standalone basis = 183[micro]s
Note: Operation on a standalone basis is extremely slow in order to minimize battery
power consumption.
Memory: | Mask-ROM: 16Kbyte System-BIOS IPL
Flash-EEPROM: 64K Program code/data area
64K Data area (of which 28K are reserved for the system)
RAM 512 bytes General purposes (of which 256 bytes are reserved for the system)
512bytes I/0 mapping (can also be used as a Maple buffer)
LCD RAM Bank 1 96 bytes
Bank 2 96 bytes
Bank 3 6 bytes (for icons; used by the system)
Serial I/F: | Uses the following interfaces exclusively:
Maple: LM-Bus
Synchronous SIO: Two 8-bit serial interfaces
Timer: | 16bit For Clock
16bit(or 8bit x2): General purpose; of these, 8 bits are used exclusively for pulse generator output for
alarms
I/0 Port: | Input/output: 16 pins (buttons, serial interfaces)
Input: 4 pins (control pins)
LCD-Driver Controller: | Common: 33 pins
Segment: 48 pins
* LCD: LCD: 32 (V) x 48 (H) dots: Monochrome binary
Icons: 4 types (File, Game, Time, Attention: used by system)
¢ Buzzer: Voltage buzzer: For alarms
¢ Power supply: Button batteries: CR2032 x 2
External inputs: +5V +3.3V
External outputs: +3.3V

o Buttons:

6 buttons:

Four-direction key, A button, B button, Mode button, Suspend button, SLEEP button

e Communications connector:

14 pins:

Serial interface, power supply, control

Connected to controller, another VMU, etc.

vMu-2

VMU Specifications

Figure 1.2 External View (preliminary)

Connectors
(communications)

Suspend button

Mode button B button

Four-direction key

B button

A button

RESET

Keychain hole

Front view Rear view

Figure 1.3 External Appearance and configuration (preliminary)

VMU-3

VMU Specifications

VMU
(I
DC/DC Selector
Low voltage +5V
_‘ CR2032 x2
+3.5V 1
% Potato j;
Reset
Reset{lé J_ BIOS-ROM
7% 7T CPU-Core < 16KB-+4KB
32kHz @
FLASH
>
LCD LCD Driver 64KB-+64KB
32x48dot - S
4-icon pies -
RAM N +5V
— =B % , f
7# 2Mbps |V
Output Enable }\max) I
S L Buffer L-Maple :;mtutt]“\
: . utpu
8-input ﬂ%ﬂé S s : 1/0 < > 512B Logic | oupurEnan
-inpu - o
' 7 31 . Serial x2 g
7%]] 777 vf::::: 11033V
Buzzer I o ;
D1 il |
D0 1] il
Vi |
input
.

Figure 1.4 Block Diagram (preliminary)

VMU Functions

%

Ext.
Terminal
14pin

When connected to a game machine, the VMU conforms with the Maple Bus 1.0 Standard Specifications, and
supports the following function types.

1 FT; Storage Function
2 FT, B/W LCD Function

3 FT3 Timer Function

Accordingly, the Function Type (FT) is “00h-00h-00h-0Eh”. (FD1 = FT3, FD2 = FT2, FD3 = FT1)

VMU-4

VMU Specifications

For details, refer to the specifications for each function. An overview of the System-BIOS functions included in the
VMU is provided below.

1) File management

This function manipulates and manages backup files and program files.

Files are managed in 1-block units (512 bytes), and reads and writes are also performed in block units.
FAT operations and file information processing use subroutines in the System-BIOS. For details on file
management methods, refer to Chapter , “File Management,”.

2) LCD display
When the VMU is connected to a game machine, this function only draws graphics (transferring screen
image data).
This function conforms with the data format that is stipulated in the Maple Bus Function Type
specifications, and sends graphics images from the game machine to the VMU in accordance with the
VMU screen configuration, and then BIOS transfers the resulting image to the LCD display RAM
(XRAM).
The amount of data required for one screen is 32 dots (V) x 48 dots (H) = 1536 bits = 192 bytes.

When the VMU is operating on a standalone basis, this function handles the drawing of graphics. The
icons display the operation mode of the VMU.

File File management

Game Executable file initiation
Time Time display

Attention Memory access in progress

3) Executable file initiation
This function initiates execution of an executable file (program) that was downloaded from a
game machine.

This function can only be executed while the VMU is operating on a standalone basis. A program can
not be initiated while the VMU is connected to a game machine.

A number of functions that can be provided for executable files are System-BIOS subroutines and can
be used by the executable file simply by calling the subroutine.

4) Communications
When the VMU is connected to a game machine, communications are handled according to the Maple
Bus protocol.

When the VMU is operating on a standalone basis, the VMU supports 8-bit synchronous serial
communications for exchanging data with another VMU.

This function is also provided as a subroutine for executable files. (Not finalized)
5) Clock

This function uses a timer to measure time.

This function is always operating, whether the VMU is connected to a game machine or is operating on
a standalone basis.

VMU-5

VMU Specifications

6) Alarm

This function sounds a buzzer by means of a pulse generator. This function is also provided as a
subroutine for executable files. (Not finalized)

This function conforms with the data format that is stipulated in the Maple Bus Function Type
specifications, and when the VMU is connected to a game machine, this function allows the game
machine to sound the buzzer.

7) Mode switching

When the VMU is connected to a game machine, the VMU operation mode can be changed by pressing
the mode button.

The mode status is displayed by means of icons.
When the VMU is operating on a standalone basis, the Auto Power Off function can also be used.

8) Character font installation

8 dot (V) x 6 dot (H) alphabet, Katakana, and symbol fonts can be installed in the VMU. These fonts
cannot be called and displayed from an executable file for the VMU that was downloaded from a game
machine.

When the VMU is connected to a game machine and graphics are being displayed from the game
machine side, fonts cannot be used.

Instead, transfer the screen image that is to be displayed as is.
Fonts can only be used by the System-BIOS.

VMU-6

VMU Specifications

Mode Settings

The operating mode of the VMU is determined by the connection status and the mode button.

Table 1.1 Modes

Connection Status Mode Button (Icon Display) | Operating Mode

Connected to game machine Off System mode
Attention Flash access in progress
Standalone operation Game Executable file initiation
File File operations
Time Clock display
Attention Accessing flash memory

1) System mode

This mode is controlled by the System-BIOS' external control program.

This mode handles communications according to the Maple Bus protocol, memory management, LCD
display, and timer management.

2) Game mode

In this mode, the System-BIOS initiates executable files in flash memory.

All processing is controlled by the executable file, except for the Maple Bus protocol.
Transitions from this mode to another mode are also controlled by the executable file.

To execute a mode, transmission, the executable file calls a subroutine from the System-BIOS.
At that point, all of the contents of RAM and the registers are saved to flash memory.

Note: This save operation requires approximately 8 seconds.

3) File mode

This mode is controlled by the System-BIOS’ file control program.

This mode can display, copy, and delete files in flash memory through button operations.

Refer to other documents for details on the configuration and operation of the file management screen.
4) Time mode

This mode is controlled by the System-BIOS’ timer program. This mode can display a digital clock

(showing the hours, minutes, and seconds), and can be used to set the time. When the VMU returns from
system mode, it enters this mode.

Transitions among the modes occur in response to changes in the connection status and the Mode button + Enter
button being pressed.

However, Game mode can suppress changes in the connection status and the Mode button + Enter button being
pressed. The mode cannot be changed while data is being written to the flash memory.

Attention is a warning indicator that lights for Read/Write while flash memory is being accessed.

VMU-7

VMU Specifications

Mode button

Game

Mode button

Enter button

P

‘Memory save

‘Memory restore ‘

No

Mode
button

Game mode

Time

Mode button

Mode
button

v

Time mode

Disconnected

Enter button

Connected

> ICON display

File
_J
Mode Enter
button |button

A

File mode

Connected

>Operation mode

System mode

)

Figure 1.5 Mode Transitions

VMU-8

VMU Specifications

File Management

¢ File management in the VMU conforms with FT1: Storage Function in the Maple Bus 1.0 Function Type
Specifications.

e The size of the VMU flash memory is 128K.

¢ The minimum read / write unit for a file is one block (512 bytes); the entire flash memory is divided into
256 blocks.
However, because 56 blocks are used as a system management area, the size of the area that can be used
to store data is 200 blocks.
One executable file can exist in one partition, with a maximum size of 0080h blocks (64K: block numbers

0000h to 007Fh).
Block No.
0000h 4
Executable file or data area
Data area
(200block)
007Fh
00C8h
Data area
00C7h <
00C8h
Reserved area Reserved area
00F0h . (41block)
00F1h o] 4
File information area
00FDh
00FEh Management area
Fat g
atarea (15block)
00FFh System area
A

Figure 1.6 Memory Map

VMU-9

VMU Specifications

Management Area

e The 15 blocks at the top of memory (starting form block number 00FFh) are used for the
management area.

* The management area is divided into three areas: the system area, the FAT area, and the file
information area.

e The system area consists of one block, the FAT area consists of one block, and the file information consists
of 13 blocks.

e The system area is write-protected, except during formatting.

e The FAT area has a chain structure in which every two bytes (16 bits) controls one block.

* The file information area allocates 32 bytes to each file, and can therefore manage a maximum of 200 files.
e There is only a root directory; no subdirectories are supported.

* File names consist of 12 bytes (ASCII codes representing up to 12 normal-width characters).

Data Area

e The data area, where data files can be stored, consists of 200 blocks, from block number 0000h to 00C7h.
e Data files are stored starting from 00C7h towards 0000h, while an executable file starts from 0000h.

e The areas from 0000h to 007Fh and from 0080h to 00FFh are controlled through bank switching; switching
is performed by the System-BIOS automatically.

* Reading and writing flash memory must always be done by calling the System-BIOS subroutines.
Reserved Area

This area is used by the System-BIOS and in system mode.

VMU-10

VMU Specifications

LCD Display

e The LCD display in the VMU conforms with FT[2]: B/W LCD Function in the Maple Bus 1.0 Function
Type Specifications.

e The LCD that is built into the VMU consists of a 32-dot (V) x 48-dot (H) dot matrix display, and four icons
that indicate he operating mode f the VMU.

¢ Drawing the LCD is accomplished by storing drawing data in the dedicated drawing RAM.
XRAM

The LCD’s dedicated drawing RAM is called “XRAM.”

XRAM consists of three banks; the first and second banks are open to executable files, while the third bank is used
by the System-BIOS.

The first bank of XRAM corresponds to the upper half of the LCD (16 x 48 dots), and the second bank of XRAM
corresponds to the lower half of the LCD (16 x 48 dots).

One dot on the LCD corresponds to one bit in XRAM. One byte of XRAM corresponds to 8 dots in a horizontal row
on the LCD, and 6 bytes consist of one entire horizontal row on the LCD.

Screen Mode

When the VMU is connected to a game machine, the System-BIOS sends drawing data from the game machine
directly to the XRAM as a graphics screen.

Therefore, when using the VMU's display as a game subscreen, etc., transfer the screen image as is to the VMU.

During standalone operation, the character font in the System-BIOS cannot be used for text display on a
graphics screen.

For a graphics screen, write the screen image data as is to XRAM.

VMU-11

VMU Specifications

Icons

The System-BIOS uses the icons; use by an executable file is prohibited.

48dots
: ' Dot matrix screen
32dots ' |
5 _: é ' Icons
—— ZE S S—
File management Clock display

Writing in progress
Executable file initiation

Screen Configuration

LCD Characteristics

The screen refresh concept for the LCD display differs from that for a TV.

Once data is transferred to XRAM, it is displayed on the LCD, but only after a delay due to the response speed of
the LCD. When the LCD response is delayed, ghosting or flickering may occur, resulting in a display that is difficult
to see. In addition, during standalone operation or when connected to a game machine, differences in the operating
speeds result in different LCD display speeds. During standalone operation, the display speed is slower.

The recommended refresh rate for the VMU’ LCD is 1Hz for standalone operation and 4Hz when connected to a
game machine.

Miscellaneous

* There is no contrast adjustment or brightness adjustment for the LCD.
e There is no backlight for the LCD.

e It is not possible to incorporate a design (such as a picture, etc.) in the polarized panel (the back sheet)
with a reflective panel that reflects the light in the LCD.

VMU-12

VMU Specifications

Executable File Initiation

e This function initiates an executable file that was downloaded from a game machine.
® The VMU can store and initiate only one executable file at a time.

e The System-BIOS includes subroutines that form that VMU functions. Of these subroutines, several are
provided for executable files, and an executable file can call these subroutines.

 Program development of an executable file is performed using a VMU emulator (preliminary) that runs
under Windows 95.

Downloading an Executable File

Executable files are stored in flash memory in the area consisting of block numbers 0000h to 007Fh, starting from
the 0000h block. When an executable file is downloaded from a game machine application, confirm that there is
contiguous free space starting from the 0000h block of the VMU. Even if the free space has been confirmed, it still
will not be possible to download an executable file if there is any other file in the area where the executable file is
to be stored (the area from block 0000h to the end of the executable file).

Game machine application processing is as described below:

Get free space in VMU
!
Confirm that there is free space
l
Defragmentation processing (optimization of fragmented file storage)
l

Reconfirm that there is free space after defragmentation processing (Reconfirmation is necessary because it is possible that a block was damaged during
defragmentation.)

!
Download

File Size
e The maximum size of an executable file is 0080h blocks (64K).

Subroutine

A list of the available subroutines is shown below. (not finalized)

Each subroutine uses a RAM area (in the general-purpose RAM area) as a work area.

1) Data communications :Performs synchronized serial communications.
2) Alarm :Sounds the buzzer.

3) Flash memory write :Writes flash memory.

4) Flash memory read : Reads flash memory.

VMU-13

VMU Specifications

Interrupts

Alist of external and internal interrupts is provided below. (planned)

Except for the Mode Change interrupt, these interrupts cannot be masked. (planned)

1) Low voltage interrupt

2) Timer interrupt

3) Mode Change interrupt (maskable)
4) SLEEPinterrupt

RAM
The RAM areas that executable files can use are shown below.
General-purpose RAM: 000h to OFFh (bank 1)
I/O mapping RAM: 000h to 1FFh (Set the address to the specified register and read / write one
byte at a time.)
XRAM: Bank 1, bank 2

Save Processing During Executable File Operations

Data on the midpoint status of an executable file and parameters for an executable file (such as a game) are saved
by writing the data to an area within the executable file. When creating an executable file (such as a game), set aside
an area within the file for this purpose. Because FAT processing, etc., is not possible due to the hardware design,
such data cannot be saved in a separate file.

In order to link the game machine with an application and then use the saved data from an executable file (such as
a game), load the executable file from the VMU to the game machine, and then read that portion of the file that
contains the saved data.

Auto Power Off

* The Auto Power Off function puts the VMU into the SLEEP state if no buttons are pressed or no
communications are received for two minutes.

This function can be enabled / disabled by executable files.

VMU-14

VMU Specifications

Communications Function

® The VMU is capable of conducting serial communications with other equipment.

e The VMU supports two serial communications protocols: the Maple Bus protocol and full-duplex
synchronous serial communications.

e The System-BIOS switches between the Maple Bus protocol in system mode and synchronous serial
communications in standalone operation mode.

Maple Bus Protocol

* When the VMU is connected to a game machine, the communications connector switches to the Maple
Bus protocol side.

* The entire I/ O mapping RAM becomes a transmission /receive buffer, and the synchronous serial
side stops.

e The physical connection with the game machine is made through an LM-Bus connection, and the VMU
becomes an expansion device.

e All processing is performed by the System-BIOS; this function is not accessible from an executable file.

* The transfer speed is 2Mbps.

Synchronous Serial Communications

* When the VMU is operating on a standalone basis, the communications connector switches to
synchronous serial side, and the Maple Bus protocol side stops.

e There are two synchronous serial interfaces, allowing full duplex communications with other devices.

e Data is transferred one byte at a time, with a maximum transfer speed of 2.4Kbps. (not finalized)

This function is available to executable files as a subroutine.

VMU-15

VMU Specifications

Clock Function

* The clock function in the VMU conforms with FT3: Timer Function in the Maple Bus 1.0 Function Type
Specifications.

This function can measure time in 500ms units, using a 32KHz crystal resonator and a dedicated counter.
e The System-BIOS controls the clock function; an executable file can only read the clock function.

Settings

* On the setting screen, set the year, month, day, and time.

* When the VMU is connected to a game machine, the date and time can be set by the game machine
through the Maple Bus protocol.

VMU-16

VMU Specifications

Alarm Function

* The alarm function in the VMU conforms with FT3: Timer Function in the Maple Bus 1.0 Function Type
Specifications.

This function sounds the built-in voltage buzzer.

® Only one alarm can be sounded at one time.

The sound is generated by the pulse generator method; the frequency can be set over a range from 300Hz
to 4KHz, and the duty ratio can be set as desired. (planned)

The volume cannot be adjusted. The sound can be turned on and off.

This function is made available for executable programs as a subroutine. (planned)

* When the VMU is connected to a game machine, the alarm function can be set by the game machine
through the Maple Bus protocol.

VMU-17

VMU Specifications

SLEEPFunction

In order to reduce power consumption when operating on a standalone basis, the VMU is equipped with a
SLEEPfunction.

The VMU enters the SLEEPstate either because the SLEEPbutton is pressed or because the Auto power Off
function was triggered. (Refer to section, “Auto Power Off”) To return from the SLEEPstate, press the
SLEEPbDutton.

SLEEPOperation

When in Timer mode (clock display) or File mode (file management software), the LCD display shuts off and the
VMU enters the idle state.

SLEEPprocessing in Game mode (after an executable file has been initiated is determined by the executable file.
(We plan to indicate a recommended processing method.)

The contents of RAM and the registers are retained, except in Time mode. In SLEEPmode, all buttons are disabled
except for the SLEEPbutton.

VMU-18

VMU Specifications

Buttons

Four-direction key:

A button:
B button:
Mode button:

SLEEP button:
Reset button:

This key is used to move the cursor up, down, left, or right, and to scroll the screen.
This button is used primarily to finalize selections.
This button is used primarily to cancel selections.

This button changes the mode during standalone operation. Each time this button is
pressed, the mode changes according to the following cycle: File -> Game -> Time -> File
-> Game ->...

This button changes the mode to the SLEEPstate during standalone operation.

This button initiates a “power on” reset, which initializes the entire VMU unit (including
the clock, etc.), except for the contents of flash memory.

VMU-19

VMU Specifications

Batteries
Battery Life

The VMU is equipped with two CR2032 batteries for standalone operation.
Battery life depends on the status of executable file operations.

If an executable file is continuously executed, with the LCD display on (refresh rate: 1Hz), no alarm outputs, no use
of the communications function, no executable file save processing, and no use of the SLEEP function, the batteries
should last for about one week.

The relationship between operational status and battery life is described below. Take battery life into consideration
when creating executable files.

Flash memory reads: This is the normal state of program execution.

LCD display updates: Battery power consumption increases by a factor of 5 when overwriting
XRAM as compared to when reading flash memory.
Frequent screen updates have an effect on battery life.

Alarm output: Consumes an extremely small amount of power.

Flash memory writes: Consumes 25 times more battery power than when reading flash memory.
Saving the operation status and similar processing should be performed as
infrequently and in as small amounts as possible.

Data exchanges after an executable file has been initiated:
Such operations consume a tremendous amount of battery power. Simple
parameter exchange could be used to reflect the development of game
characters, for example.

File exchanges between two VMUs: Copying an entire file consumes a tremendous amount of battery power.
Because the receiving side in particular must write the data in flash
memory, a large amount of battery power is consumed. In addition, the
larger a file is, the longer the operation will take and the greater that the
power consumption will be.

Processing When Battery Power Is Exhausted

The System-BIOS constantly monitors the battery voltage.

If the batteries are nearing the end of their life while in Game mode (while an executable file is being executed), the
System-BIOS saves the contents of RAM and the registers. (planned to be implemented through the library, perhaps)

Battery Replacement

e The clock settings are initialized when the batteries are replaced.
* Any file that is stored in flash memory is retained.
* When replacing the batteries, always install two brand new CR2032 made by the same manufacturer.

* Make sure that the polarity (+/-) of the batteries is correct when you install them.

Postscript

The functions of the VMU are subject to change in whole or in part until the release of VMU Specifications
Revision 1.0.

VMU-20

Sega®@'Dreamcast

Visual Memory Unit (VMU)
Hardware Manual

Sega®@'Dreamcast

Table of Contents

Visual Memory UnitOverview.ttt e e eiianees VMD-1
VMU SPECIfICALIONSocvviiiniiiiiiciiiciic e VMD-2
VMU FUNCHONS «..ovieiiitctcttctc st a bbbt s st s e a et n s et nns VMD-6
File ManagemMeNtc.ooimiiiiiciei e VMD-7
Liquid-Crystal DISPIaycccoioeiueieiiiciee et VMD-7
Starting VMU appliCationscoceueiiiieioiicicieccte st VMD-7
Data transfer ... VMD-7
CLOCK ittt reaa VMD-7
BUZZET ..o VMD-8
Operation Mode SWItChINGccciiiiiiiiiiiiii e VMD-8
Integrated character fONL ..o VMD-8
IMOAE SEELING ...ttt e e VMD-9
SYSEEIM INOAE ...t e VMD-9
GAME TNOAE ..o VMD-9
FAIe TNOAE ... VMD-10
ClOCK MOAE ..o VMD-10
File ManagemeItccccoiuiiiiiiiiiiiiiiiiiii bbb VMD-11
Flash memory management area ...t VMD-11
DAta Iovviviiiiitcic bbb ne e VMD-13
RESEIVEA QIEacocviiiiiiiiii e VMD-13
LCD DISPLAY .ttt a e s eaen e VMD-14
XRAM it VMD-14
IMage MOAE ..o VMD-14
703 o OO OO VMD-14
Image CONFIGUIATION ...c.c.ciuiiiiiiiiiiiiceeecccee ettt VMD-14
LCD CharacteriStiCScuvueuuiuiiiiiiiciiiciie it VMD-15
Other IMPOTTANE POINESuvuiieeiiieirieciiciecieeie ettt et saesenae VMD-15
Starting an Executable File ... VMD-16
Writing applications for the VMU ... VMD-16
Transferring an executable file ... VMD-16
Executable file SIZe ..o VMD-16
OS programs usable by appliCationsccceueiiiriciiiiicec e VMD-16
RAM s VMD-17
Saving application dataccoeeeiiiii e VMD-17

AU0 POWET-OFF .o VMD-18

(@670 110 010NN Tar=Nu o) 0 T 210 U Ll u o) o 1< VMD-19

Maple DUS PIOLOCOLvviiiiiciiicicccccce et VMD-19

SYNChronous Serial trANSIETccovcurieuricurieieiciei ettt neae VMD-19
ClOCK FUNCHON ..ovciiiiiiiiiiii s VMD-20
AJArm FUNCHON. ..ot VMD-21
S1EEP FUNCHOT o.voiiiett st b bbb bbbt s s VMD-22
BULEOIIS oottt a e e ae e VMD-23
Batteriesceoeieiceiie et VMD-24

Battery Lifeouoee VMD-25

Battery statts MONItOTINGcooviiiiiiiiiiic s VMD-25

Battery replacement ... VMD-25
CPUFeatures.t i it i VMD-27
Differences to Conventional CPUS ... VMD-28
SPOCIHICATIONS ..eoveiieet ettt VMD-29
System BlOCK dIAGTAMc.cuiuiiiiiiiiiiiiiiicicicece ettt VMD-33
Internal System Configuration................. i VMD-35
IMEIMOTY SPACE ...viviiiieiiiiieect ettt b et a bbb bbb bbbttt VMD-35
Program COUNLET (PC)c.ccuieiiieiieinieiniieieieieeietseess et sese sttt et eaenns VMD-36
ROM SPACE ...ttt b e a bbb bbbttt VMD-38
RAM SPACE ...ttt VMD-38
Indirect Address ReZISTEIS ..ot VMD-39

Special function registers (SFR)ccoviiiiiiiiiiiinicic s VMD-40
FIASH MEIMOTY ...ttt ettt VMD-43
ACCUMUIALOT ..ot VMD-43

B Register, C REGISOTc.ccouiiii VMD-43
Program Stattis WOId (PSWW)ccceuriieircceircteetreceie et sseseesae e ss e seasessas s eseassenensenis VMD-44
SHACK POINEET ...ttt VMD-46
Table Reference Register (TRR)c.ccoceueurerierierimnicieieriieiereeieeeiesseseeesesessesesesessesesssesesseseaesesesseseaesessesesssessssessacses VMD-47
CHANGE INSLIUCHON .o s VMD-48

FOTMNAL <.t VMD-48

OPEIALION .ottt VMD-48

SaMPIE PIOZIAIMNeeiiiet bbbt VMD-48

Peripheral System Configuration, VMD-49

| L Y < v TR VMD—49
o3 A OO VMD-50
03 & SR TSRS VMD-54
POTE 7 oottt ettt ettt et e et e et e e e e ettt eeat et eat et e ea e et e et e teeat et s eateettenteete et e ereeteerteteertenrsentees VMD-56
TIMET / COUNLET 0 (TO) oottt ettt et et et et et s e e e e e ssesseesessessensensentensententsntensesesseeseasessesseesensessessensensensan VMD-58
FUNCHONS ..ttt ettt e ettt e e ta e e s tb e e e tbee e ataeesasaeaassseeaassasesssseaassaeeassaseasssaassssaesnssns VMD-58
Circuit CONFIGUIATION. ...c.cucuiuiiiiiiiiiiiieeeecce e e VMD-59
Related REZISTETScucuumiiiiiiiiiiiiiicicciceeecee e e e e VMD-60
Circuit Configuration and Operation Principles ... VMD-69
THMET T (TL) oottt ettt ettt e et e et et e sae e s e s e sa et e st et e st ensententensensensensensenesaeessesessessessensensessensensansan VMD-76
FUNCHONS .ottt e et e et e e e eaaeeeeaaeeeetaeeeesseeeeseeeetsseeesseeeesseeeesseeeenseeeennes VMD-76
Circuit CONfIGUIAtIONc.ouiiiiiiiiiiiiiiiiic e VMD-77
Related REGISTETSc.ccuiuiiiiiiiiiiiiiiiiicii e VMD-78
Circuit Configuration and Operation Principles ... VMD-82
BaSE TIIMET ...veiieeiieeeee et et e et e e et e e et e e e tteeeeebaee e taeaesseeeassaeaassasaassseearssaeasssssaanssasarssesessseeeasssesasseaanssaeansens VMD-9%4
FUNCHONS ..ttt e et e e te e e e tae e e tbee e ataeesssaeaasssaseassaaesssasaasseeeassaseesssaeansseennssns VMD-9%4
Circuit CONFIGUIATION.cuiuiuiuiiiiiiiiicccccecce e e VMD-95
Related REGISTETScucuumiiiiiiiiiieiiiiiccceieeicee et VMD-96
USING the BASE TIIMIETceuvuiimiieiniieiiieitieineicinticte ettt sttt sttt eescaeeae VMD-99
SETIAL INEEITACE ..ottt ettt et e et e et e et e e teeeaeeeteeeaseeeseeeaseeeteeenseeesesenseeesesenteeesseenteesaseenseensnas VMD-100
FUNCHONS QN FEATUTES ...ttt ettt et e et eae e e te e aeeeteseveeseeeaseensseeseeenseeseeeneas VMD-100
Circuit CONfigUIation ..ot VMD-102
Related REZISLETSoouiiuiiiiicicic s VMD-103
Serial Interface OPeTation ...t s VMD-109
Operation Mode SEtHNgGScccovuiiiiiiiieiicee s VMD-109
o T) W F=1 B0 =V a 1] (<) el (ool <SSR VMD-111
Serial Transfer TIMINEG ... VMD-113
LSB/MSB Switchable Start SEQUENCEc.cccuruiuriiiriiiiiciieicicieie it sas VMD-114
OVEITUIN DIEEECHION .o ettt ee e e et e e e e s e e eeaaeeeteeeeesseeeeaseeeeseseeenseeeesseeeseeeans VMD-116
Transfer Bit Length CONtIolccccoiiiiiiiiiniiiici s VMD-117
SaMPIE PTOZTAIMNcuviiiiicii et VMD-117
Dot MatrixX LCD CONTLOIIEToouvieiieeiietieeeeteeteete ettt ete et eteeete et eeteeeesaeeseeseessesssenseesseseessesseesseeseessesseenseessensesnes VMD-120
FUNCHONS ..ottt e et e e et e e s tb e e e abeeeessaee e sbaeesssasaassseeensssaasssasaassseeanssseesnseaaans VMD-120
Display RAM (XRAM)coouriieieiiieiereeneteiesneeeeesessesteesessssesteesessestassessssestsssessentssaesesentassesessentscsessaens VMD-120
Display Control REGISLETSccueuiiriririiiririririreeerereer ettt nesenen VMD-121
External Interrupt FUNCHONooiiiiiiiic e VMD-128
Circuit CONfigurationcooiiiiiiiice s VMD-129
Related REGISLEIScoviiiuiiiiiiciie e VMD-129
Port Interrupt FUNCHONScovviiiiiiiiiiiiii s VMD-135
0T o Vol n (o) o NPT USOTRUN VMD-135
Circuit CONFIGUIATION.cuiuiuiuiiiiiiiiiecccecccee e e VMD-135
Related REGISTETSc.cucuuiuiiiiiiiiiiiiciccciecceee e VMD-136
Operation Description ... s VMD-137
SEALE TTANSIHION Loiutiiiiiiitii ittt ettt et eetr e e teeeae e beeebeebeesebeesaessseebeessssenseesasaensesenbeessseenseesssessaensnes VMD-137
VIMU WOTK RAM ..ottt ettt ettt ettt ettt et ett et s eatetssaseaseateasensasssenteessensesssenseessenssessenssensenssensesssennesns VMD-139
Work RAM Control REGISTETSccocuiiiiiiiiiieiiicicie e VMD-139
Accessing WOrk RAM.oiiiiic s VMD-140
Precautions for Using Work RAM Address Registercocooeeeiiieininiiceinccecce VMD-140
FLASH MIEIMOTY ...ttt ettt e sneacs VMD-142
Features and FUNCHONScoiiiiiierieiececeee ettt ettt et ev et eeveete e beeteeeseereeeseesseessensesasenseensenseensenseen VMD-142

Accessing Program /Data Area of Flash MemOTyc.ccccvieuieinienicnicnicincnceeecieeeseeseeeseeeneaens VMD-142

Control FUNCHIONS. . . oottt ittt et ettt e et as e s en s s ennensnnsnnns VMD-143

Interrupt FUNCHONS ...c.oiiiiiiii e s VMD-143
INtEITUPE TYPES .ot VMD-144
Interrupt Function OPeration ... s VMD-145
Circuit Configuration ... s VMD-146
Related ReZISIEISc.oviieiieiie e VMD-147
Interrupt Priority RANKINGccoocviiiiiiiiiic e VMD-150

System Clock GENETAtIONcceuiiiiiiiiiiiiiiiiiii e VMD-151
Features and FUNCHONSccccciiiiiiiiiiiiiiiiiiii e VMD-153
Circuit CONfIGUIAtIONcoovviiiiiiiiiii s VMD-154
Related REGISTETSc.cuiviiiiiiiiiiiiiciiiiiicccc e VMD-156
System Clock Operation MOEc.ccuiuiuriiiiiiiiiiiiiricicieeeeeeee e VMD-159

S1EEP FUNCHON ..ottt st bbb aea et s VMD-161
Related REGISTETSc.cuiuiiiiiiiiiiiciiiicicccr e VMD-162
Standby Operation StATUSc.cccecieiiiiiiiiiiieiicccrieeee et VMD-163
HALT MOGE ittt s s VMD-164

Hardware Reset FUNCHONc.ooiiiiiiiicc st s VMD-165
External Reset Pin FUNCHONccooviiiiiiiiii e VMD-166
Hardware Status During @ ReSetc.ccceuiiiiiiiiiiiiiiccereee e VMD-167

Programs in ROM. i e ittt i VMD-1M

SYSEIN PIOZTAIMNSeviiiecect ettt et bbbttt VMD-172

O PIOGTAINSeviniiiiiiiiitcc bbb bbb bbb bbb VMD-173

HEAAETS ... VMD-174

Memory Spaceoiiiiiiii i it e VMD-175

SystemBIOS Functions.t e VMD-177

Subroutine Call Procedure. ... VMD-179

Processing Contents 0f Labels ... s VMD-180

Interaction Between System BIOS and Application ..o VMD-181

Application Shutdown Procedure When MODE Button is Pressed............. VMD-183

Processing Contents Of Labelsc.c.ooiiiiiiii s VMD-184

Interaction Between System BIOS and AppLicationccccccccuiiiriiiiiiniiiniiiiiirccccnceeeees VMD-185

VMU Initializationoii i VMD-187

Subroutine Reference................ ... VMD-189

Flash Memory Access FUNCHONSccoiiiiiiiiiiiicicic s VMD-189

Subroutine Use PTECAULIONScocvvviiiiiiiiiiiiiiiiic s VMD-190

Flash MemOry rOUtINEScc.couiiiiiiiiiiic s s VMD-192
fm_prd_ex(ORG 0120H)

Flash memory page data read ..o VMD-192
fm_wrt_ex(ORG 0100H)
Flash MemoOry data WITEc.cccecueiieiiieiieiiciieineete ettt VMD-194
fm_vrf ex(ORG 0110H)
Flash memory page data VETIfY ...ttt eeessae VMD-195

ClOCK FUNCHON .o e

VMD-198
timer_ex

CloCk COUNE-UP HIMET ... VMD-198

Low Battery Voltage Auto Detectionccoiiiiiiiiiiiiiinnnnn.. VMD-199

List of Defined Variablesl VMD-201
Sound QutputMethod e e VMD-203
TIMET T OULHINE ..ottt st st VMD-203
Timer 1 Block CONfiguration ... e VMD-203
Related REZISLETScoviiuiieiiiciie s VMD-204
MOAE SEHHNG ..ot VMD-205
8 Bit CoUuNter MOdE ...t VMD-206
Output Waveform and Parameter SEHHNEcccococeiiiiiiiiiieeecceeeeeeee e VMD-206
8 Bit Counter Mode SEHINGcccuiiuiuiiiiieeecccceecee e VMD-207
Frequency CharacteriStiCscoeieurieunieieieieieieieieteeeteee et eeessese s s ssesessesesesesseans VMD-208
Output Frequency Table ... VMD-208
Sample Program. i e s VMD-211
Variable Bit Length Pulse Generator................ccciiiiiiiiiiiiiinnnn.. VMD-213
SymbolTable ... i ittt VMD-217
VMU Mode Selection ... VMD-221
Calculationof Battery Life..............cooiiiiiiiiiiiii e VMD-223
Methods for Enhancing Battery Life ... VMD-223
Oscillator Circuit and Current CONSUMPLIONc.cciuiuiuiuriiiiiieeceieeeeeeeeee e sesesens VMD-224
Oscillation Control REGISEETcouiiiiiiiiicieie e VMD-224
System Clock Division Ratio SEttngccceeieiiiiiiiiiccc s VMD-224
Oscillator Circuit SElECION ..o e VMD-224
Oscillator CIrcuit SArt/STOPc.cvcuiciiiiriciieirciece s sas VMD-225
Calculating Battery LIfecccociiiiiiicicececceeeeee e VMD-225
Calculating Continuous Operating Timecccccccociiiiiiiiiiieeeceeeeeee e esens VMD-225
Calculating Battery Life in Days ... s VMD-226
Serial Communication Precautions............................cal s VMD-229
Serial Communication Timing Chart ... VMD-229
Measures to Ensure Problem-Free Serial Transfer ..., VMD-230
Mask AL INEEITUPLES ...uvemiiiiiiiciciicicccceeeee e e e VMD-230

Set Maximuim SENA WALt TIINIEoovveiiieeie ettt e et et e e et e e e s e e seaneesenseeeeneeeensneessnneeeens VMD-231

Sega®@'Dreamcast

Visual Memory Unit Overview

The Visual Memory Unit is a memory cartridge that serves not only for storing data but also for visually displaying
information on an integrated LCD. It is connected to the Dreamcast controller (hereafter referred to simply as the
“controller”) and is used as a memory card that can store game data and display secondary screens during a game.
It can be connected and removed also while the Dreamcast is turned ON.

In the standalone condition (while not connected to the controller), it is possible to display a directory of data files
and to perform housekeeping (deleting files). Two VMU units can be connected for operations such as copying files.

By downloading an application from the Dreamcast to the VMU, the VMU can be used as a miniature game
machine. Connecting two units for two-player battle-type games is also possible.

Figure 2.1 VMU allows two-player battle-type games

VMD-1

Visual Memory Unit Overview

VMU Specifications

The VMU hardware configuration is shown below.

Table 2.1 VMU Specifications

VMU custom chip CPU 8 bit Instruction cycle time Connected to Dreamcast: 6 MHz (1 ms)
(Sanyo LC8670) Standalone operation: 32 kHz (183 ms)
Note: In standalone operation, operation is deliberately slowed down
to reduce power consumption.
Memory ROM 16 KB system BIOS, system programs
Flashmemory | 64 KB program/data area
EEPROM 64 KB data area (28 KB reserved for system)
RAM 256 bytes for applications
256 bytes reserved for system
Work RAM 512 bytes work RAM. When connected to Dreamcast, reserved by
system for use as transfer buffer. In standalone operation, read/write
in single byte units possible.
XRAM (for 96 bytes for LCD upper half
LCD) 96 bytes for LCD lower half
6 bytes for icons (reserved by system)
Serial interface Used exclusively as follows.
(1) Dedicated Dreamcast interface
(2) Synchronous 8-but serial interface with 2 transfer channels
Timer 16-bit clock timer
16-bit (or 8-bit x 2), use as PWM sound source possible
1/0 ports Input/output 16 lines (buttons, serial interface)
4 lines (control connector
LCD controller 33 common lines, 48 segment lines
LCD Reflective type liquid crystal 48 (horizontal) x 32 (vertical) dots, 2-value B/W
4 mode icons (file, game, clock, alert), reserved by system
Piezoelectric buzzer Alarm (PWM sound source output)
Power supply Button type batter CR2032 x 2
External input +5V, +3.3V input
External output 3.3V output
Buttons 8 operation buttons + reset button | Direction buttons, A button, B button, MODE button, SLEEP button (reset button)
Connector 14 pins Serial interface, power supply

VMD-2

Visual Memory Unit Overview

Figure 2.2 External view

Connector

cover

Direction
buttons

@ Dreamcast

2808

SLEEP

MODE

e _

MODE
|_—1 button

SLEEP button

—

Piezoelectric

buzzer
0"
e of o
LI] @ o
e o o

MODEL NO.HICT-7000

Reset button

B button

A button

SEGA Ei] ,LTD.
MADE 1 CHINA II

Battery compartment cover
(CR2032 x 2)

Figure 2.3 VMU Front View and Rear View

VMD-3

Visual Memory Unit (VMU) Hardware Manual

VMU
(DC/DC Selector N\
Low voltage +5V
_‘ CR2032 x2
+3.5V 1
I
% Potato ;;
Reset
Resetﬂ; J_ BIOS-ROM
o 6MH: @ PL. ——)
CPU-Gore 16KB+4KB
32kHz
FLASH
LCD LCD Driver 64KB+64KB
32x48dot -~ —
g Power
4-icon 1988 . -
512B 0 { }
777 2Mbps |V
Output Enable ’\max) 1
8 L Buffer L-Maple :;lptut‘ I
. A utpu!
8-input 4]7%({]& S Iy : 1/0 < " >{ 512B Logic | guputEeaie
-inpu - :
' 7 7%4]7% s Serial x2 ;&:‘m
‘5-inpul 10
ﬁ7 4-in|
I:l Buzzer I 02 X put 33V
D1 {} ”|
1D0)
\ V3-inpul U

Figure 2.4 System Block Diagram

-

Ext.
Terminal
14pin

VMD-4

Visual Memory Unit Overview

FFFFH FFFFH Block 7FH System FFFFH
management
EFFFH area
0S Block0C7TH C800H
program
E00OH area
01FFH For For
01FFH N 01BFH -- application save
AN XRAM use data
N Bank 0 L] Bank 1 i
0180H Upper half Lower half Bank 2
AN - - 0
N SFR Foricon use
Reserved Poi N Bank 0 Bank 1
area ointer
/
/ SFR
1
= O?FFH __— N
4000H / Stack area
/
JoosoH]
For
/, application
System ’ For system use
program ; use
area) Bank 0 Bank 1
/
0000H 0000H / 0000H . 0000H L_Block 00H Block 80H
ROM Work RAM RAM 256 bytes x 2 Flash memory 64 KB x 2
512 bytes

Figure 25 VMU Memory Map

VMD-5

Visual Memory Unit (VMU) Hardware Manual

VMU Functions

When connected to the Dreamcast via its dedicated interface, the following functions of the VMU are controlled by
the Dreamcast.

Note: The control port of the Dreamcast accepts the standard controller and other devices such as a
steering controller etc. Devices which have an expansion device connector can accommodate the VMU
or other add-on devices. These peripherals communicate with the Dreamcast via a dedicated bus called
the Maple bus.

1. Game data storage medium
2. Controller-specific LCD display
3. VMU clock read and set

These functions are controlled using special programs stored in ROM on the VMU. These programs are collectively
referred to as the system BIOS.

The system BIOS consists of system programs, OS programs, and headers. The system programs perform functions
such as copying and deleting files, controlling the clock display, and communicating with the Dreamcast. OS
programs control basic functions such as flash memory read / write, internal clock setting, battery voltage checking,
etc. Some OS programs can be called by applications. For this purpose, a part of the program must be placed in a
dedicated location in the flash memory. These parts are called headers.

The VMU contains the following system programs.

FFFFH
EFFFH 0S program area

4KB
E00OH

Application
0S program call
Reserved area
4000H
System program area
CHANGE instruction
16KB 01FFH
C— Header
—

0000H 0000H

ROM Flash memory Bank 0

Figure 2.6 Memory Map of Programs in ROM

VMD-6

Visual Memory Unit Overview

File management

File management refers to the handling of game data stored in the Dreamcast and executable files for VMU
applications.

Files are managed in units of one block (128 bytes). Reading and writing in block units is possible.

All FAT operations, file name information etc. are handled by system programs.
Liquid-Crystal Display
When connected to the Dreamcast, the display of the VMU shows only graphics transferred as image data from the

Dreamcast. System programs receive the data and handle them for display on the LCD.

In standalone mode, the CPU of the VMU directly controls graphics display. The dot matrix section of the LCD uses
a grid of 32 (vertical) x 48 (horizontal) dots. The data amount for one image is 192 bytes. In addition, the LCD also
contains four types of icons to indicate operation modes.

Icon Operation mode Function
File mode VMU file management
Game mode Executing game from flash memory
Clock mode Date and time display
Accessing Flash memory access

Because these icons show the operation mode of the VMU, their status may not be changed by applications.
Starting VMU applications

A VMU application can be transferred from the Dreamcast and started by the VMU. OS programs also comprise
various subroutines that can be used by applications. For details, refer to the “System BIOS” section.

Data transfer

When connected to the Dreamcast, control of the VMU is performed via a dedicated interface.

In standalone operation, an 8-bit synchronous serial interface is available for communication with another
VMU unit.

Clock

The VMU incorporates a clock which operates at all times, whether connected to the Dreamcast, running an
application, or in sleep mode.

Application programs can obtain date and time information using an OS program.

VMD-7

Visual Memory Unit (VMU) Hardware Manual

Buzzer

The piezoelectric buzzer incorporated in the VMU is driven by a pulse generator (PWM) allowing for variable
frequencies. In theory, the available frequency range is 21 Hz to 5.5 kHz, with 170 Hz to 2.7 kHz being
recommended.

While connected to the Dreamcast, control of the buzzer from the Dreamcast is possible.

During standalone operation, the frequency can be changed by controlling the PWM, and buzzer on/ off control is
also possible.

Operation mode switching

The VMU operation mode is determined by the connection method to the Dreamcast and by the MODE button. The
current operation mode is indicated by an icon on the LCD.

In standalone operation other than game mode, if no button was pressed or no communication has occurred for
more than two minutes, the auto power-off function sets the unit to sleep mode to conserve power.

The VMU has the following operation modes:

* File mode (management of stored game data)
e Game mode (playing a VMU internal game)
* Clock mode (clock display and setting)

* System mode (flash memory access)

Table 2.2 Dreamcast Connection Status and Operation Mode

Connection Status MODE button Status Operation mode

Icon display
Connected to Game Always out System mode
Dreamcast File

Clock

Alert On Flash memory access
Standalone operation Game On Application running

File On File operation

Clock On Clock display

Alert On Flash memory access

Integrated character font

VMU incorporates an ANK font using a grid of 8 (vertical) x 6 (horizontal) dots. The font comprises alphanumeric
characters, Japanese katakana, and symbols. The font is only for internal use by the system. It cannot be used by
applications, either when connected to the Dreamcast or in standalone mode.

To display characters, image data must be placed in XRAM.

VMD-8

Visual Memory Unit Overview

Mode Setting

The VMU operation mode is determined by the connection method to the Dreamcast and by the MODE button +
A button.

Mode button N
> ICON display
Game Mode button N Clock Mode button# File >
_J
A Mode A Mode~

button button button button

A 4 A 4

A Mode _
button button Clock mode File mode
y
>Operation mode

Disconnect Connect Connect

y y A 4

Game mode ’ ‘ System mode ’_)

Figure 2.7 Mode Transition

Details of the various operation modes are as follows.

System mode

VMU is controlled by external control program (Dreamcast). VMU carries out Maple bus compliant
communications and memory management, LCD display, and clock management.

When leaving system mode, such as when the VMU is disconnected from the Dreamcast controller, the VMU title
screen is shown on the LCD.

Game mode

In this mode, an application read into the flash memory is executed.

Caution: Applications should be designed to always check for a MODE button press. When the button is
depressed, the application must terminate immediately and control must be handed to the system
program. This applies also when the VMU is connected to the Dreamcast controller while an
application is running.

When a work area in RAM is used, the application should move its contents to flash memory or similar
before terminating.

For information on how to terminate applications and hand control to the system program, refer to “Application
Shutdown When MODE Button Is Pressed”.

VMD-9

Visual Memory Unit (VMU) Hardware Manual

File mode

This mode serves for managing game data stored on the VMU. File management is performed by system programs.
The buttons on the VMU are used to display, copy, or delete files written to the flash memory.

Clock mode

In this mode, the time is displayed on the LCD of the VMU. Time can be displayed using hours, minutes, and
seconds, and the user can set the time as desired. When connected to the Dreamcast, time setting can also be
performed from the Dreamcast side.

Clock functions are performed using system programs and OS programs.

VMD-10

Visual Memory Unit Overview

File Management
The total capacity of the flash memory on the VMU is 128 KB (64 KB x 2 banks). 28 KB are reserved for the system.

Flash memory is managed by the system using 128-byte blocks. The smallest read / write unit for a file therefore is
1 block (= 128 bytes), and up to 200 blocks of data can be stored.

One executable application file can be transferred to the VMU. The executable file must be placed be in contiguous
blocks starting at block 00H. The maximum size for the executable file is 64 KB (= 128 blocks).

It is not possible to transfer and execute multiple executable files or an executable file larger than 64 KB.

Real address
OFFFFh Block number: 7Fh
Block number: 7Fh

Block number: OFFh [<+— System area
Block number: OFEh <+—FAT area
Block number: OFDh

~<— File information

Block number: OF1h
Block number: OFOh

[Managementarea |

[Reserved for system |

Block number: 0C8h
Block number: 0C7h

Data/application area

Data area

0000h

Flash memory management area

Block number: 01h

Block number: 81h

Block number: 00h

Block number: 80h

Bank 0

Bank 1

Figure 2.8 Flash Memory Memory Map

15 blocks starting from the top of the memory range (block OFFH) are used as memory management area. The
management area is divided into the system area (1 block), FAT area (1 block), and file information area (13 blocks).

The system area is write-protected except for VMU formatting performed by the Dreamcast.

The FAT area manages one block using 2 bytes (16 bits), to maintain the block chain configuration.

VMD-11

Visual Memory Unit (VMU) Hardware Manual

The file information area holds 32 bytes of information per file and can manage up to 200 files. Out of the 32 bytes,
12 bytes (equivalent to 12 ASCII codes) are used for the file name. Because a hierarchical structure is not supported,

subdirectories cannot be created.

VMD-12

Visual Memory Unit Overview

Data area

The data area which can hold files consists of 200 blocks extending from block 00H to block 0C7H. Files are placed
in this area starting from block 0C7H and going towards block 00H. The application starts from block 00H.

Blocks 00H to 7FH and 80H to OFFH are managed by bank switching, performed automatically by an OS program.

For reading and writing to the flash memory, always call the OS program.
Reserved area

This area is used by system programs and system modes. Writing to this area is prohibited.

VMD-13

Visual Memory Unit (VMU) Hardware Manual

LCD Display

The LCD of the VMU consists of a dot matrix section with 32 (vertical) x 48 (horizontal) dots and an operation mode
icon section with 4 icons.

To display images on the LCD, the image data must be stored in the dedicated XRAM.

XRAM

The dedicated RAM used for LCD display is called XRAM. This corresponds to the video RAM in a
conventional computer.

The XRAM has 3 banks. Banks 0 and 1 can be written to by applications. Bank 2 serves for operation mode display
and cannot be used by applications.

Bank 0 of the XRAM corresponds to the upper half of the LCD (48 x 16 dots), and bank 1 to the lower half
(48 x 16 dots).

1 LCD dot corresponds to 1 bit in the XRAM. 1 byte of XRAM controls 8 horizontal dots, with 6 bytes forming one
horizontal line.

Image mode

When connected to the Dreamcast, image data received from the Dreamcast are normally written to the XRAM by
a system program. However, for display of a secondary game screen, image data are written directly to the VMU.
When transferring image data, pay attention to the top /bottom orientation of the VMU. Vertical image reversal can
be performed using the Ninja library.

The VMU also incorporates an ANK character font, but this is for exclusive use by system programs. It cannot be
used by applications.

To draw an image on the LCD, XRAM bits for black dots should be set.

Icon

Because the icons show the operation mode of the VMU, their status may not be changed by applications.
Image configuration

The LCD of the VMU is configured as follows.

VMD-14

Visual Memory Unit Overview

+ Dot matrix screen

32dots

" lcons

Clock display
Writing in progress

File management
Executable file initiation

Figure 2.9 LCD Screen

LCD characteristics

The screen refresh principle for an LCD differs from that for a CRT display. After data have been transferred to the
XRAM, they are displayed immediately on the LCD, but there is a certain delay due to the response characteristics
of the LCD. If this delay is not handled properly, trailing images and flicker will severely impair display quality.

The clock differs in standalone operation and when connected to the Dreamcast. In standalone mode, LCD display
speed is slower.

Recommended refresh rate for the LCD of the VMU is 200 ms or more.

Other important points

Also consider the points listed below when developing applications.

e There is no provision for contrast adjustment (only LCD on/ off control)
e There is no provision for brightness adjustment.
e There is no backlight.

e The reflective polarizer plate (rear sheet) of the LCD cannot have a pattern (picture or similar).

VMD-15

Visual Memory Unit (VMU) Hardware Manual

Starting an Executable File

An application can be transferred from the Dreamcast or a conventional computer to the VMU, for execution in
standalone mode.

Only one executable file can be transferred to one VMU. It is not possible to use multiple
applications simultaneously.

Several OS programs are being made available for use by applications.

Writing applications for the VMU

Applications for the VMU should be written using an MS-DOS assembler and linker. The conventional executable
file created by the linker is converted into an executable file for the VMU by the program E2H86K.EXE.

A VMU application can be debugged using the VMU simulator designed to run under Windows 95 and later. This
simulator emulates all aspects of VMU hardware operation in software. For details, refer to the VMU
Simulator Guide.

Transferring an executable file

The executable file is to be stored in blocks 00H to 7fH of the flash memory, starting at block 00H.

Before sending an executable file from the Dreamcast or a conventional computer to the VMU, a contiguous area
starting at block 00H must be obtained (defragmented). If the amount of available memory is smaller than the
application or if no contiguous area can be obtained, the application cannot be transferred.

For transfer, use the Ninja library and transfer utilities. These allow automatic checking of available space and
defragmentation.

Executable file size

The maximum executable file size is 64K. Larger applications cannot be transferred to the VMU. When an area for
storing data in the flash memory is required, this area must be provided for within the application.

Caution: The executable file comprises the OS program and a program header area containing interrupt vector
information. In GHEAD.ASM supplied with the SDK, the program header area is 0000H - 01FFH.

OS programs usable by applications

The following OS programs can be used by applications. When an OS program is called, a part of RAM can be used
as work area.

1. Automatic low-battery check Allows enabling an automatic low battery warning.

2. Clock read Gets the date and time from the internal clock in the VMU.
3. Flash memory write Writes data to flash memory in block units.

4. Flash memory read Reads data from flash memory in block units.

5. Flash memory verify Checks data read from flash memory for validity.

VMD-16

Visual Memory Unit Overview

RAM

The following RAM areas are available to applications.

RAM

Work RAM
XRAM

Saving application data

Work RAM

512 bytes

OO0H to OFFH (bank 1)
RAM bank O is reserved for the system. Except for the stack
area, it cannot be used by applications.

00H to 1FFH (read in 1-byte units by specifying address)

Bank 0, bank 1
N OIFBH ===
XRAM XRAM
N
AR Bank0 |---- Bank 1 --]ﬂl
0180H |) Bank 1
N '
N 1
. 016
ointer S [l
0154}4 E____/BMA[_)L?___J:
I ;
00FFH T
/ RAM RAM
i
/, Bank 0 Bank 1
/
! 256 bytes 256 bytes

0000H

For system use

For application
use

Figure 210 RAM Memory Map

If a VMU application needs to save progress data or parameters, a data area must be provided within the executable
file. Because the executable file is read into flash memory, the data area also will be stored in flash memory. It is not
possible to create files of the same format as for Dreamcast save data.

When data saved in a VMU application are to be used as Dreamcast applications or links, read the entire VMU
application and perform a lookup on the data addresses in it.

VMD-17

Visual Memory Unit (VMU) Hardware Manual

1
EFFF
Game data
AOOO|-------------1
Program
0000 0000
VMU flah memory Dreamcast main memory
Bank O
2 Read
game data
Game data read into
Dreamcast memory including offset are read
Game data
LD_ADR+A000H~ fe-cccmacaa---
Program
LD_ADR
0000H
3
If required, entire program
including rewritten game data
are transferred to VMU Cemie dhie
EFFFH Program
Game data ¢
AQOOH [=============
Program
0000H 0000H
VMU flash memory
Bank O

Figure 2.11 Linking of Save Data in VMU and Dreamcast
Auto power-off

The VMU incorporates an auto power-off function that automatically sets the unit to sleep mode if no button was
pressed or no communication has occurred for more than two minutes. For details on the sleep mode of the VMU,
refer to section “Sleep Mode”.

When game mode is active, auto power-off is disabled. Applications must provide their own sleep mode. For
details, refer to section “Sleep Mode”.

VMD-18

Visual Memory Unit Overview

Communication Functions

VMU can communicate with other devices via a serial interface. Two protocols are available. When connected to the
Dreamcast, the Maple bus protocol is used. In standalone operation, full-duplex synchronous serial transfer is used.
Protocol switching is performed automatically by a system program detecting the Dreamcast connection status.

Maple bus protocol

When connected to the Dreamcast, the communication connector of the VMU becomes a 2 Mbps Maple bus
connector. The entire work RAM is used as send / receive buffer. If an application was using the work RAM as work
area, the entire contents will be destroyed. Take this into account when designing applications.

The Maple bus cannot be used by applications.

Synchronous serial transfer

When the VMU is operating in standalone mode and data transfer is carried out between two VMU units or
between one VMU and a computer, synchronous serial transfer is used. There are two serial communication lines,
allowing full-duplex operation. Data can be transferred in 1 byte units, and the maximum transfer rate is about
2.4 kbps.

VMD-19

Visual Memory Unit (VMU) Hardware Manual

Clock Function

A 32.768 kHz quartz oscillator and dedicated counter keep time in 500-millisecond units. Date and time data are
managed by an OS program. These data can be read by an application, but not written to.

A setting screen is used to set the year, month, day, and time. When connected to the Dreamcast, the clock in the
VMU can be set from the Dreamcast.

VMD-20

Visual Memory Unit Overview

Alarm Function

The piezoelectric buzzer incorporated in the VMU can be used for an alarm. The buzzer can emit a single tone at a
time. In theory, the available frequency range is 21 Hz to 5.5 kHz, with 170 Hz to 2.7 kHz being recommended. The
alarm function can be implemented by setting the timer (pulse generator) connected to the buzzer. The buzzer can
be switched on and off, but volume control is not possible.

When connected to the Dreamcast, the Dreamcast can control the buzzer of the VMU, including the
frequency setting.

VMD-21

Visual Memory Unit (VMU) Hardware Manual

Sleep Function

The VMU incorporates a sleep function designed to conserve power when operating in standalone mode. In the
sleep condition, the state of the I/O ports and the contents of RAM are maintained, but the CPU and LCD are
turned off.

In game mode, transition to the sleep state is controlled by the application. In clock mode and file mode, the
following conditions cause transition to sleep mode.

¢ SLEEP button was pressed
e Auto power-off function was activated

* No button press or communication for about 2 minutes
To cancel the sleep mode, the SLEEP button must be pressed. Other buttons are disregarded.

The RAM and register memory contents are preserved, except for the clock register.

VMD-22

Visual Memory Unit Overview

Buttons
The VMU has the following buttons.

Applications should be designed so as to maintain the interface described below.

Button name Main function

Direction button (up) Cursor movement and display scrolling

Direction button (down) | Cursor movement and display scrolling

Direction button (left) Cursor movement and display scrolling

Direction button (right) Cursor movement and display scrolling

A button Mainly “confirm”
B button Mainly “cancel”
MODE button Mode switching during standalone operation

Each push cycles through “File” O “Game” O ‘Clock’ O “File”...
SLEEP button Activating and canceling of sleep mode in standalone operation
Reset button Reset of unit contents except flash memory and clock

VMD-23

Visual Memory Unit (VMU) Hardware Manual

Batteries

The VMU incorporates two button-size batteries (CR2032) which act as a power source in standalone operation.
While connected to the Dreamcast, power is supplied by the Dreamcast.

Battery life will depend on the usage conditions of applications. Under the conditions outlined below, the batteries
will last about two weeks.

e VMU standalone operation

e LCD display on (refresh rate 1 kHz)
* No alarm output

e Communication functions not used
* No write to flash memory

For specific information on how to calculate expected battery life for an application, refer to section
“Calculating Battery Life”.

VMD-24

Visual Memory Unit Overview

Battery life

Battery life depends on the operation condition of the VMU. Refer to the table below to calculate battery life

for applications.

Operation Battery power consumption Comments
Program running Standard Reference for flash memory read and CPU battery power consumption
LCD screen update Standard x5 Frequent XRAM rewriting (screen update) consumes battery power

Alarm output

Slightly more than standard

Slight increase in battery power consumption

Flash memory write

Standard x25

Flash memory writes should be limited to minimum because of extremely high
power consumption

Data transfer

Very high battery consumption, especially by applications which also write to flash

memory. When transferring large files, take battery life into consideration.

Battery status monitoring

An OS program continuously monitors the battery voltage. When the batteries near the end of their service life, the
program will trigger auto power-off, even if an application is running.

Battery replacement

When the batteries are replaced, the clock will be initialized, but the contents of flash memory are not affected.

VMD-25

Visual Memory Unit (VMU) Hardware Manual

VMD-26

Sega@'Dreamcast

CPU Features

The VMU is a memory system for the Dreamcast game machine. The CPU in the custom LSI chip has a minimum
cycle time of 0.5 ms. Other functions integrated on this chip are a 128- KB flash memory, 20-KB ROM, 710-byte RAM,
LCD controller/driver, 16-bit timer/counter/ pulse generator, 16-bit (or 2-channel x 8-bit) timer, 2-channel x 8-bit
synchronous serial interface, dedicated Dreamcast interface, and 13-source, 10-vector interrupt architecture.

VMD-27

CPU Features

Differences to Conventional CPUs

Normally, a CPU will have an internal accumulator as well as general registers and flag registers. The control

registers and data registers for the serial port and other peripheral devices are mapped onto the I/O ports.

In the VMU custom chip, all CPU and peripheral device registers are mapped onto memory. These registers are

referred to as “special function registers” (SFR) and are treated separately from RAM.

Keep in mind that these “special function registers” are not internal registers of the CPU.

Conventional computer) VMS custam chip
Example: 8086 type CPU | Memory
Memory |
AX (accumulator) . SI0 control
BX (general register) | %@ SI0 N
ALU SI0 data
PC RAM . register
SP |
Flag register
g | ACC 3
1/0 . Special
(accumulator) function
! ALU “ (general register) registers
~ CPU registers
$10 control | PC
register
swg data N -
Fl st
* ALU= Arithmetic register | SR < ’
Logical PIO control .
Unit register |
PI0 data
register * ¥ Fully memory RAM
mapped custom
chip for VMS
including CPU

| registers J

Figure 2.12 Differences to Conventional CPU

VMD-28

CPU Features

Specifications

This section gives an overview of VMU specifications.

Memory specifications

Flash memory
65536 bytes:
65536 bytes:
ROM

16384 bytes:
4096 bytes:
RAM

Arithmetic area:
Display area:

Work area:

Program/data area

Data area

Program area

System BIOS program area

256 bytes x 2 banks
198 bytes (LCD video XRAM)
256 bytes x 2 banks (work RAM)

Note: The work RAM in the work area is used as a send /receive buffer when connected to

the Dreamcast.

Bus cycle time and instruction cycle time

The bus cycle time refers to the ROM read time.

Bus cycle time Instruction cycle time | System clock Oscillation frequency | Power supply voltage | Others
oscillator
3.412ms 6.824ms RC oscillator 879.236kHz 3.15t0 3.8V 0CR7=1*1
91.553ms 183.105ms Quartz oscillator 32.768kHz 3.15t0 3.8V 0CR7=1*1
Caution: OCRY7 (bit 7 of the oscillation control register OCR) controls the system clock generator operation and

cycle time. For details, refer to section “System Clock Generator”.

OCR7 =1:1/6 of system clock is used as cycle time

The frequency of the RC oscillator circuit is subject to tolerances. The reference value is 879.236 kHz,
but the frequency can range from about 600 kHz to 1200 kHz.

VMD-29

Visual Memory Unit (VMU) Hardware Manual

Ports

I/0O ports: 2 (P1, P3)
Input port: 1 (P7)
LCD segment drive output ports: 48

LCD drive common output ports: 33

LCD controller

Display duty cycle: 1/33
Display bias: 1/5
LCD instruction: on/off

Graphics display: 32 vertical x 48 horizontal dots + 4 icons

Serial interface

8-bit serial interface x 2 channels (synchronous)
Integrated 8-bit baud rate generator (also used for 2- channel serial interface)

Dedicated Dreamcast interface (automatic start patter /end pattern detection)

Caution:

Synchronous serial interface and dedicated Dreamcast interface cannot be used simultaneously.

Timer
Timer 0

16-bit timer / counter

with 8-bit programmable prescaler

Timer 1

16-bit timer/ pulse generator

Base timer: clock selector function

Selects between 32.768 kHz quartz oscillator, system clock, timer 0 programmable prescaler output
500-ms overflow signal generator for clock (when 32.768 kHz quartz oscillator is selected)

Overflow signal generator for 976 ms, 3.9 ms, 15.6 ms, or 62.5 ms cycle (when 32.768 kHz quartz oscillator
is selected)

VMD-30

CPU Features

Interrupts

The interrupt architecture comprises 13 sources and 10 vectors

1) External interrupt INTO: connection detection for dedicated Dreamcast interface
2) External interrupt INT1: low power supply voltage interrupt

3) External interrupt INT2: timer/counter TOL (timer 0, lower 8 bits)

4) External interrupt INT3: base timer

5) Timer/counter TOH (timer 0, upper 8 bits)

6) Timer T1L (lower 8 bits), timer T1H (upper 8 bits)

7) Serial interface 0 (SIO0)

8) Serial interface 1 (SIO1)

9) Dedicated Dreamcast interface

10) Port 3

Caution:

The clock function of the VMU is implemented by counting the interrupts generated in 0.5 second
intervals by the base timer. The port 3 interrupt is a level interrupt which is maintained for as long as
the user presses a button.

If the timer is used to frequently generate interrupts or to accept the port 3 level interrupt, the internal
clock may run slow.

When using the base timer interrupt, call the user-side handler immediately after the label
timer_ex_exit in GHEAD.ASM. The user-side handler must be designed to keep processing time at a
minimum, so that the interrupt can be properly processed every 0.5 seconds.

Care must be taken to prevent clock slow-down already when designing an application.

Priority can be assigned to the interrupts using three interrupt levels (low, high, top). The interrupt priority register
can be used to specify high or low priority for the 11 interrupt sources of port 3 for external interrupt INT2 and
timer/ counter TOL (timer 0, lower 8 bits). High or low priority can also be specified for external interrupt INTO
and INTI.

VMD-31

Visual Memory Unit (VMU) Hardware Manual

Stack area

128 bytes in RAM bank 0, from 80H to OFFH. The internal clock uses 20 bytes. The stack is used up from the
top (80H).

High-speed arithmetic instructions

16 bit x 8 bit (execution time: 7 command cycles)

16 bit O 8 bit (execution time: 7 command cycles)

3 oscillator circuits

RC oscillator: system clock (reference: 879.236 kHz; tolerance range: 600 to 1200 kHz)
Quartz oscillator: clock, system clock, LCD driver clock (32.768 kHz)

Standby function

Sets CPU to HALT mode. In this mode, instructions are not executed, but the internal clock continues to
operate. The mode can be canceled by a reset or interrupt.

The mode is identical to the sleep mode of the VMU, which can be canceled by pressing the SLEEP button.

Flash memory specifications

Memory type: EEPROM (Electrically Erasable Programmable ROM)

Capacity: 128 KB

Write method: using OS program

Write block size: 128 KB

Erase/write voltage: 3.15to 3.8 V

Maximum number rewrite cycles: 50,000 (each cycle consisting of one FFH write and 00H write operation)
Ta =25 °C, memory managed by program

Program memory space: 64 KB

System BIOS (ROM)/ Application (flash memory) switching: by CHANGE instruction. At reset, BIOS
is activated.

VMD-32

CPU Features

System block diagram

Ablock diagram of the VMU is shown below.

| IR PLA
Interrupt controller |4 'S
’ N "I —>| EEPROM controller
! 3
+— EEPROM
Standby controller |4)
T 4
e — PC
—] 5
x~ £
RC | 85 v
= | B ¢ ROM
—]
R , > ACC
Base timer < » . 4 Bus interface . ¢
N N
S100 ¢ JIRT > Port1 P 4 B register
L[] 4) ¢ Port 7 . ’ C register
N
—>»
Timer 1 4) 4) sio <
4 4 PSW
< » Work RAM for VMU ¢
14
INTO to 3 Noise filter |4) ¢ RAR
14
XRAM 4) ¢ RAM
»
» .
LCD display controller |4 » < Stackpointer
»
LCD driver <) . 4 Port 3
N
T 4) EXT register

Figure 2.13 VMU System Block Diagram

VMD-33

Visual Memory Unit (VMU) Hardware Manual

VMD-34

Sega@'Dreamcast

Internal System Configuration

Unlike in a conventional CPU, the accumulator and all registers are mapped to RAM. The relationship between CPU
functions and special function registers is described in this section.

Memory Space

The VMU custom chip comprises internal memory space and flash memory space. The internal memory space is
divided into ROM (64 KB) and RAM (512 bytes). In ROM, sequential addresses are incremented with each normal
instruction execution, allowing linear access to 64 KB.

In RAM, the 256 bytes formed by address range 000 to OFFH are assigned as general-purpose RAM. The 256 bytes
formed by address range 100 to 1FFH are assigned to the special function registers (SFR). General-purpose RAM
consists of 2 banks. The bank can be specified by bit 1 (RAMBKO) of the program status word (PSW) of the special
function registers (SFR). Bank 0 is also used as stack area. The SFR comprises accumulator (ACC), PSW, timer, I/O
ports etc., forming a completely memory-mapped I/O configuration.

The flash memory space has a capacity of 128 KB, divided into 2 banks of 64 KB each. Bank 0 only is available for
execution of application programs. Switching between the ROM system BIOS and a program in flash memory is
performed by a dedicated macro instruction (CHANGE). Data writing to flash memory must be performed by
calling the appropriate OS program.

Caution: ~ When accessing the flash memory, inhibit all interrupts including the base timer. Because the base timer
is used by the internal clock, the inhibit interval should be kept as short as possible.

For writing to the flash memory, set the system clock to RC oscillator and the division ratio to 1/6. For write and
verify, set the system clock to RC oscillator and the division ratio to 1/12.

OS program routines in ROM are provided for flash memory write, data verify, and read operations.

A VMU application always is stored in bank 0 of the flash memory.

VMD-35

Internal System Configuration

4KB *3

SFR

16 KB *2

RAM bank 0 | RAM bank 1

Bank 1

64 KB

Bank 0 *1

64 KB

Internal program ROM

*2) System program

*3) BIOS program

Internal RAM register

*1) Can be used as application program area

Program Counter (PC)

The program counter (PC) uses a 16-bit configuration for storing the address of the program memory (ROM) where

then next instruction to be executed is stored. The CPU refers to the PC value to execute a series of program
instructions. The PC is normally incremented in steps of one instruction. When divider instructions and

Flash memory

Figure 2.14 Three Memory Space Types

subroutines are executed and when interrupt or reset requests are processed, values for the respective operation

states are set in the PC. These values are shown in the table below.

VMD-36

Internal System Configuration

Table 2.3 Program Counter Setting Values

Operation Program counter value
Reset 0000H (internal program space)
External interrupt 0 0003H
External interrupt 1 000BH
External interrupt 2, timer/counter TOL interrupt 0013H
External interrupt 3, base timer interrupt 001BH
Timer/counter TOH interrupt 0023H
Timer T1L, timer T1H interrupt 002BH
SI00 interrupt 0033H
SI01 interrupt 003BH
VMU SI0 interrupt 0043H
Port 3 interrupt 004BH
Unconditional branch instruction JMP al2 PC15 to PC12 = current page
PC11 to 00=a12
JMPF al6 C15to 00=al16
BR r16 (PC+2)+r8[128 to +127]
BRF r6 (PC+2)+r16 [0 to +65535]
Conditional branch instruction BZ_BNZ_BP_BNE (PC+2 or +3)
BPC_BN_DBNZ_BE +18[-128 to +127]
CALL instruction CALL al? C15to C12 = current page
PC11 to 00=a12
CALLF al2 C15to 00=al16
CALLR 16 (PC+2)+r16 [0 to +65535]
Macro instruction CHANGE label name (or address) Value specified by other program mode label or address
Caution: For convenience, 4 KB of ROM space are referred to as a page.

The "current page" refers to the page which contains the instruction that is to be executed after the
currently running instruction.

When an interrupt is generated during ROM program execution, the interrupt vector in ROM (address
in above table) is called. When an interrupt is generated while an application in flash memory is
executing, the interrupt vector of bank 0 in flash memory (address in above table) is called. Applications
cannot arbitrarily specify interrupt vectors. Rather, the specified program must be included in the
application. For details, refer to section 5.1 “Interrupt Functions”.

VMD-37

Visual Memory Unit (VMU) Hardware Manual

ROM Space

The 64 KB ROM space comprises 16 KB for system programs and 4 KB for OS programs.

FFFFH

FFOOH -

FOOOH -
EFFFH -

0S program (4 KB)

EOOOH -
DFFFH -

4000H -
3FFFH -

System program
(16 KB)

0000H -
Figure 2.15 ROM Space

RAM Space

1222 bytes of RAM are included, comprising 198 bytes of LCD video XRAM and 512 bytes VTRBF work RAM. The
special function registers (SFR) are located in the top address range (100H to 1FFH) of RAM.

Table 2.4 RAM configuration

Memory Capacity
RAM size 1222 bytes
XRAM Bank 0 180H - 1FBH (96 bytes)

Bank 1 180H - 1FBH (96 bytes)

Bank 2 180H - 185H (6 bytes)

Main RAM Bank 0 000H - OFFH (256 bytes)

Bank 1 000H - OFFH (256 bytes)

VTRBF 166H (256 bytes x 2 banks)

VMD-38

Internal System Configuration

Indirect Address Registers

The 16-byte address range 00H to OFH in RAM contains 4 banks of indirect address registers. Starting from the
lowest address, these consist of @R0, @R1 (for RAM), @R2, @R3 (for SFR). For addressing, the indirect address
register banks are specified by bits 3 and 4 of the program status word (PSW) (indirect address register bank flag:
IRBKO, 1). This 16-byte area can also be used as regular RAM.

The relationship between indirect address registers and RAM is shown in the table below.

Table 2.5 Indirect Address Register Map

* RAM indirect address register

@R0, @R1

* SFRindirect address register

@R2, @R3

RAM bank 0
OFH @R3 Bank 3
@R2 (IRBK1 =1)
il (IRBKO =1)
oCH @Ro
0BH @R3 Bank 2
i (IRBK1 =1)
@RI (IRBK0 =0)
08H @R0
o7H @3 Bank 1
i (IRBK1 =0)
il (IRBKO =1)
04H @R0
O3H @R3 Bank0
R2
@ (IRBK1 =0)
@R
(IRBK0 =0)
00H @Ro

Figure 2.16 Indirect Address Register Arrangement

Indirect address Function Bank 0 (IRBK1=0) Bank 1 (IRBK1=0) Bank 2 (IRBK1=1) Bank 3 (IRBK1=1)
register name (IRBK0=0) (IRBK0=1) (IRBK0=0) (IRBK0=1)
_Ro RAM access RAM 00H RAM 04H RAM 08H RAM 0CH
_R1 RAM access RAM 01H RAM 05H RAM 09H RAM 0DH
_R2 SFR access RAM 02H RAM 06H RAM 0AH RAM OEH
_R3 SFR access RAM 03H RAM 07H RAM 0BH RAM OFH

(1) Direct addressing mode

(1) RAM bank 0 (PSW 21 =0)

When executing instructions such as MOV #i8, d9

Bank 0

T

Bank 1

| — Bank 0 address is selected

Bank 1 address is selected —_|

(2) RAM bank 1 (PSW 21 =1)

Bank 0

Bank 1

Figure 2.17 Direct Addressing Mode

VMD-39

Visual Memory Unit (VMU) Hardware Manual

(2) Indirect addressing mode

When executing instructions such as MOV #i8, @Rj

(1) RAM bank 0 (PSW 21 =0) (2) RAM bank 1 (PSW 21 =1)
00 oF T Rijselected from this area
Bank 0 Bank 0
D\ Bank 0 address is selected
00 OF
Bank 1 Bank 1 address is selected —»E] Bank 1

Figure 2.18 Indirect Addressing Mode

Special function registers (SFR)

A table of RAM and SFR is shown in Table below. For information on the various registers in the SFR range, refer
to the sections on the various items.

Caution: The initial values are the values established by the BIOS after a reset.

R = READ X = Undetermined
W = WRITE H = Does not exist

Table 2.6 RAM Memory Map

Symbol Address R/W Designation Default value See page
RAM 000H-OFFH R/W Data memory XXXXXXXX (stored at reset) 43
(bank 0)

RAM 000H-0FFH R/W Data memory XXXXXXXX (stored at reset) 43
(bank 1)

ACC 100H R/W Accumulator 00000000 50
PSW 101H R/W Program status word 00HO0000 52
B 102H R/W B register 00000000 51
C 103H R/W C register 00000000 51
TRL 104H R/W Table reference register lower byte 00000000 54
TRH 105H R/W Table reference register upper byte 00000000 54
SP 106H R/W Stack pointer XXXXXXXX 53
PCON 107H R/W Power control register HHHHHHOO 158
IE 108H R/W Master interrupt enable control register | OHHHHHOO 138
IP 109H R/W Interrupt priority control register 00000000 151
EXT 10DH R/W External memary control register HHHH0000 _

VMD-40

Internal System Configuration

OCR 10EH R/W Oscillation control register OHOOHHO0 156
TOCNT 110H R/W Timer 0 control register 00000000 67
TOPRR 111H R/W Timer 0 prescaler data 00000000 Al
ToL 112H R Timer 0 low 00000000 71
TOLR 113H R/W Timer 0 low reload data 00000000 Al
TOH 114H R Timer 0 high 00000000 72
TOHR 115H R/W Timer 0 high reload data 00000000 72
T1CNT 118H R/W Timer 1 control register 00000000 83
T1LC 11AH R/W Timer 1 low comparison data 00000000 86
TIL 11BH R Timer 1 low 00000000 85
TILR W Timer 1 low reload data 00000000 85
T1HC 11CH R/W Timer 1 high comparison data 00000000 87
TH 11DH R Timer 1 high 00000000 86
T1HR W Timer 1 high reload data 00000000 86
MCR 120H W Mode control register 00000000 127
STAD 122H R/W Start address register 00000000 129
CNR 123H W Character count register H0000000 130
TDR 124H W Time division register HHO00000 130
XBNK 125H R/W Bank address register HHHHHHOO 130
VCCR 127H W LCD contrast control register 00000000 131
SCONO 130H R/W SI00 control register 00H00000 108
SBUFO 131H R/W S100 buffer 00000000 13
SBR 132H R/W SI00 baud rate generator 00000000 113
SCON1 134H R/W SI01 control register 00000000 M
SBUF1 135H R/W SI01 buffer 00000000 13
P1 144H R/W Port 1 latch 00000000 58
P1DDR 145H W Port 1 data direction register 00000000 58
P1FCR 146H W Port 1 function control register 10111111 59
P3DDR 14DH W Port 3 data direction register 00000000 62
P3INT 14EH R/W Port 3 interrupt function control register | 11111101 62
P7 15CH R Port 7 latch HHHHXXXX 64
101CR 15DH R/W External interrupt 0, 1 control 00000000 135

VMD-41

Visual Memory Unit (VMU) Hardware Manual

123CR 15EH R/W External interrupt 2, 3 control 00000000 137
ISL 15FH R/W Input signal select 11000000 138
VSEL 163H R/W Control register 11111100 143
VRMAD1 164H R/W System address register 1 00000000 144
VRMAD?2 165H R/W System address register 2 HHHHHHHO 144
VTRBF 166H R/W Send/receive buffer XXXXXXXX 144
BTCR 17FH R/W Base timer control 01000001 101
RAM 180H-1FBH R/W LCD memory XXXXXXXX (stored at reset) 126
(XRAM)

(Bank 0)

RAM 180H-1FBH R/W

(XRAM)

(Bank 1)

RAM 180H-185H R/W

(XRAM)

(Bank 2)

VMD-42

Internal System Configuration

Flash Memory

The VMU custom chip comprises a 128 KB flash memory space which consists of two 64-KB banks. Reading and
writing data from and to the flash memory is performed by calling the appropriate OS program. By using the ROM
table lookup instruction (LDC), ROM space data can be accessed. Applications are always placed in the 64 KB
memory space of bank 0. Switching between the system BIOS (ROM) and an application (flash memory) is
performed by a dedicated macro instruction (CHANGE).

Flash memory size: 64 KB x 2 banks

Banks: Bank 0, bank 1
Bank address: 0000H - FFFFH
FFFFH —
Bank 1
64 KB
0000H
FFFFH
Bank 0
64 KB
0000H —

Figure 2.19 Flash Memory Map

Data read / write for the flash memory is performed by calling an OS program. For details, refer to chapter 12
“Subroutine Reference” in the System BIOS manual.

Accumulator

The accumulator (ACC) is an 8-bit register used for data arithmetic processing, transfer, I/O operations etc. It is
assigned to address 100H of SFR, and initialized to 00H after a reset.

Unlike in a conventional CPU, a part of the memory is used to serve as accumulator.

Table 2.7 Accumulator (ACC)

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
ACC 100H R/W ACC7 ACCB ACC5 ACC4 ACC3 ACC2 ACC1 AcCCo
Reset 0 0 0 0 0 0 0 0

B Register, C Register

The B register and C register are 8-bit registers used in combination with the accumulator for arithmetic operations.
They are assigned to address 102H (B register) and address 103H (C register) of SFR, and initialized to 00H after
a reset.

VMD-43

Visual Memory Unit (VMU) Hardware Manual

B register
Symbol Address R/W Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
B 102H R/W B7 B6 B5 B4 B3 B2 B1 BO
Reset 0 0 0 0 0 0 0 0

C register
Symbol Address R/W Bit 7 Bit 6 Bitb Bit 4 Bit 3 Bit 2 Bit 1 Bit0
C 103H R/W c7 C6 C5 C4 C3 C2 C1 Co
Reset 0 0 0 0 0 0 0 0

Multiplication is performed using 16 bits x 8 bits. For the multiplicand (16 bits), the upper 8 bits are stored in the
accumulator and the lower 8 bits in the C register. The multiplier (8 bits) is stored in the B register. The processing
result (product) has 24 bits. The top 8 bits are stored in the B register, middle 8 bits in the accumulator, and lower 8
bits in the C register. Therefore, the following applies:

(ACC) (©) x (B) = (B) (ACC) (C)

Division is performed using 16 bits [8 bits. For the dividend (16 bits), the upper 8 bits are stored in the accumulator
and the lower 8 bits in the C register. The divisor (8 bits) is stored in the B register. The processing result (quotient)
has 16 bits. The upper 8 bits are stored in the accumulator, and the lower 8 bits in the C register. The surplus is stored
in the B register. Therefore, the following applies:

(ACC) (C) = (B) = (B) (ACC) (C) mod (B)

[acc [¢ | [acc [¢ |

x +
B [acc [¢ | [ACC | € [
Product Quotient Residual

Figure 2.20 Arithmetic Register Contents

Program Status Word (PSW)

The program status word (PSW) consists of flags indicating the arithmetic processing result status and flags
specifying the RAM banks and indirect address registers. It is assigned to address 101H of SFR, and initialized to 0
after a reset.

Table 2.8 Program status word (PSW)

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bit0
PSW 10TH R/W cY AC _ IRBK1 IRBKO ov RAMBKO | P
Reset 0 0 0 0 0 0 0 0

VMD-44

Internal System Configuration

CY (bit 7): carry flag

CY is set (1) when the processing result carries over to the next higher digit (carry) or to the next lower digit
for subtraction and comparison (borrow). Otherwise the flag is reset (0). The flag is influenced by rotating
instructions that include CY, and is reset (0) when an arithmetic instruction is executed.

AC (bit 6): auxiliary carry flag

AC is set (1) when the ACC bit 3 carries over to the next higher digit (carry) or to the next lower digit
(borrow). Otherwise the flag is reset (0).

IRBKx: indirect address register bank flag

Consists of IRBK1 (bit 4) and IRBKO (bit 3) which specify indirect address register bank flag 1 and indirect
address register bank flag 0.

Serve for specifying the 4 register banks used as indirect address registers for indirect addressing within
each RAM bank.

Bank IRBK1 IRBKO
0 0 0
1 0 1
2 1 0
3 1 1

OV (bit 2): overflow flag

When overflow occurs, the OV bit is set (1). Otherwise it is reset (0). This means that the bit is set when the
result of an arithmetic operation involving "negative number" + "negative number" or "negative number" -
"positive number" is positive, or when the result of an arithmetic operation involving "positive number" +
"positive number" or "positive number" - "negative number" is negative. For multiplication and division,

the bit is set when the contents of the B register are not 0, and reset when the contents of the B register are 0.

RAMBKO (bit 1): RAM bank flag

Serves for specifying the RAM bank. When an instruction performs RAM access, the RAM address within
the specified bank is accessed.

Bank RAMBKO

0 0

1 1

P (bit 0): accumulator (ACC) parity flag

When the total number of bits set in the accumulator is odd, this bit is set (1). When the number is even, the
bit is reset (0). This bit is read-only.

VMD-45

Visual Memory Unit (VMU) Hardware Manual

Stack Pointer

RAM bank 0 is used as stack memory. The 8-bit SP register is used to specify addresses in the stack area.

SP is assigned to address 106H of SFR. It is incremented before data are moved into stack memory and decremented
after data are fetched from stack memory.

After a reset, SP is undetermined, but system programs initialize it to 7FH. After SP is initialized, the application
is called.

Caution: The stack is used from RAM bank 0 address 80H upwards (towards 0ffH). The clock function uses up
to 20 bytes of the stack, leaving 108 bytes for the application.
When the PUSH instruction is executed, data are stored only after SP was incremented.
Also when PUSH or POP are used during access of RAM bank 1, the data will be stored in the RAM
bank 0 stack area.

Table 2.9 Stack pointer (SP)

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bit0
SP 106H R/W N SP6 SP5 SP4 SP3 SP2 SP1 SPO
Reset X X X X X X X X

When the PUSH instruction is executed, SP is incremented and the SFR and RAM data specified by the operand are
moved out. When the POP instruction is executed, the data are moved back into the SFR and RAM specified by the
operand, and SP is decremented.

Also when RAM bank 1 was specified for a PUSH or POP operation, data are stacked in RAM bank 0. When the
RAM address is used as operand, bank 0 (not bank 1) is accessed.

When a CALL instruction is executed, SP is incremented, and the lower 8 bits of the program counter (PC) are
moved to the stack. Then SP is incremented and the upper 8 bits of the PC are moved to the stack. When a RET
instruction is executed, data specified by SP are stored as the upper 8 bits of the PC, SP is decremented, and the data
specified by the SP are stored as the lower 8 bits of the PC. SP is then decremented further.

When an interrupt is received, SP is incremented, and the lower 8 bits of the PC are moved to the stack. Then SP is
incremented again, and the upper 8 bits of the PC are moved to the stack. When a RET1 instruction for returning
from interrupt processing is executed, the upper 8 bits of the PC are stored, SP is decremented, and the data
specified by the SP are stored as the lower 8 bits of the PC. SP is then decremented further.

VMD-46

Internal System Configuration

Table Reference Register (TRR)

The table reference register (TRR) is a 16-bit register that serves for ROM and flash memory addressing. The lower
byte (TRL) is assigned to address 104H of SFR and the upper byte (TRH) to address 105H of SFR. During reset, the

register is initialized to O0H.

The table lookup instruction (LDC) adds the data stored in the TRR to the data stored in the accumulator and uses
the result as address for reading data and transferring them to the accumulator. During flash memory read / write

(using OS programs), the data stored in the TRR are used as address for the specified bank.

Table 2.10 Table reference register (lower byte) (TRL)

Symbol Address R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0

TRL 104H R/W TRL7 TRL6 TRL5 TRL4 TRL3 TRL2 TRL1 TRLO

Reset 0 0 0 0 0 0 0 0
Table 2.11 Table reference register (upper byte) (TRH)

Symbol Address R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0

TRH 105H R/W TRH7 TRH6 TRH5 TRH4 TRH3 TRH2 TRH1 TRHO

Reset 0 0 0 0 0 0 0 0

VMD-47

Visual Memory Unit (VMU) Hardware Manual

CHANGE Instruction

The CHANGE instruction serves for switching between the system BIOS and the application. When a system
program is running, the instruction causes a change to the application mode. The program counter is reset to the
address specified by label or address.

Format

CHANGE <label name or address>

Operation

As described below, operation of the CHANGE instruction differs, depending on whether it is executed while a
system program or the application is running. The actual mode shift occurs after the dedicated macro instruction
was executed.

1) System program running

The system switches from the system program to the application (game mode). The program counter is reset to the
application address specified by label or address.

2) Application running
The system switches from the application (game mode) to the system program.

However, if bit 1 (LDCEXT) of the external memory control register is set, the CHANGE instruction will not cause
a change to the system program. The application continues to run.

The program counter is reset to the system program address specified by label or address.

Sample program

Example: internal program External program
WORLD INTERNAL WORLD EXTERNAL
PC MNEMONIC PC MNEMONIC
247H NOP - 100H NOP

248H CHANGE100H ——rdf—o—"]

480H NOP
481H CHANGE 600H
600H NOP
WORLD INTERNAL WORLD EXTERNAL
OTHER_SIDE_SYMBOL AAA Public AAA
Public BBB OTHER_SIDE_SYMBOL BBB
CHANGE AAA ————
N
AAA:
BBB:
™~ cHanGE BBB

Figure 2.21 System Program Application Transition

VMD-48

Sega@'Dreamcast

Peripheral System
Configuration

This section gives details about peripheral devices including I/O ports, timer, serial communication, etc.

1/0 Ports

The VMU custom chip has three I/ O ports which are all mapped to memory using Special Function Registers (SFR).
For ports 1 and 3, data direction register (PnDDR) determine the I or O assignment. Port 1 is used only for the serial
interface and dedicated Dreamcast interface. Port 7 is a dedicated input port for the VMU buttons.

After a reset, all ports are set as input ports, and the port latch is "0".

To use the I/O ports, the following Special Function Registers must be operated.

Port 1 (P1) e P1 e PIDDR e P1IFCR
Port 3 (P3) e 3 e P3DDR e P3INT e EXT
Port 7 (P7) o P7 (dedicated input port)

Caution: When reading an I/O port, depending on the instruction, data may be either latched (Figure 2.22,
“Instruction and Data Path,”) or read directly from the port (Figure 2.22, “Instruction and Data Path,”).
This must be taken into consideration when reading I/O port data. When reading an I/O port, some
instructions read port latched data. BPC, DBNZ, INC, DEC, SET1, CLR1, NOT1

VMD-49

Peripheral System Configuration

E
S
w
o

S
o

S
o

S
o

S
o

S
o

(1117171717

S
=)

Y

MPX
MPX
MPX
MPX
—r
MPX
MPX
MPX
MPX

|
t

AR RRAR AR Yﬁv]v]ﬁv\lv\lxav] 3

V'V V'V VV-V'N ‘7]‘1‘7]‘7]‘5‘71‘71‘6

[EEREEEER

I EEEEEEN

Figure 2.22 /nstruction and Data Path

Port 1

Port 1 can be used as I/O port for the serial interface of the VMU, or for the dedicated Dreamcast interface.

Applications can use only SIO (P10 - P15). To operate these registers, be sure to use bit-level instructions. For details
on SIO output, refer to the section on “Serial Interface”.

Caution: When coding VMU applications, the following operations must be included.

Standalone operation (SIO not used)

Monitor port 7 to detect 5V.

Store values of bits 2 and 5 of port 1.

3. When 5V is detected, change bits 2 and 5 of port 1 to port data output mode and output "0" for
these bits.

4. Reset stored values of bits 2 and 5 of port 1.
If these operations are not performed, the VMU may not be recognized correctly when connected
to the Dreamcast.
Except for the above operations and for serial data transfer, port 1 registers should not be operated
by an application.

D=

Table 2.12 Port 1 latch (P1): 144H

Port 1 Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
P17 P16 P15 P14 P13 P12 P11 P10
Function Pulse output | TEST SCK1 SB1 SO1 SCKO SBO S00

VMD-50

Peripheral System Configuration

Table 2.13 Port 1 data direction register (P1DDR): 145H

Stmbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0

PIDDR 145H W P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P11DDR P10DDR

Reset 0 0 0 0 0 0 0 0
Caution: The data direction register for port 1 is a write-only register corresponding to each data latch bit. When

abit operation instruction or an instruction such as INC, DEC, or DBNZ is used for a write-only register,
bits other than the specified bit become "1". For the P1IDDR, use the following instructions.
MOV, MOV @, ST, ST @, POP

Bit name Function
P17DDR (bit 7) Input control
P10DDR (bit 7) 0: Input mode
1: Qutput mode

P1nDDR (bit 7 to 0): P17 - P10 I/O control

Specifies whether bits 7 to 0 of port 1 are used for input or output.

When set to "1", P1n is in output mode.

When reset to "0", P1n is in input mode.

Table 2.14 Port 1 function control register (P1FCR): 146H

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit0
PIFCR 146H W P17FCR P16FCR P15FCR P14FCR P13FCR P12FCR P11FCR P10FCR
0 0 0 0 0 0 0 0
Caution: The data direction register for port 1 is a write-only register. When a bit operation instruction or an

instruction such as INC, DEC, or DBNZ is used for a write- only register, bits other than the specified
bit become "1". For the P1FCR, use the following instructions.
MOV, MOV @, ST, ST @, POP

VMD-51

Visual Memory Unit (VMU) Hardware Manual

Bit name Function

P17CR (bit 7) P17 control function

0: Port data (P17) output
1: PWM output

P16CR (bit 6) Use prohibited
0: Port data (P16) output (fixed)
1: Not allowed

P15CR (bit 5) P15 control function

0: Port data (P15) output
1: Serial interface data (SCK1) output

P14CR (bit 4) P14 control function

0: Port data (P14) output
1: Serial interface data (SB1) output

P13CR (bit 3) P13 control function

0: Port data (P13) output
1: Serial interface data (SO1) output

P12CR (bit 2) P12 control function

0: Port data (P12) output
1: Serial interface data (SCKO) output

P11CR (bit 1) P11 control function

0: Port data (P11) output
1: Serial interface data (SBO) output

P10CR (bit 0) P10 control function

0: Port data (P10) output
1: Serial interface data (SO0) output

P17FCR (bit 7): Select P17 function

Controls the PWM assigned to P17. When set to "1", the logical sum of the PWM signal and the port latch
data is output. When reset to "0", the port latch data are output.

P16FCR (bit 6): Select P16 function
This bit is fixed to "0". It may not be manipulated by an application.

P15FCR (bit 5): Select P15 function

Controls the clock assigned to P15 for serial transfer 1. When set to "0", the logical sum of the serial interface
clock (SCK1) and port latch data is output. When reset to "0", port latch data are output.

VMD-52

Peripheral System Configuration

P14FCR (bit 4): Select P14 function

Controls the data assigned to P14 for serial transfer 1. When set to "0", the logical sum of the serial interface
data (SB1) and port latch data is output. When reset to "0", port latch data are output.

P13FCR (bit 3): Select P13 function

Controls the data assigned to P13 for serial transfer 1. When set to "0", the logical sum of the serial interface
data (S01) and port latch data is output. When reset to "0", port latch data are output.

P12FCR (bit 2): Select P12 function

Controls the clock assigned to P12 for serial transfer 0. When set to "0", the logical sum of the serial interface
clock (SCKO) and port latch data is output. When reset to "0", port latch data are output.

P11FCR (bit 1): Select P11 function

Controls the data assigned to P11 for serial transfer 0 When set to "0", the logical sum of the serial interface
data (SB0) and port latch data is output. Serial interface data can always be input.

P10FCR (bit 0): Select P10 function

Controls the data assigned to P10 for serial transfer 0. When set to "0", the logical sum of the serial interface
data (S00) and port latch data is output. When reset to "0", port latch data are output.

Caution:

* To use the function assigned to port 1, the corresponding port latch must be reset to "0".
For example, to use PWM, set P17FCR to "0" and reset P17 to "0".

¢ The instructions BPC, DBNZ, INC, DEC, SET1, CLR1, NOT1 read port latch data. Other instructions
read data assigned to the port.

VMD-53

Visual Memory Unit (VMU) Hardware Manual

P1FCR(146H) P1DDR(145H)
|7|E|5|4|3|Z|1|0| FTYPE |7|6|5|4|3|2|1|D|
_ [Dutput i
— PWM | buffer
1o a ‘Ij] P17/PWM
— |
b a BYz Di)—[f— {7 P16/BUZ
] SqKo |
b a W] P15/SCK1
— |
—b @ PO ++ D‘Z}—[}(—_ [P14SI1/SB1
— [D) z I O
Db a {7 p13s01
] SCKO |
Do a D i >—|f {1 P12/SCKo
—b o S0 » D\D—lf 1 PSSt
g0 0 w 0 Pio/so0
lSJ Input
|- buffer
— «l
MPX — <
1 MPX «l
— Y
1 MPX «l
— Y
—1 MPX «
— A
1 MPX «
— A
1 MPX «
— Y
1 MPX -«
— A
1 MPX] q
LI — <
si00 {
sio1 {
VMS serial interface circuit
SDCKB Output Enable
SDKCB Input
SDCKB Output
SDCKA Output Enable
SDCKA Input

SDCKA Output

Figure 2.23 Port 1 Block Diagram

Port 3

Port 3 is an input-only port dedicated to the VMU direction buttons, A button, B button, MODE button, and
SLEEP button.

Table 2.15 Port 3 latch (P3)

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit1 Bit0
P3 14CH R/W P37 P36 P35 P34 P33 P32 P31 P30
Function SLEEP MODE B button Abutton RIGHT LEFT DOWN upP

Reset 0 0 0 0 0 0 0 0

Bits 0 to 7 of port are programmable pull-up bits. The application must set the bit corresponding to the button to be
detected to "0". When the button is pressed, the bit is reset to "0".

Caution: Measures against simultaneous presses of different direction buttons must be taken by the application.

VMD-54

Peripheral System Configuration

Port 3 data direction register (P3DDR): 14DH

This register may not be manipulated by an application.

Table 2.16 Port 3 interrupt control register (P3INT)

Symbol Address R/W Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
P3INT 14EH R/W - - - - - P3ZINT P31INT P30INT
Reset H H H H H 0 0 0
Bit name Function
P32INT (bit 2) Port 3 interrupt control flag
0: Port interrupt disabled
1: Port interrupt enabled
P31INT (bit 1) Port 3 interrupt source flag
0: Interrupt source disabled
1: Interrupt source enabled
P32INT (bit 0) Port 3 interrupt request enable
0: Interrupt request disabled
1: Interrupt request enabled
P32INT (bit 2): port 3 interrupt generation selector flag
Determines whether an interrupt is generated while a button connected to port 3 is pressed. Whereas the
P30INT (bit 0) flag selects whether a generated interrupt is accepted or not, this flag controls interrupt
generation itself.
When reset to "0", no interrupt is generated.
When set to "0", an interrupt is generated.
Caution: The port 3 interrupt is a level interrupt which is generated continuously for as long as the button
is pressed.
P31INT (bit 1): port 3 interrupt source flag
This flag is relevant if the P32INT flag is set. The port 3 interrupt request status is monitored, and the flag
is set to "0" when an interrupt request is generated by port 3. When no interrupt request is generated, the
flag does not change. This allows an interrupt processing routine to specify an interrupt source.
Caution: This flag must be reset by the application. Use a suitable interrupt processing routine to do this.

VMD-55

Visual Memory Unit (VMU) Hardware Manual

P30INT (bit 0): port 3 interrupt request enable control

Enables (1) or disables (0) interrupt requests from port 3. When reset to "0", interrupt processing is disabled
and the interrupt processing routine is not called. When set to "0", the interrupt vector 004BH is called when
an interrupt is generated (P31INT = 1).

P3DDR(14DH)

i [efs [+[o T2 1]o]
—D Q ——[>(_, - O P37
—D Q ——[>/_ O P36
—D Q ——[\/{7 O P35
—D Q ——[h O P34
—D Q MPX ——D(O P33
—D Q ——[>(O P32
—D Q ——|>(O P31

g0 @ ——D(O P30

U | Qutu
L MPX | @] buffer
—1 MPX —] @

—1 MPX ,@I
—1 MPX

—1 MPX g
—1 MPX @I
—1 MPX @
—1 MPX @I

Port3
interrupt
circuit

Port 3 interrupt circuit

Figure 2.24 Port 3 block diagram

Port 7

Port 7 is a dedicated input port that serves for low- voltage detection and for checking the connection status to
the Dreamcast.

VMD-56

Peripheral System Configuration

Table 2.17 Port 7 (P7)

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

P7 15CH R P73 P72 P71 P70

Function ID1 IDO Low voltage 5V detection
Reset H H H H 0 0 1 0

Bits 0 to 3 of port 7 are pulled up. Immediately after a reset, bit 1 is set to "0" and all other bits are reset to "0".

Caution:

VMU applications should be designed in such a way as to store data in flash memory and then
terminate quickly when the VMU is connected to the Dreamcast controller while the application
is running.
The application should monitor bit 0 of port 7. When detecting that bit was set to "0", the same
application termination routine as when the MODE button is pressed should be carried out, and control
should be returned to the system BIOS. The interrupt INTO can be used to detect the connection status.

CTYPE

Pull-up resistor

/
O/

<

o P73/INT3/TOIN

o P72/INT2/TOIN

<

o PT1/INT1

wnwcw

<

D TYPE

Pull-up resistor

o P70/INTO

Figure 2.25 FPort 7 Block Diagram

VMD-57

Visual Memory Unit (VMU) Hardware Manual

Timer/Counter 0 (TO)

The timer/ counter 0 (T0) in the VMU custom chip is a 16- bit timer/counter with the following 4 functions. The
prescaler of timer 0 is an 8-bit type.

The following Special Function Registers are used to control the timer/counter 0.

TOH, TOHR, TOL, TOLR, TOCNT, TOPRR, ISL, I23CR

* Mode 0: 8-bit reload timer x 2 channels

® Mode 1: 8-bit reload timer + 8-bit reload counter
® Mode 2: 16-bit reload timer

® Mode 3: 16-bit reload counter

Functions

8-bit reload timer x 2 channels (mode 0)
The clock from the 8-bit prescaler is used to drive two separate 8-bit reload timers (TOH, TOL).
8-bit reload timer + 8-bit reload counter (mode 1)

TOH operates as an 8-bit reload timer driven by the prescaler clock. TOL performs counting by detecting the
input signal at the P72 /INT2/TOIN and P73/INT3/TOIN pins.

16-bit reload timer (mode 2)
The clock from the 8-bit prescaler is used to drive the 16-bit reload timer (TOH + TOL).
16-bit reload counter (mode 3)

The overflow of TOL is used as clock for TOH, to drive the 16-bit reload counter. TOL counts the input signal
at the P72/INT2/TOIN and P73 /INT3/TOIN pins.

Interrupt generation

When the interrupt enable bit is set, overflow of the register TOH or TOL generates a TOH or TOL interrupt.

VMD-58

Peripheral System Configuration

Circuit Configuration

The timer/ counter 0 (T0) configuration is shown in below.

Prescaler ... ®

The prescaler is an 8-bit programmable counter that operates constantly while the system is on.

The cycle clock is a signal generated with each cycle when an instruction is executed and at HALT mode.

Timer/counter 0 low (TOL) ... O

This 8-bit reload timer / counter uses the prescaler output or an external signal (from other VMU) as a clock.

In modes 0 and 1, TOL is the overflow. In modes 2 and 3, TOH is the overflow. The TOLR (reload register)
contents are reloaded to the respective counter. Reloading is carried out also when the TOLRUN (TOCNT
bit 6) is reset and the counter stops.

Timer/counter 0 high (TOH) ... O

This 8-bit reload timer/counter uses the prescaler output or the TOL overflow as a clock.

At TOH overflow the contents of the timer 0 high reload register (TOHR) are reloaded. Reloading is carried
out also when the TOHRUN (TOCNT bit 7) is reset and the counter stops.

Timer/counter 0 control register (TOCNT) ... O

Serves for TO mode 0 to 3 setting and interrupt control.

Cycle clock ———] 8-bit prescaler [——~ Base timer clock

Signal | Reload register (TOLR) |
detector

P72/INT2
/TOIN

PTINTS [Selector [3] Selector < 8-bitcounter (TOH) |—————

[TOIN D - (A) 1 Selector »
1 Signal
detector TOLEXT »| Reload register (TOLR) |

Ll Selector | 7| 8-bit counter (TOH) |
TOIN
1| Reload register (TOHR) |+
[7[s]s[afs]2]1]o] ToLONG w
123CR(15EH)
_‘ TOHOVF
| [TolovF
[-[-[s[efs]2][1]o] [1[e]s[afs]2f[1]o] w
ISL(15FH) TOCNT(110H)

Figure 2.26 Timer/Counter 0 Block Diagram

VMD-59

Visual Memory Unit (VMU) Hardware Manual

Related Registers

Table 2.18 Timer/counter 0 control register (TOCNT)

Symbol

Address

R/W

Bit7 Bit6

Bit4 Bit 3

Bit 2

Bit1

Bit0

TOCNT

14EH

R/W

POHRUN POLRUN

POLONG POLEXT POHOVF

TOHIE

TOLOVF

TOLIE

Reset

0 0

0 0

0

Bit name

Function

POHRUN (bit 7)

TOH count control

0: Count stop/data reload
1: Count start

POLRUN (bit 6)

TOL count control

0: Count stop/data reload
1: Count start

POLONG (bit 5)

Timer/counter 0 bit length
selector

it

0:8b
1: 16 bit

POLEXT (bit 4)

TOL input clock select

0: Prescaler output

1: External pin input signal
Pin for external input can be
specified by input select
register (ISL)

POHOVF (bit 3)

TOH overflow flag

0: No overflow flag
1: Overflow flag

TOHIE (bit 2)

TOH interrupt request
enabled

0: Interrupt request disabled
1: Interrupt request enabled

TOLOVF (bit 1)

TOL overflow flag

0: No overflow flag
1: Qverflow flag

TOLIE (bit 0)

TOL interrupt request enabled

0: Interrupt request disabled
1: Interrupt request enabled

VMD-60

Peripheral System Configuration

TOHRUN (bit 7): TOH count control

Controls count-up start/stop of timer/ counter 0 high (TOH). When set to "0", the TOH clock is supplied and
counting starts. To stop counting, the bit must be reset to "0". This stops the clock and sends the reload data
(TOHR) to TOH.

TOLRUN (bit 6): TOL count control

Controls count-up start/stop of timer/counter 0 low (TOL). When set to "0", the TOL clock is supplied and
counting starts. To stop counting, the bit must be reset to "0". This stops the clock and sends the reload data
(TOLR) to TOL.

TOLONG (bit 5): Timer/counter 0 bit length select

Specifies the bit length of TO. "0" selects a 16-bit counter and "0" an 8-bit counter.

Table 2.19 For mode 0 or 1, specify “0", and for mode 2 or 3, specify "0".

Mode TOLONG TOLEXT
0 0 0
1 0 1
2 1 0
3 1 1

TOLEXT (bit 4): TOL input clock select

Specifies the clock supplied to TOL. The clock can be either an external signal (from a another connected
VMU) or the prescaler output.

When the bit is set to "0", the external input signal is selected. When the bit is reset to "0", the prescaler
output is selected.

When the external signal is selected (1), either port P72 (INT2/TOIN pin) or P73 (INT3/TOIN pin) can be
used. as TOL clock. Switching between P72 and P73 is performed by the input signal select register (ISL).

TOHOVF (bit 3): TOH overflow flag

This flag is set when TOH overflow has occurred. If there is no overflow, the flag does not change.

This flag must be reset by the TOH interrupt processing routine or another routine of the application.

TOHIE (bit 2): TOH interrupt request enable control

Enables or disables interrupt request generation at TOH overflow.

When set to "0", the interrupt vector 0023H is called when TOH overflow occurs. When reset to "0", no
interrupt request is generated.

VMD-61

Visual Memory Unit (VMU) Hardware Manual

TOLOVF (bit 1): TOL overflow flag

This flag is set when TOL overflow has occurred. If there is no overflow, the flag does not change.
This flag must be reset by the TOL interrupt processing routine or another routine of the application.

When the 16-bit counter is used, the flag is not set also when overflow occurs. When TOH overflow occurs,
it is set together with TOHOVE.

TOLIE (bit 0): TOL interrupt request enable control

Enables or disables interrupt request generation at TOL overflow.

When set to "0", the interrupt vector 0013H is called when TOH overflow occurs. When reset to "0", no
interrupt request is generated.

Caution:

¢ The overflow flags (TOHOVE, TOLOVF) must be reset to "0" by the respective interrupt processing
routine of the application.

* When using the 16-bit counter, set TOHRUN and TOLRUN together to "0".

* When using the 16-bit counter, set TOHOVF and TOLOVF together to "0".

Input signal select register (ISL)

This register serves to select the time constant for the noise filter connected to P73 (INT3/TOIN pin) and to
select the external signal.

Caution: This register may not be manipulated by an application.
Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
ISL 15FH R/W - - ISL5 ISL4 ISL3 ISL2 ISL1 ISLO
Reset H H 0 0 0 0 0 0

VMD-62

Peripheral System Configuration

Bit name Function
ISL5 (bit 5) Base timer clock select
ISL4 (bit 4 1SL5 ISL4
1 1 Timer/counter TO
0 1 prescaler
X 0 Cycle clock
Quartz oscillator
ISL3 (bit 3) Use prohibited
0: fBST/16 (fixed)
1: Not allowed
ISL2 (bit 2) Noise filter time constant select
ISLT (bit 1)
ISL2 ISL1
1 1 16Tcyc
0 1 64Teyc
X X 1Teyc
ISLO (bit 0) TO clock input pin select
0: P72/INT2/TOIN pin
1: P73/INT3/TOIN pin

ISL5, ISL4 (bits 5, 4): base timer clock select

Select the base timer input clock.

ISL5 ISL4 Base timer input clock

0 0 Quartz oscillator

ISL3 (bit 3): prohibited

Use of this bit is prohibited.

ISL2, ISL1 (bits 2, 1): noise filter time constant select

Selects the time constant of the noise filter.

ISL2

ISL1

Time constant

0

0

1Teyc

VMD-63

Visual Memory Unit (VMU) Hardware Manual

The table below shows values for the signal time constant and noise range figures.

Time constant Noise *1 Noise/
signal *2 Noise *3
1Teyc <1Teye 1Teye —
2Tcyc 2Teyc <
Caution: ¢ A signal not matching the time constant conditions is considered noise and is not input.
* Sometimes even a signal matching the time constant conditions may be considered noise and

not input.
¢ A signal matching the time constant conditions is considered normal and is input.

ISLO (bit 0): TO clock input select

Sets port TO external signal input to P73 (INT3/TOIN pin) or P72 (INT2/TOIN pin).
When reset to "0", the signal at P72 (INT2/TOIN pin) is used as TO clock.
When set to "0", the signal at P73 (INT3/TOIN pin) is used as TO clock.

Timer 0 prescaler register (TOPRR)

The timer 0 prescaler register (TOPRR) serves for setting the timer/counter 0 clock frequency. The 8-bit
programmable counter allows 256 different settings.

The 8-bit prescaler uses the cycle clock directly as its clock. By setting the desired data in TOPRR (111H), the
timer / counter 0 clock frequency TPR can be set.

8-bit prescaler: TPR =1 x (256 - [TOPRR]) (decimal)

Teyc: Cycle clock

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
TOPRR 111H R/W TOPRR7 TOPRR6 TOPRR5 TOPRR4 TOPRR3 TOPRR2 TOPRR1 TOPRRO
Reset 0 0 0 0 0 0 0 0

Timer 0 low register (TOL)

This is an 8-bit timer/counter.

It selects whether the output of the prescaler or the external signal from P72 (INT2/TOIN pin) or P73 (INT3/
TOIN pin) is used as clock signal.

VMD-64

Peripheral System Configuration

The clock is used for count-up. When overflow occurs, the overflow flag is set and an interrupt is generated.

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
TOL 112H R ToL7 TOL6 TOLS ToL4 ToL3 ToL2 TOL1 ToLO
Reset 0 0 0 0 0 0 0 0
Timer 0 low reload register (TOLR)
The data for reloading in the timer/counter 0 low (TOL) are set in this register. When using 8-bit mode, the
contents of this register are reloaded into TOL.
Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
TOLR 113H R/W TOLR7 TOLRG TOLRS TOLR4 TOLR3 TOLRZ TOLR1 TOLRO
Reset 0 0 0 0 0 0 0 0
Timer 0 high register (TOH)
This is an 8-bit timer/ counter.
Count-up is performed with the prescaler output or the TOL overflow (TOHOVF). When overflow occurs,
the overflow flag is set and an interrupt is generated.
Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
TOH 114H R TOH7 TOH6 TOH5 TOH4 TOH3 TOH2 TOH1 TOHO
Reset 0 0 0 0 0 0 0 0
Timer 0 high reload register (TOHR)
The data for reloading in the timer/counter 0 high (TOH) are set in this register. When TOH overflow has
occurred and when the count was stopped (TOHRUN = 0), the contents of this register are reloaded
into TOH.
Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
TOHR 115H R/W TOHR7 TOHRG TOHRS TOHR4 TOHR3 TOHRZ TOHR1 TOHRO
Reset 0 0 0 0 0 0 0 0

VMD-65

Visual Memory Unit (VMU) Hardware Manual

External interrupt 2, 3 control register (123CR)

Sets external signal detection and interrupt.

ISLO 123CR7 123CR6 123CR3 123CR2 External signal condition
1 0 1 P73/INT3/TOIN falling edge count
1 1 0 P73/INT3/TOIN rising edge count
1 1 1 P73/INT3/TOIN dual edge count
0 0 1 P72/INT2/TOIN falling edge count
0 1 0 P72/INT2/TOIN rising edge count
0 1 1 P72/INT2/TOIN dual edge count

0 0 0 0 No count
Symbol Address R/W Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit0
123CR 15EH R/W 123CR7 123CR6 123CR5 123CR4 123CR3 123CR2 123CR1 123CR0
Reset 0 0 0 0 0 0 0

In combination with the input signal select register ISLO, this register specifies the count conditions. Possible
combinations are shown in the following table.

Bit

Function

123CR7 (bit 7)

INT3 rising edge detection control

0: No detect
1: detect

123CRG (bit 6)

INT3 falling edge detection control

0: No detect
1: detect

123CR5 (bit 5)

INT3 interrupt source

0: Interrupt source disabled
1: Interrupt source enabled

123CR4 (bit 4)

INT3 interrupt request enabled

0: Interrupt request disabled
1: Interrupt request enabled

123CR3 (bit 3)

INTZ rising edge detection control

0: No detect
1: detect

VMD-66

Peripheral System Configuration

123CR2 (bit 2)

INT3 falling edge detection control

0: No detect
1: detect

123CR1 (bit 1)

INT2 interrupt source

0: Interrupt source disabled
1: Interrupt source enabled

123CRO (bit 0)

INTZ interrupt request enabled

0: Interrupt request disabled
1: Interrupt request enabled

123CR7 (bit 7): INT3 rising edge detection control

Specifies whether to detect the rising edge of the interrupt signal at P73 (INT3/TOIN pin).

When set to "0", the rising edge of the INT3 signal at P73 is detected. When the INT3 interrupt is generated,
I23CR5 is set to "0" and the interrupt processing routine specified by the interrupt vector is called, if

interrupt request is enabled (I23CR4 = 1).

When reset to "0", the rising edge of the interrupt signal is not detected.

123CR6 (bit 6): INT3 falling edge detection control

Specifies whether to detect the falling edge of the interrupt signal at P73 (INT3/TOIN pin).

When set to "0", the falling edge of the INT3 signal at P73 is detected. When the INT3 interrupt is generated,
I23CR5 is set to "0" and the interrupt processing routine specified by the interrupt vector is called, if

interrupt request is enabled (123CR4 = 1).

When reset to "0", the rising edge of the interrupt signal is not detected.

123CR5 (bit 5): INT3 interrupt source

When interrupt edge detection at P73 (INT3/TOIN pin) has occurred, this flag is set.

The flag must be reset by the interrupt processing routine of the application.

123CR4 (bit 4): INT3 interrupt request enable

Enables or disables the INT3 interrupt.

If set to "0", the INT3 interrupt vector is called when the I23CRS5 flag is set.

If reset to "0", the interrupt processing routine is not called, also when an interrupt is generated.

VMD-67

Visual Memory Unit (VMU) Hardware Manual

123CR3 (bit 3): INT2 rising edge detection control

Specifies whether to detect the rising edge of the interrupt signal at P72 (INT2/TOIN pin).

When set to "0", the rising edge of the INT2 signal at P72 is detected. When the INT2 interrupt is generated,
I23CR1 is set to "0" and the interrupt processing routine is called, if interrupt request is enabled (I23CR4 = 0).

123CR2 (bit 2): INT2 falling edge detection control

Specifies whether to detect the falling edge of the interrupt signal at P72 (INT2/TOIN pin).

When set to "0", the falling edge of the INT2 signal at P72 is detected. When the INT2 interrupt is generated,
I23CR1 is set to "0" and the interrupt processing routine is called, if interrupt request is enabled (I23CR4 = 0).

123CR1 (bit 1): INT2 interrupt source

When interrupt edge detection at P72 (INT2/TOIN pin) has occurred, this flag is set.

The flag must be reset by the interrupt processing routine of the application.

123CRO (bit 0): INT2 interrupt request enable

Enables or disables the INT3 interrupt.
If set to "0", the INT3 interrupt vector is called when the I23CR1 flag is set.

If reset to "0", the interrupt processing routine is not called, also when an interrupt is generated.

Caution:

* When I23CR7 and I123CR6, or I23CR3 and I23CR2 are both "0", edge detection is not performed. When
both are "0", both edges are detected.
e Input from P73 (INT3/TOIN pin) is routed through a noise filter.

VMD-68

Peripheral System Configuration

Circuit Configuration and Operation Principles

Timer 0 mode setting

Mode TOLONG TOLEXT
0 0 0
1 0 1
2 1 0
3 1 1

Mode 0: 8-bit reload timer x 2 channels

In mode 0, timer 0 functions as an 8-bit reload timer with two channels. The relationship between the timer
value and the reload register (TOLR) setting value is as shown below.

Time until TOHOVF is set (1) (decimal) = (256 - TOHR setting value) x TPR
Time until TOLOVF is set (1) (decimal) = (256 - TOLR setting value) x TPR

TPR: Prescaler clock cycle

When the count control bit (TOHRUN, TOLRUN) is set, counting starts. When it is reset, counting stops, and
the contents of the reload register (TOHR, TOLR) are sent to the counter (TOH, TOL).

When the timer/ counter 0 (TOH, TOL) overflows, the overflow flag (TOHOVE, TOLOVF) is set, and the
contents of the reload register (TOHR, TOLR) are sent to the counter (TOH, TOL).

When both the overflow flag (TOHOVF, TOLOVF) and interrupt request enable flag (TOHIE, TOLIE) are set,
the interrupt request is signalled to the interrupt control circuit.

*TOH
Set
Prescaler — Counter TOH (114H) [— TOH overflow flag
T T TOHOVF
Cycle clock Reload register TOHR (115H)
e TOL
Set
Prescaler —> Counter TOL (112H) — TOL overflow flag
T T TOLOVF
Cycle clock Reload register TOLR (113H)

Figure 2.27 Mode 0: 8-Bit Reload Timer x 2 Channel Circuit Configuration

VMD-69

Visual Memory Unit (VMU) Hardware Manual

Mode 0 sample program

* Mode 0 sample program

MoV #0FFH,TOPRR ; Set TPRZ =4 Teyc
TOH time set . L
TOL fime set MoV #50H,TOHR ; Set TOH time = 704 Tcyc
MoV #00H,TOLR ; Set TOL time = 1024 Tcyc
MoV #0C4H,TOCNT ; Setmode 0
T0 mode set)
TOH, TOL operation start ; (use only interrupt TOH)
MoV #80H,IE
(TOH interrupt routine)
TOH overflow flag clear CLR1 TOCNT,3 ; Set TOHOVF =0
/ Interrupt processing / LD ToL ; Read TOL data periodically
(Return) RETI ; Return from interrupt routine
CLR1 TOCNT,6 ; Set TOLRUN =0
TOH, TOL tion st
operation stop CLR1 TOCNT,7 ; Set TOHRUN =0

End

Figure 2.28 Flow Chart and Program

Mode 1: 8-bit reload timer + 8-bit reload counter

8-bit reload timer

The upper 8 bits of timer 0 (TOH) operate as an 8-bit reload timer. The relationship between the timer value
and the reload register (TOHR) setting value is as shown below.

Time until TOHOVF is set (1) (decimal) = (256 - TOHR setting value) x TPR

TPR: Prescaler clock cycle

Each time TOHOVF is set, the reload register value is sent to the counter TOH. Timer operation continues
until the TOH count control bit (TOHRUN) is reset. Operation principles are the same as for mode 0.

VMD-70

Peripheral System Configuration

8-bit reload counter

Set
Prescaler — Counter TOH (114H) [— TOH overflow flag
T T TOHOVF
Cycle clock Reload register TOHR (115H)

Figure 2.29 Mode 1: 8-Bit Reload Timer (TOH) Block Diagram

The lower 8 bits of timer 0 (TOL) are used to count up the external input signal. This signal is filtered by a
noise filter circuit. For details, refer to the section “Input Signal Select Register (ISL)” in “Timer/Counter

0 (TO)".

The relationship between the count value and the reload register (TOLR) setting value is as shown below.

Time until TOLOVF is set (1) (decimal) = 256 - (TOLR setting value)

When the TOL overflow flag (TOLOVF) flag is set, the reload register (TOLR) value is sent to the counter
(TOL). Timer operation continues until the TOH count control bit (TOLRUN) is reset.

P72/INT2/TOIN

P73/INT3/TOIN

—»—1

Noise filter

Set

Counter TOL (112H) [— TOL overflow flag

T TOLOVF

Reload register TOLR (113H)

Figure 2.30 Mode 1. 8-Bit Reload Timer (TOL) Block Diagram

VMD-71

Visual Memory Unit (VMU) Hardware Manual

Mode 1 sample program

* Mode 1 sample program

MoV #0FEH, TOPRR
TOH time set MOV #50H,TOHR
TOL time set MOV #00H,TOLR
Mov #40H,123CR
Mov #0TH,ISL
T0 mode set
TOH, TOL operation start mov #0D4H,TOCNT
MoV #80H,IE
(TOH interrupt routine)
TOH overflow flag clear CLR1 TOCNT,3
Interrupt processing LD ToL
Return) RETI

CLR1 TOCNT,6

TOH, TOL operation stop CLR1 TOCNT 7

Mode 2: 16-bit reload timer

Figure 2.31 Fflow Chart and Program

; Set TPR=8Tcyc
; Set TOH time = 1408 Tcyc
; Set TOL time = 256 Tcyc

; Use P71/INT3/TOIN for counter input
; Setmode 1
; (use only interrupt TOH)

; Set TOHOVF =0

; Read TOL data periodically

; Return from interrupt routine

; Set TOLRUN =0
; Set TOHRUN =0

In mode 2, TOH and TOL are connected in series and operate as a 16-bit timer.
To start the timer, the count control bits (TOHRUN, TOLRUN) of TOH and TOL must be set simultaneously.
The relationship between the timer value and the reload register (TOHR, TOLR) setting values is as

shown below.

Time until TOHOVF is set (1) (decimal)
= (65536 - 256 x (TOHR setting value) - (TOLR setting value)) x TPR

TPR: Prescaler clock cycle

When TOLOVF and TOHOVF are both set, the reload register (TOHR, TOLR) values are sent simultaneously
to TOL and TOH when TOHOVF occurs. Timer operation continues until the TOH count control bit is reset.

Operation principles are the same as for mode 0.

VMD-72

Peripheral System Configuration

For reading data from timer 0 (T0), use the following procedure.

TOL LD TOL ; Read TOL data (1)
N ST 020H
TOH LD TOH : Read TOH data
2 ST 021H
TOL LD TOL ; Read TOL (2) data again
N2 BP TOL,7,DES ; When TOL (2) bit 7 is "0"

BN 020H,7,DES ;and TOL (1) bit 7 is "0"

ST 020H
TOH LD TOH - Read TOH (2)

ST 021H

DES: -- next program

Set
Prescaler > Counter TOL (112H) Counter TOH (114H) [— TOH overflow flag
TOHOVF
T 17 (simultaneous) 41
Cycle clock Reload register TOLR (113H) Reload register TOHR (115H)

Figure 2.32 Mode 2: 16-Bit Reload Timer Block Diagram

Mode 2 sample program

* Mode 2 sample program

MoV #0FFH,TOPRR ;Set TPR=4Tcyc

TOH time set MOV #70H,TOHR ; Set TOH time = 147396 Tcyc
MoV #0FH,TOLR ;
MoV #0E4H,TOCNT ; Set mode 2

T0 mode set .

TOH, TOL operation start ; (use only interrupt TOH)
MoV #80H,IE
(TOH interrupt routine)

CLR1TOCNT,3 ; Set TOHOVF =0

TOH overflow flag clear

CLRT TOCNT,1

; Set TOLOVF =0

Interrupt processing

LD P1 ; Increment port 1 data latch

i

Return

RETI ; Return from interrupt routine

TOH, TOL operation stop

CLR1 TOCNT,6
CLR1TOCNT,7

; Set TOLRUN =0

; Set TOHRUN =0

Figure 2.33 Flow Chart and Program

VMD-73

Visual Memory Unit (VMU) Hardware Manual

Mode 3: 16-bit reload counter

In mode 3, TOH and TOL are connected in a cascaded configuration and operate as a 16-bit counter. The
signal input to P72 (INT2/TOIN pin) or P73 (INT3/TOIN pin) is used as clock signal. Input signal selection
is carried out by the ISL register of SFR. The input from P73 (INT3/TOIN pin) is routed through a noise filter.

To start the timer, the count control bits (TOHRUN, TOLRUN) of TOH and TOL must be set simultaneously.

The relationship between the count value and the reload register (TOHR, TOLR) setting values is as
shown below.

Time until TOHOVF is set (1) (decimal) = 65536 - 256 x (TOHR setting value) - (TOLR setting value)

When TOLOVF and TOHOVF are both set, the reload data (TOHR, TOLR) are sent simultaneously to TOL and
TOH when TOHOVF occurs. Timer operation continues until the count control bit is reset. Operation
principles are the same as for mode 0.

For reading data from timer 0 (T0), use the following procedure.

TOL LD TOL ; Read TOL data (1)

8% ST 020H

TOH LD TOH : Read TOH data

v ST 021H

TOL LD TOL ; Read TOL (2) data again

N BP TOL,7,DES ; When TOL (2) bit 7 is "0"
BN 020H,7,DES ;and TOL (1) bit 7 is "0"
ST 020H

TOH LD TOH ; Read TOH (2)
ST 021H
DES: -- next program

P72/INT2
MPX
Set

| P73/INT3 |—>| Noise filter ——I Cycle clock |—> Counter TOH (114H) |—> TOH overflow flag
TOHOVF
T— (simultaneous) —T

| Reload register TOLR (113H) | Reload register TOHR (115H) |

Figure 2.34 Mode 3: 16-Bit Reload Timer Block Diagram

VMD-74

Peripheral System Configuration

Mode 2 sample program

* Mode 3 sample program

TOH time set
TOL time set

TOL mode set
TOH, TOL operation start

(TOH interrupt routine)

TOH overflow flag clear

Interrupt processing /

Return

TOH, TOL operation stop

End

Mov
MoV

Mov
Mov
MoV

MoV

CLR1TOCNT,3
CLR1 TOCNT,1

LD

RETI

CLR1 TOCNT,6
CLR1 TOCNT,7

#50H,TOHR ; Set TO setting value = 45056
#00H,TOLR R
#04H,123CR ; Select INT2 falling edge
#00H,ISL ; Use P72/INT2 for input
#0F4H,TOCNT ; Set mode 3

; (use only interrupt TOH)
#80H,IE

; Set TOHOVF =0
; Set TOLOVF=0

P1 ; Increment port 1 data latch

1

; Return from interrupt routine

; Set TOLRUN =0
; Set TOHRUN =0

Figure 2.35 Flow Chart and Program

VMD-75

Visual Memory Unit (VMU) Hardware Manual

Timer 1 (T1)

The timer/counter 1 (T1) in the VMU custom chip is a 16- bit timer with the following 4 functions.

* Mode 0: 8-bit reload timer x 2 channels

* Mode 1: 8-bit reload timer + 8-bit pulse generator

* Mode 2: 16-bit reload timer

* Mode 3: Variable bit length pulse generator (9 to 16 bits)

Functions

8-bit reload timer x 2 channels (mode 0)

The cycle clock is used to drive two separate 8-bit reload timers (T1H, T1L).

8-bit reload timer + 8-bit pulse generator (mode 1)

T1H operates as an 8-bit reload timer driven by the cycle clock. T1L operates as an 8-bit pulse generator
whose output appears at the P17/ pulse output pin.

16-bit reload timer (mode 2)

The overflow of T1L is used as clock for T1H, to drive the 16-bit reload timer. The input clock to T1L is the
cycle clock. Each time a T1L overflow occurs, the TILR and T1HR reload data are loaded into T1L and T1H.

The T1L clock can be the cycle clock or the cycle clock divided by 2.
Variable bit length pulse generator (9 to 16 bits) (mode 3)

T1L and T1H can be used to generate a 9 to 16 bit pulse signal. This signal is output via the P17/pulse
output pin.
The T1L clock can be the cycle clock or the cycle clock divided by 2.

Interrupt generation

When the interrupt request enable bit is set, overflow of the register T1H or T1L generates a TIH or T1L
interrupt request.

The following Special Function Registers must be operated to control the timer 1 (T1).
T1H, TIHR, TIHC, T1L, TILR, T1LC, T1CNT, P1

VMD-76

Peripheral System Configuration

Circuit Configuration
The timer/counter 1 (T1) configuration is shown in below.

Timer 1 low (T1L)... ®

This 8-bit reload timer uses the cycle clock or cycle clock divided by 2. When T1L overflow occurs, the TILR
value is reloaded. The T1LR value is reloaded when T1L overflow occurs. Resetting the TILRUN (T1CNT
bit 6) to'0’ stops the timer and causes the T1LR data to be transferred to T1L.

Timer 1 low comparator (T1LC)... O

This circuit consists of the 8-bit timer 1 low comparator data register (T1LC) and an 8-bit data comparator.
It compares the data for T1L and T1LC.

Timer 1 high (T1H)... O

This 8-bit reload timer uses the cycle clock or the T1L overflow as clock. At T1H overflow, the TIHR value
is reloaded. Reload also occurs when TIHRUN (T1CNT bit 7) is reset to stop the timer.

Timer 1 high comparator (T1HC)... O

This circuit consists of the 8-bit timer 1 high comparator data register (TIHC) and an 8-bit data comparator.
It compares the data for TIH and TIHC.

Timer 1 control register (T1ICNT)... O

Serves for T1 mode setting and interrupt control.

| Comparison data register (T1LC) |

1/2 cycle @
clock | Comparator I
@
Cycle clock ——s .| Selector 'jl 8-bit counter (T1L) F—
1 com':;’lv'c\?rcuit ——| Port1circuit [—— P17
| Reload register (T1LR) i
T1LOVF
| Comparison data register (TTHC) I
@
| Comparator |
® f
Selector [T] 8-bit counter (TTH) |
| Reload register (TTHR) |"‘
TILONG
T1HOVF
TILOVF
Lrfelsfalafafofo] [alefsafafefsfo] [s]sfs]afalof1]o]
TICNT(118H) P1FCR(146H) P1DDR(141H)

Figure 2.36 Timer 1 Block Diagram

VMD-77

Visual Memory Unit (VMU) Hardware Manual

Related Registers

Timer 1 control register (T1CNT)

Symbol Address R/W Bit7 Bit 6 Bit b Bit 4 Bit 3 Bit 2 Bit 1 Bit0
T1CNT 118H R/W TTHRUN T1LRUN T1LONG ELDT1C TTHOVF TTHIE T1LOVF TILIE
Reset 0 0 0 0 0 0 0 0

Bit name Function

TTHRUN (bit 7) T1H count control

0: Count stop/data reload
1: Count start

T1LRUN (bit 6) T1L count control

0: Count stop/data reload
1: Count start

T1LONG (bit 5) Timer 1 bit length selector
0: 8 bit
1: 16 bit
ELDT1C (bit 4) Pulse generator data update enabled
0: Disabled
1: Enabled
TTHOVF (bit 3) T1H overflow flag

0: No overflow flag
1: Overflow flag

T1HIE (bit 2) T1H interrupt request enabled

0: Interrupt request disabled
1: Interrupt request enabled

T1LOVF (bit 1) T1L overflow flag

0: No overflow flag
1: Overflow flag

T1LIE (bit 0) T1L interrupt request enabled

0: Interrupt request disabled
1: Interrupt request enabled

VMD-78

Peripheral System Configuration

TTHRUN (bit 7): T1H count control

Controls count-up start/stop of timer 1 high (T1H). When set to "0", the T1H clock is supplied and counting
starts. To stop counting, the bit must be reset to "0". This stops the clock and sends the reload data (TTHR)
to T1H.

T1LRUN (bit 6): T1L count control

Controls count-up start/stop of timer 1 low (T1L). When set to "0", the T1L clock is supplied and counting
starts. To stop counting, the bit must be reset to "0". This stops the clock and sends the reload data (T1LR)
to T1L.

T1LONG (bit 5): Timer 1 bit length select

Specifies the bit length of T1 as 16 or 8 bit.
Setting the bit to "0" selects a 16-bit timer. For using modes 0 and 1, specify "0".
Resetting the bit to "0" selects an 8-bit timer. For using modes 2 and 3, specify "0".

ELDT1C (bit 4): Pulse generator data update enable control

Controls whether the comparison data register (TTHC, TILC) values for generating the pulse signal are
sent to the comparator or not.

When set to "0", the values are sent to the comparator and updated to new pulse generator data.
When reset to "0", the data are not updated and the same pulse generator data are output.

To update both 8-bit counters at the same time, reset this flag, set the counter values, and then set the flag
again. This will update both 8-bit counters at the same time.

T1HOVF (bit 3): T1H overflow flag

This flag is set when T1L overflow has occurred. If there is no overflow, the flag does not change.

This flag must be reset by the T1H interrupt processing routine or another routine of the application.

T1HIE (bit 2): T1H interrupt request enable control

Enables or disables interrupt request generation at T1H overflow.

When set to "0", the interrupt generated by T1H overflow is accepted and the interrupt vector 002BH is
called. When reset to "0", the interrupt is not accepted and the interrupt processing routine is not called.

T1LOVF (bit 1): T1L overflow flag

This flag is set when T1L overflow has occurred. If there is no overflow, the flag does not change.
Regardless of the T1 bit length, the flag is set when overflow occurs at T1L.

This flag must be reset by the T1L interrupt processing routine or another routine of the application.

T1LIE (bit 0): T1L interrupt request enable control

Enables or disables interrupt request generation at T1L overflow.

When set to "0", the interrupt generated by T1L overflow is accepted and the interrupt vector 002BH
is called.

VMD-79

Visual Memory Unit (VMU) Hardware Manual

Caution:

e The overflow flags (TTHOVF, TILOVF) must be reset to "0" by the application.
¢ When using the 16-bit mode, the clock can be the cycle clock or the cycle clock divided by 2.

Ttc = Teyc: TIHRUN=1, TILRUN=1, TILONG=1
Ttc=1/2Tcyc: TIHRUN=0, TILRUN=1, TILONG=1
Ttc is the clock cycle

Timer 1 low register (T1L)

The timer 1 low register is an 8-bit timer. It uses the cycle clock or the cycle clock divided by 2.
When T1L overflow occurs, the TILR value is transferred and the T1L overflow flag is set.

In modes 1 and 3, this is used for pulse signal generation.

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit1 Bit0
TIL 11BH R TIL7 T1L6 T1L5 T1L4 T1L3 T1L2 Tl T1LO
Reset 0 0 0 0 0 0 0 0
Timer 1 low reload register (T1LR)
This is the reload register for timer 1 low (T1L).
Each time a T1L overflow occurs, and whenever TILRUN=0 applies, the reload register value is loaded
into T1L.
In modes 1 and 3, this is used for pulse signal generation.
Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bit0
TILR 11BH W T1LR7 T1LRG T1LR5 T1LR4 T1LR3 T1LR2 T1LR1 T1LRO
Reset 0 0 0 0 0 0 0 0

T1L and T1LR are at the same address. T1L is read-only, and T1LR is write-only.

Caution:

When a bit operation instruction or the INC, DEC, or DBNZ instruction is used on a write-only register,
a bit other than the specified bit will be set.
For T1LR, use the following instructions:

MOV, MOV @, ST, ST @, POP

Timer 1 low comparator data register (T1LC)

This is the comparator data register for timer 1 low (T1L).

When ELDTIC (bit 4 of TICNT) is set and TILONG=0 applies, the next T1L overflow will cause the value
of this register to be sent to the pulse generator control circuit (comparator). When TILONG=1 applies, the
next T1H overflow will have the same effect.

When TILRUN=0, the value of this register is always sent to the pulse generator control circuit.

VMD-80

Peripheral System Configuration

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
TILC 11AH R/W TILC7 T1LC6 T1LCS T1LCA T1LC3 T1LC2 T1LC1 T1LCO
Reset 0 0 0 0 0 0 0 0

Timer 1 high register (T1H)

This is an 8-bit timer which uses the cycle clock or the T1L overflow (TILOVF) as clock. At T1H overflow,
the T1H overflow flag is set.

In mode 3, this is used for pulse signal generation.

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
TH 11DH R T1H7 T1HG T1HS T1H4 T1H3 T1HZ T1H1 T1HO
Reset 0 0 0 0 0 0 0 0

Timer 1 high reload register (TTHR)

This is the timer 1 high (T1H) reload register.

Each time a T1H overflow occurs, and whenever TTHRUN=0 applies, the reload register value is loaded
into T1H.

In mode 3, this is used for pulse signal generation.

Symbol Address R/W Bit7 Bit 6 Bit b Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
T1HR 11DH W T1HR7 T1HR6 T1HRb T1HR4 T1HR3 T1HR2 T1HR1 T1HRO
Reset 0 0 0 0 0 0 0 0

T1H and T1LH are at the same address. T1H is read-only, and T1LH is write-only.

Caution:

When a bit operation instruction or the INC, DEC, or DBNZ instruction is used on a write-only register,
a bit other than the specified bit will be set.
For T1LR, use the following instructions:

MOV, MOV @, ST, ST @, POP

Timer 1 high comparator data register (TTHC)

This is the comparator data register for timer 1 high (T1H).

When ELDTIC (bit 4 of TICNT) is set and TILONG=0 applies, the next T1L overflow will cause the value
of this register to be sent to the pulse generator control circuit (comparator). When TILONG=1 applies, the
next T1H overflow will have the same effect.

VMD-81

Visual Memory Unit (VMU) Hardware Manual

Symbol Address R/W Bit7 Bit 6 Bitb Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
T1HC 11CH R/W T1HC7 T1HCE T1HCS T1HC4 T1HC3 T1HC2 T1HC1 T1HCO
Reset 0 0 0 0 0 0 0 0

Circuit Configuration and Operation Principles

Timer 1 mode setting

ModeClock frequency TILONGP17FCRP17DDRP1777770Tcyc00yc01102Tcyc_1/22222222Tcyc10XX30

Mode 0: 8-bit reload timer x 2 channels

In mode 0, timer 1 functions as an 8-bit reload timer with two channels. The relationship between the timer
value and the reload register (T1LR) setting value is as shown below.

Time until TOHOVF is set (1) (decimal) = (256 - T1HR setting value) x Teyc
Time until TOLOVF is set (1) (decimal) = (256 - T1LR setting value) x Teyc

Teyc: Cycle clock

When the count control bit (TTHRUN, T1LRUN) is set, counting starts. When it is reset, counting stops, and
the contents of the reload register (TIHR, TILR) are sent to the counter (T1H, T1L).

When the timer 1 (T1H, T1L) overflows, the overflow flag (TTHOVE T1LOVEF) is set, and the contents of the
reload register (TTHR, T1LR) are sent to the counter (T1H, T1L).

When both the overflow flag (TTHOVE, TILOVF) and interrupt request enable flag (T1HIE, T1LIE) are set,
the interrupt request is signalled to the interrupt control circuit.

TIH

Set

Cycle clock —> 8-bit counter TTH (11DH) ;I-T11HH%\<7Fr)ﬂ0W flag

f

Reload register TIHR (11DH)

Set

Cycle clock — 8-bit counter T1L (11BH) (TT‘1LL%\(7FF;‘|0Wﬂag

f

Reload register TILR (11BH)

Figure 2.37 8-Bit Reload Timer x 2 Channel Circuit Configuration

VMD-82

Peripheral System Configuration

Mode 0 sample program

* Mode 0 sample program

T1H time set MoV #50H,TTHR ; Set TTH time = 176 Tcyc
TiLtime set MOV #00M,T1LR : Set T1L time = 256 Teyc
MoV #0C4H,TICNT ; Setmode 0
T1 mode set)
T1H, T1L operation start : (use only interrupt TTH)
(T1H interrupt routine)
T1H overflow flag clear CLR1 TOCNT,3 ; Set TIHOVF=0
/ |nterrupt processing / LD TIL ; Read T1L data periodically
(Return) RETI ; Return from interrupt routine
CLR1 TOCNT,6 ;Set TILRUN =0

T1H, T1L operation sto
P P CLR1 TOCNT,7 ; Set TTHRUN =0

End
Figure 2.38 Flow Chart and Program

Mode 1: 8-bit reload timer + 8-bit pulse generator

8-bit reload timer

The upper 8 bits of timer 0 (T1H) operate as an 8-bit reload timer. The relationship between the timer value
and the reload register (TTHR) setting value is as shown below.

Time until TTHOVF is set (1) (decimal) = (256 - TTHR setting value) x Teyc

Teyc: Cycle clock

Each time TIHOVF is set, the reload register value is sent to the counter T1H. Timer operation continues
until the T1H count control bit (TTHRUN) is reset. Operation principles are the same as for mode 0.

VMD-83

Visual Memory Unit (VMU) Hardware Manual

T1H
Set

T1H overflow flag

Cycle clock — 8-bit counter TTH (11DH) (TTHOVF)

t

Reload register TTHR (11DH)

Figure 2.39 Mode 1: 8-Bit Reload Timer (T1H) Block Diagram

8-bit pulse generator

The comparator compares the value of the T1L counted up from the reload value by the cycle clock to the
value of the comparator data register T1LC. If there is no match (T1L tTILC), "0" is output. If there is a
match (T1L = T1LC), "0" is output. This continues until T1L overflow is generated.

The pulse signal cycle is determined by the reload register TILR. The relationship between the counter
value and the pulse output waveform is shown in Fig. below.

The pulse output waveform is determined by the comparison data register TILC and the reload register
T1LR. When the comparison data register TILC is rewritten, there will be a pulse cycle delay until the pulse
output waveform reflects the new data.

Whenever T1L overflows, the T1L overflow flag (TILOVF) is set.

The pulse output signal related equations are shown below.

Pulse output signal “L" level pulse width (decimal) =
(T1LC setting value - T1LR setting value) x Tcyc
Pulse output signal cycle (decimal) = (256 - T1LR setting value) x Teyc

Teyc: Cycle clock

Caution:

Make sure that TILC = TILR applies

VMD-84

Peripheral System Configuration

8-bit counter value

255
[T1LC]
[T1LR]
0
Pulse signal
— TILC-TILR -~
< 256-TLIR @ ——»
Figure 2.40 Counter Value and Pulse Generator Output Waveform
Comparison data register
TILC (11AH)
Cycle clock — 8-bit counter T1L (11BH) > Comparator — Pulse signal output

t

Reload register T1LR (11BH)

Figure 2.41 Mode 1. 8-Bit Pulse Generator Block Diagram

VMD-85

Visual Memory Unit (VMU) Hardware Manual

Mode 1 sample program

* Mode 1 sample program

Set pulse signal cycle
Set "L" level pulse width

Set T1 mode

Start T1L operation

Mov #0COH,T1LR
MoV #0DOH,T1LC
MoV #80H,P1FCR
CLR P1,7

Mov #80,P1DDR

MoV #0DTH,TICNT

; TILR =192 — 256 - 192 = 64

; TILR =208 — 208 - 192 = 16
;\'L" level pulse width is 16 Tcyc
; Pulse signal cycle is 64 Tcyc

; Set P17 to pulse signal output
; Set P17 port latch to "0"
; Set P17 to output mode

; Start mode 1

255

TILC

TILR

Pulse signal ——

—

16Tcyc

-

}_

Change "L" level pulse width

End

Counter value
255

MoV #0FFH,T1LC

64Tcyc

; TILC =255 — 255 - 192 =63
;\'L" level pulse width is 63 Tcyc

TILC

TILR

Pulse signal ——

63Tcyc

Figure 2.42 Flow Chart and program

64Tcyc |

VMD-86

Peripheral System Configuration

Mode 2: 16-bit reload timer

To operate the timer as 16-bit reload timer, TILRUN and TILONG must be set together. This should be
done with the MOV instruction.

The T1L clock (Ttc) can be either the cycle clock (Tcyc) or half the cycle clock (1/2Tcyc). The setting is made

as follows.

Ttc = Teyc:
Ttc =1/2Tcyc:

TIHRUN =1, TILRUN =1, TILONG = 1
TIHRUN =0, TILRUN =1, TILONG =1

The relationship between the timer value and the reload register (TTHR, T1LR) is as shown below.

Caution: Note that this is different from the timer/counter 0 (T0).

Time until TTHOVF is set (1) (decimal) =
(256 - T1HR setting value) x (256 - T1LR setting value) x Ttc
Time until TILOVF is set (1) (decimal) = (256 - T1LR setting value) x Ttc

Ttc: T1L clock (Teyc or 1/2 Teyc)

At each TILOVE the reload data (T1LR) are sent to T1L, and at each TIHOVE, the reload data (T1HR) are
sent to T1H. Counting continues until the count control bit is reset. Operation principles are the same as for

mode 0.

For reading data from timer 1 (T1), use the following procedure.

TiL
N\
T1H
N2
TiL
N2

T1H

1/2 cycle clock
or
cycle clock

LD
ST
LD
ST
LD
BP
BN
ST
LD
ST
DES:

—

Counter T1L (11BH)

T1L ; Read T1L data (1)

020H

T1H ; Read T1H data

021H

T1L ; Read T1L (2) data again
T1L,7,DES; When T1L (2) bit 7 is "0"
020H,7,DES; and T1L (1) bit 7 is "0"

t

Reload register TILR (11BH)

\

020H
T1H; Read T1H (2)
021H
- next program
Set
Counter TTH (11DH) — T1H overflow flag

(TTHOVF)

t

Reload register TIHR (11DH)

Figure 2.43 Mode 2: 16-Bit Reload Timer Block Diagram

VMD-87

Visual Memory Unit (VMU) Hardware Manual

Mode 2 sample program

* Mode 2 sample program

T1H time set
TiL time set

T1L mode set
T1H, T1L operation start

(T1H interrupt routine)

T1H overflow flag clear

Interrupt processing /

Return

T1H, T1L operation stop

End

Figure 2.44 Flow Chart and Program

Mode 3: Variable bit length pulse generator (9 to 16 bits)

MoV #50H,TTHR
MoV #00H,T1LR
MoV #00H,P1FCR
MoV #0E4H, TICNT
CLR1 T1CNT,3

CLR1 T1CNT1

INC P1

RETI

CLR1TOCNT,6

CLR1 TOCNT,7

; Set T1 to 45056

; Select P17 output port data

; Set mode 2
; (use only interrupt TTH)

; Set TTHOVF=0
;Set TILOVF=0

; Increment port 1 data latch

; Return from interrupt routine

;Set TILRUN =0
;Set TTHRUN =0

In mode 3, timer 1 (T1L, T1H) operates as a variable bit length pulse generator. The range of 9 to 16 bits is

determined by TIHR.

To activate the pulse generator, set the bit length of timer 1 to 16 (TILONG=1) and set the T1L count control
bit (TILRUN). When the 16-bit length is selected, the control bit TILRUN controls start/stop of all 16 bits.
To set the timer 1 control register (TICNT) bit at the same time, use the MOV instruction.

The pulse generator clock (Ttc) can be either the cycle clock (Tcyc) or half the cycle clock (1/2Tcyc). The

setting is made as follows.

Ttc = Teyc: TTHRUN =1, TILRUN =1, TILONG = 1
Ttc = 1/2Teyc: TIHRUN =0, TILRUN =1, TILONG =1

Whenever T1L overflows, the T1L overflow flag (TILOVF) is set. Similarly, whenever T1H overflows, the
T1H overflow flag (TTHOVF) is set. Counting continues until the count control bit is reset.

VMD-88

Peripheral System Configuration

The relationship between the timer value and the reload register (T1Hr, TILR) values is as shown below.

Time until TIHOVF is set (1) (decimal) =
(256 - TTHR setting value) x (256 - T1LR setting value) ¥ Ttc
Time until TILOVF is set (1) (decimal) = (256 - T1LR setting value) ¥ Ttc

Ttc: T1L clock (Teyc pr 1/2 Teyc)

An example for a signal output from the pulse output pin P17 in mode 3 is shown in Fig. below.

LT e e e e

“_" Small interval T

Large interval P

Figure 2.45 Mode 3 Pulse Signal Output Waveform

The output signal consists of a repetition of the large interval P which is made up of upt o 256 repetitions
of the small interval T. The number of repetitions for T can be set with TIHR. The “L” level width in the
small interval T can be set with T1LC as in mode 1, and the smallest unit is Ttc. The total “L” level width
<sigma>TL of the large interval P can be set with TILC and TIHC. The T1HR value limits the data that can
be obtained by TIHC.

For details on the relationship between the output waveform and TIHC and T1LC, refer to chapter 17
“Variable Bit Length Pulse Generator” in the appendix.

The relationship between the pulse generator bit length and the value of TILR and T1HR, as well as the
value of TILC and T1HC is shown below. All T1LR bits are to be set to 00H.

Table 2.20 Bit Length and T1H/T1L Register

Pulse Pulse bit length setting | “L" level pulse width

(binary) setting (binary)
Bit length T1HR value TTHL value T1LC value (upper hit) T1HC value (lower bit)
16 0000 0000 0000 0000 XXXX XXXX XXXX XXXX
15 1000 0000 0000 0000 XXXX XXXX XXXX XXX0
14 1100 0000 0000 0000 XXXX XXXX XXXX XX00
13 11100000 0000 0000 XXXX XXXX XXXX X000
12 11110000 0000 0000 XXXX XXXX XXXX 0000
i 1111 1000 0000 0000 XXXX XXXX XXX0 0000
10 11111100 0000 0000 XXXX XXXX XX00 0000
9 11111110 0000 0000 XXXX XXXX X000 0000

(X: 0 or 1) X indicates effective bits

VMD-89

Visual Memory Unit (VMU) Hardware Manual

For example, if the bit length is 16 bits, the large interval P contains 256 small intervals T, and the following

applies:

TP =256 xT
Because the small interval T is 256 x TTc (cycle clock or 1/2 cycle clock), the following applies:
TP = 256 x 256 x Ttc = 65536 x Ttc

The total “L” level additional pulse width STL of the large interval P is set with TIHC.
STL+ = [T1HC] x Ttc

Because the “L” level width of the small interval T can be set with T1LC, the total “L” level interval width
STL is calculated as follows.

STL = (256 = mT1LC] + [TTHC]) x Ttc

When T1LC = 03H, TIHC = 0B4H

STL = (256 x 03+180) x Tcyc = 948 x Ttc

The “L” level ratio RL is calculated as follows.

Large interval P cycle TP

RL = STL/TP = 948/65536 = approx. 1.447%

When T1LC = OFFH, T1HC = 0FFH, the “L” level ratio RL is calculated as follows.
RL = STL/TP = 65535/ 65536 = approx. 99.998%

The relationship between pulse bit length and settable pulse width is as follows.

TP = 2[bit] x Ttc

Total “L” level pulse width STL in large interval P
STL = (2[bit] = mT1LC]/256+[T1HC]) x Ttc

Note: T1HC and T1LC are decimal values. [TIHC] is the effective bit value.

Table 2.21 Bit Length and Pulse Width and Precision

Bit length T1LC TTHC _TL TP[Ttc] Precision
min. max. min. max. min. max.

16 0 255 0 255 0 65535 65535 1/65535

15 0 255 0 127 0 32767 32767 1/32767

14 0 255 0 63 0 16383 16383 1/16383

13 0 255 0 31 0 8191 8191 1/8191

12 0 255 0 15 0 4095 4095 1/4095

1 0 255 0 7 0 2047 2047 1/2047

10 0 255 0 3 0 1023 1023 1/1023

9 0 255 0 1 0 511 511 1/511

VMD-90

Peripheral System Configuration

Note: TIHC represents the value for effective bits indicated in the table. For example, with a bit length
of 11, bits 7 through 5 are effective. The maximum value therefore is 7.

Example: Setting values (binary) for use as 14-bit pulse generator

e T1HR value: 1100 0000B
e T1LR value: 0000 0000B

¢ Pulse generator 14-bit setting value

MSB LSB

|T1LC7 |T1LCS |T1LC5 |T1LC4 |T1LC3 |T1LCZ |T1LC1 |T1LCO | |T1LC7 |T1LCB |T1LC5 |T1LC4 |T1LCS |T1LCZ |

| -~ |Sma|| interval T

Large interval P
14 bit, therefore small interval T x 64

Figure 2.46 74-Bit Pulse Generator

In the small interval T, two types of pulses are output. In the large interval P, pulse (1) is (64-T1HC) times,
and pulse (2) is output TIHC times.

) 256 x Ttc

-

TILC x Ttc

Figure 2.47 T1LC x Ttc pulse

2 256 x Ttc

-

(TILC+1) x Ttc

Figure 2.48 (T1LC +1) x Ttc pulse

For details on the relationship between the output waveform and TIHC and T1LC, refer to chapter 17
“Variable Bit Length Pulse Generator” in the appendix.

VMD-91

Visual Memory Unit (VMU) Hardware Manual

Caution: ¢ To set the “L” level pulse width, use the following procedure.
(1) Reset data update enable flag ELDT1C to "0".
(2) Rewrite T1LC and T1HC values.
(3) Set data update enable flag ELDT1C to "0".
¢ The delay between rewriting TILC and TIHC and the waveform output based on the new data
is equal to the interval between setting ELDT1C to "0" and the maximum pulse cycle.
¢ For using 16-bit mode, the clock can be either the cycle clock or the cycle clock divided by 2.
Ttc = Tcyc:TIHRUN=1, TILRUN=1, TILONG=1
Ttc = 1/2Tcyc:TIHRUN=0, TILRUN=1, TILONG=1

. Comparator data
Reload register TILR (11BH) register T1LC (11AH) PWM output
1/2 cycle clock
or —> Counter T1L (11BH) > Comparator
cycle clock ¢
Pulse generator control circuit > Port 1 circuit
A
Counter TTHR (11DH) > Comparator
; Comparator data
Rel T1H (11DH
eload register T1H (11DH) register TIHC (11CH)

Figure 2.49 Mode 3: Variable Bit Length Pulse Generator Block Diagram

VMD-92

Peripheral System Configuration

Mode 3 sample program

* Mode 3 sample program

Mov #0COH,TTHR ; Set 14-bit length

Set pulse signal output conditions MOV #00HTILR ;
MOV #0B4H,T1HC ; Settotal "L" level pulse width
MoV #03H,T1LC ;10 110.5 Teye
MOV #00H,P1 ; Setmode 3

T1 mode set MoV #80H,P1FCR ; Use P17 for pulse signal output
) Mov #80H,P1DDR ;
T1H, T1L operation start MOV FIOHTICNT

Change "L" level pulse width

CLR11LC 4 ;ELDT1C =0
Prohibit data update
- . Mov #54H,T1LC ; Set total "L" level pulse width
Set total "L" level pulse width
MoV #0DOH,T1HC ;102712.5 Teye
SET1TILC,4 ; ELDT1C =0

Allow data update

CLR1 TOCNT,6
CLR1 TOCNT,7

T1H, T1L operation stop ; Set TILRUN =0

; Set TILRUN =0

End

Figure 250 flow

VMD-93

Visual Memory Unit (VMU) Hardware Manual

Base Timer

The base timer in the VMU custom chip is a 14-bit binary up counter with the following 4 functions.

Caution:

The clock function of the VMU is implemented by counting the interrupts generated in 0.5 second
intervals by the base timer. The port 3 interrupt is a level interrupt which is maintained for as long as
the user presses a button.

If another timer is used to frequently generate interrupts or to accept the port 3 level interrupt, the
internal clock may run slow.

When using the base timer interrupt, call the user-side handler immediately after the label
timer_ex_exit in GHEAD.ASMThe user-side handler must be designed to keep processing time at a
minimum, so that the interrupt can be properly processed every 0.5 seconds.

Care must be taken to prevent clock slow-down already when designing an application.

¢ Clock timer
¢ 14-bit binary up counter

e Fast-forward mode (using 6-bit base timer)

Functions

Clock timer

When the 32.768 kHz quartz oscillator is used as count clock for the base timer, a clock with 0.5 second steps
can be implemented. The base timer count clock is a quartz oscillator.

14-bit binary up counter

By using the 8-bit binary up counter and 6-bit binary up counter in conjunction, a 14-bit binary up counter
can be configured. The counters can be cleared by the application.

Fast-forward mode (using 6-bit base timer)

When the 6-bit timer is used as base timer, and the 32.768 kHz quartz oscillator is used as count clock, a
clock with 2 millisecond steps can be implemented. Bit length switching is performed by the base timer
control register (BTCR).

Interrupt generation

When the interrupt request enable bit is set, an interrupt request generated by the base timer will call the
register vector 001BH. There are two types of interrupt requests that can be generated by the base timer,
referred to as base timer interrupt 0 and base timer interrupt 1.

The following Special Function Registers must be operated to control the base timer.

BTCR, P1, timer 0 functions, interrupt functions

VMD-94

Peripheral System Configuration

Circuit Configuration

The base counter configuration is shown in Fig. below.

8-bit binary up counter... ®

This is an up counter whose input is selected by the input signal select register (ISL). It generates a 4 kHz/
2 kHz buzzer output signal. When the counter overflows, it generates a base timer interrupt 1 source. The
overflow becomes the clock for the 6-bit binary counter.

6-bit binary up counter... [

This is a 6-bit up counter which uses either the signal selected by the input signal select register (ISL) or 8-

bit counter overflow as input. When the counter overflows, it generates a base timer interrupt 0 and 1
source. Input clock switching is performed by the base timer control register BCTR.

Base timer input clock source...J]

The quartz oscillator should be selected by the input signal select register (ISL) as base timer clock. Do not
use other oscillators.

ISL(15FH)
|-|-|5|4|3|2|1|0| P16 output
ISL3 " control (45H)
O:clear P16 port data
| AR R AR SN AR R A 1 (144H)
1/fast I I I I I
Cycle clock 8-bit counter - P16 function
5 | | | control (146H)
k]
Timer/counter 0 3 ® 16/fast >0 16/BUZ
w
prescaler 8/fast
:I—‘: 32.768 _l— 256/fast
—T— | KHz 128/fast
Quartz oscillator ® 32/Fast
O:clear
0
g T] T T ! 16384/fast (64/fast)
1|2 6-bit counter
3 I
® Base timer interrupt 0 request
5 <
2048/fast (8/fast) - Base timer interrupt 1 request
512/fast (2/fast) @
Counter clear ‘ /
]
Lo lsfsfafalofs]o]
BTCR(17FH)
BD— Interrupt request

Figure 2.51 Base timer block diagram

VMD-95

Visual Memory Unit (VMU) Hardware Manual

Related Registers

Table 2.22 Base timer control register (BTCR)

Symbol Address R/W Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
BTCR 17FH R/W BTCR7 BTCR6 BTCR5 BTCR4 BTCR3 BTCR2 BTCR1 BTCRO
Reset 0 0 0 0 0 0 0 0
Caution: = BTCR7, BTCR6, BTCRO may not be manipulated by an application.
To operate other bits, be sure to use bit level instructions.
Bit name Function
BTCR7 (bit 7) Base timer interrupt 0 cycle control
0: 16384/fBST
BTCRB (bit 6) Base timer operation control
1: base timer start
BTCR5 (bit 5) Base timer interrupt 1 cycle control
BTCR{oit 4 BICR7 BTCRS BTCR4
X 0 0 32/tBST
X 0 1 128/fBST
0 1 0 512/fBST
0 1 1 2048/fBST
BTCR3 (bit 3) Base timer interrupt 1 source

0: Interrupt source disabled
1: Interrupt source enabled

BTCR2 (bit 2) Base timer interrupt 1 request enabled

0: Interrupt request disabled

1: Interrupt request enabled

BTCR1 (bit 1) Base timer interrupt 0 source

0: Interrupt source disabled
1: Interrupt source enabled

BTCRO (bit 0) Base timer interrupt 0 request enabled

1: Interrupt request enabled

VMD-96

Peripheral System Configuration

BTCR?7 (bit 7): base timer interrupt 0 cycle control 0: fixed

Specifies the cycle for base timer interrupt 0 source generation.

When set to "0", the cycle is 16384/ fBST. In this case, the interval at which the interrupt 0 source is generated

for 14-bit counter overflow is 16384 /fBST.

When reset to "0", the cycle is 64/fBST. To use the fast- forward mode, set this flag.

Caution:

Because the base timer is used for the clock of the VMU, these registers may never be manipulated by

an application.

BTCRG6 (bit 6): base timer operation control 1: fixed

Starts or stops the base timer count operation.

When set to "0", the count operation starts.

When reset to "0", the count operation stops, and the 14- bit counter is cleared.

Caution:

Because the base timer is used for the clock of the VMU, these registers may never be manipulated by

an application.

BTCR5 - BTCR4 (bits 5 - 4): base timer interrupt 1 cycle control

Select the cycle for base timer interrupt 1 source generation.

BTCR7 BTCRb BTCR4 Base timer interrupt 1 cycle
X 0 0 32/tBST

X 0 1 128/fBST

0 1 0 512/fBST

0 1 1 2048/fBST

BTCR3 (bit 3): base timer interrupt 1 source flag

fBST: Input clock frequency

This flag is set whenever the base timer interrupt 1 source is generated at the cycle set with BTCR7, BTCR5,
and BTCR4. When no interrupt is generated, the flag does not change.

Caution:

This flag must be reset by a suitable interrupt processing routine.

VMD-97

Visual Memory Unit (VMU) Hardware Manual

BTCR2 (bit 2): base timer interrupt 1 request enable control

Enables or disables the base timer interrupt 1 request.

When set to "0", the base timer interrupt 1 source will generate an interrupt request to interrupt
vector 001BH.

When reset to "0", no interrupt request is generated.

BTCR1 (bit 1): base timer interrupt 0 source flag

This flag is set whenever the base timer interrupt 0 source is generated at the cycle set with BTCR7. When
no interrupt is generated, the flag does not change.

Caution:

This flag must be reset by a suitable interrupt processing routine.

BTCRO (bit 0): base timer interrupt 0 request enable control 0: fixed

Enables or disables the base timer interrupt 0 request.
When set to "0", the base timer interrupt 0 source will call the interrupt vector 001BH.

When reset to "0", no interrupt request is generated.

Caution: Because the base timer is used for the clock of the VMU, these registers may never be manipulated by
an application.
Caution: e In fast-forward mode (BTCR7, BTCR5 = 1), do not set both the system clock and the base timer to the

quartz oscillator.

¢ BTCR may occasionally become "0" when BTCR5 and BTCR4 are changed. This is a rare occurrence,
but to guard against it, you should save the value of BTCR3 before changing BTCR5 and BTCR4 and
then set the value again in BTCR3 after the change.

Input Signal Select Register (ISL)

For details, refer to the section “Input Signal Select Register (ISL)” in “Timer/Counter 0 (T0)”.

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
ISL 15FH R/W - - ISLS ISL4 ISL3 ISL2 ISL1 ISLO
Reset 0 0 0 0 0 0 0 0

VMD-98

Peripheral System Configuration

Bit name Function
ISL5 (bit 5) Base timer clock select
ISL4 (bit 4) ISL5 ISL
X 0 Fixed to quartz oscillator
ISL3 (hit 3) Use prohibited

0: fBST/16 (fixed)

ISL2 (bit 2) Noise filter time constant select
ISL bit) ISL2 ISL1 Time constant
1 1 16Tcyc
1 64 Teye
X 0 1 Teye
ISLO (bit 0) TO clock input pin select

0: P72/INT2/TOIN pin
1: P73/INT3/TOIN pin

Using the Base Timer

* Clock timer
Related register Sample program
| Clear counter | BTCR CLRI1 BTCR6 ; Stop base timer count
Set interrupt cycle BTCR CLR1 BTCR,7 ; Select 14-bit base timer mode
l ISL CLR1 ISL4 ; Set base timer clock to sub clock
Start counter BTCR CLR1 BTCR,0 ; Enable base timer interrupt 0

SET BTCR,6 ; Start base timer count

Next program Interrupt is generated here

Interrupt processing CLR1 BTCR,1 ; Base timer interrupt
Clock processing routine - Setflag to 0
RETI ; Return to main routine

Figure 2.52 Clock timer

VMD-99

Visual Memory Unit (VMU) Hardware Manual

Serial Interface

The custom chip of the VMU incorporates a 2-channel synchronous serial interface with a data word length of 8 bits.
It uses port 1 and allows two VMU units to communicate directly. When connected to the Dreamcast, the interface

is automatically switched to the dedicated Dreamcast interface.

Reference: For information on how to ensure problem-free serial communication, refer to chapter “Serial

Communication Precautions” in the appendix.

Caution:

Because the dedicated Dreamcast interface (Maple bus mode) also uses port 1, it cannot be used at the

same time as the synchronous serial interface.

When using the synchronous serial interface, an application must prohibit activation of the dedicated

Dreamcast interface.

The serial interface has the following main functions and features.

e 2-channel synchronous serial interface

e Selectable transfer clock

e Serial interface SIOQ transfer clock with switchable polarity
* LSB/MSB switchable start sequence

* Switchable operation modes

e Overrun detection

e Transfer bit length control

Functions and Features

2-channel synchronous serial interface

Two serial interface channels are provided: SIO0 using P10 to P12 and SIO1 using P13 to P15.

Normally, the VMU uses SIO0 as master and SIO1 as slave.

Selectable transfer clock

The following three clock types can be selected. For SIO0, the transfer clock polarity can also be selected.

e Internal clock
¢ External clock
¢ Software clock

Serial interface SIO0 transfer clock with switchable polarity
The polarity of the transfer clock for the serial interface SIO0 can be selected as follows.

1) Operation stop, SCKO = "0"; data output hold
2) Operation stop, SCKO = "0"; data output bit 0 of SBUFO

VMD-100

Peripheral System Configuration

LSB/MSB switchable start sequence

Data transfer via the serial interface can start either with the LSB or the MSB. This setting can be made
individually for each channel.

Overrun detection

An error is generated when a clock exceeding 8 bits is received.

Transfer bit length control

A setting is available to control whether operation stops or continues after 8 bits have been transferred.

Interrupt

The following Special Function Registers must be operated to control the serial interface.

When the interrupt request enable bit is set, overflow of the octal counter generates an SIO0 or SIO1
interrupt request.

SCONO, SCONT1, SBR, SBUF(, SBUF1, P1, P1DDR, P1FCR

Caution:

When data transfer via the serial interface has been carried out, observe the following points.

(1)Do not make any settings for serial transfer while no other VMU unit is connected. When transfer
is completed, be sure to make the settings listed in (3).

To make serial transfer settings, check the status of port 7 to verify whether another VMU unit

is connected.

(2) When connection of another VMU unit has been verified, make serial transfer settings.

Use port 7 to verify whether another VMU unit is connected.

(3)At the end of serial transfer, and when no other VMU unit is connected, establish the

following settings.

SCONO = 00H
SCON1 = 00H
P1FCR = 0BFH
P1DDR = 0A4H

If serial transfer settings are made while no other VMU unit is connected, normal operation
is not assured.

VMD-101

Visual Memory Unit (VMU) Hardware Manual

Circuit Configuration

The serial interface configuration is shown in Figures below.
Shift register...®

This component consists of two 8-bit shift registers (SBUF0, SBUF1) to operate the specified clock.
Octal counter...[]

Counts the shift clock and detects transfer end.
Baud rate generator...[]

Consists of an 8-bit register (SBR) for data settings and an 8-bit reload counter. When “internal clock” is selected as
transfer clock, the clock data created here are transferred. The baud rate generator is used both by SIO0 and SIO1.

Reference: For more information on the internal clock, refer to section on “Serial Transfer Clock”.

Polarity switcher

Controls the transfer clock polarity before and after serial transfer.

BUS

LSB/MSB sequence select
SBUFO (131H) ‘ @ SCCNO (130H) {} |

I | :SIOEJshif%regi:ster: | ’—‘ |7|6|5|4|3|2|1|0|
TI T LTI e

Interrupt request

P11 output control (145H) _—D_

P};/E%O D—% P11 function control (146H) @)
P11 port latch (144H) ¢ 8-link counter Q
P10 output control (145H) | R

P10/S00 .
P10 function control (146H)

P10 port latch (144H)

SBRO (132H) a
[T e’ |]
aud rate generator
Nos ’—I Lo peneeer, ©)
SCON13 |
SCON14 ~~
System clock | 8-bit reload counter |
: : : : : Signal A to S101

P12 output control
Polarity switching
P12/SCKO D_ ;] CZE‘ !-Plqunctiun control (145H) circuit
P12 port latch (144H)

Figure 2.53 Serial interface (SI00) Block Diagram

VMD-102

Peripheral System Configuration

BUS

LSB/MSB sequence select

SBUF1 (131H) @ %} |
I | :SIOilshifiregi:ster: | '—‘ |7|6|5|4|3|2|1|0|
A D A U D W W

SCON1 (130H) Interrupt request

P14 output control (145H) _—D_
P}g/len D_ ;] <Zg‘ I.‘Pl4function control (146H) @
P14 port latch (144H) >°_—l € glinkcounter Q
P13 output control (145H) | R
P13/S01 }—£|-< (é
/ P13 function control (146H)

P13 port latch (144H)

SCON13

SCON14 D
Signal A
from S100

P15 output control (145H)
P15/SCKI D_ ;] é I.‘Pl5funcli0n control (146H)

P15 port latch (144H)

Figure 2.54 Serial interface (SI01) Block Diagram

Related Registers

SIOO0 control register (SCONO)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
SCONO 130H R/W SCON07 SCON06 - SCON04 SCON03 SCON02 SCONO1 SCONOO
Reset 0 0 H 0 0 0 0 0

VMD-103

Visual Memory Unit (VMU) Hardware Manual

Bit name Function

SCONO7 (bit 7) Polarity control

0: at operation stop, SCK0 = 1, maintain data output
1: at operation stop, SCKO = 0, output data is bit 0 of SBUFO

SCONO6 (bit 6) Overrun flag

0: No overrun

1: Overrun

SCONO4 (bit 4) Transfer bit length control

0: 8-bit transfer

1: Continuous transfer

SCONO3 (bit 3) Transfer control

0: Stop transfer

1: Start transfer

SCONO2 (bit 2) LSB/MSB sequence select
0: LSB first
1: MSB first

SCONO1 (bit 1) Serial transfer end flag

0: Transfer in progress

1: Transfer end

SCONOQO (bit 0) Interrupt request enabled

0: Interrupt request disabled

1: Interrupt request enabled

SCONO7 (bit 7): SCKO polarity control

Controls the polarity of transfer clock SCKO used by SIO0.
When set to "0", SCKO is "0" when SIO0 operation stops, and bit 0 of SBUFO is output.
When reset to "0", SCKO0 is "0" when SIO0 operation stops, and the last transferred data is held at the output.

SCONO06 (bit 6): overrun flag

Detects serial transfer errors in SIOOQ.

When an 8-bit data transfer is completed (SCONO1 has become "0") and the transfer clock is received (falling
edge was detected), the flag is set.

During continuous transfer, the overflow flag is set every 8 bits.

Caution: This flag is not reset automatically. It must be reset by the application.

VMD-104

Peripheral System Configuration

SCONO04 (bit 4): transfer bit length control

Switches the SIOO0 transfer data bit length to 8 bit continuous (1) or 8 bit (0).
When set to "0", data of 2 byte or more can be sent continuously in 8-bit units.
When reset to "0", only 8 bits of data (1 byte) can be sent.

This flag is not reset after transfer. It must be reset by the application.

SCONO03 (bit 3): SIO0 operation control

Starts or stops SIO0 transfer.
When set to "0", 8-bit serial transfer at SIOO0 starts. When 8 bits have been transferred, the flag is reset.
When reset to "0", serial transfer at SIO0 stops.

SCONO02 (bit 2): LSB/MSB start select

Selects whether data are transferred starting with the MSB or LSB.
When set to "0", the transfer starts with the MSB.
When reset to "0", the transfer starts with the LSB.

Caution:

This flag applies both to sending and receiving data. The setting must match at both ends.

SCONO01 (bit 1): SIO0 transfer end flag

Detects the end of serial transfer.
The flag is set when a serial transfer of 8 bits is completed.

When this flag is set, and a falling edge of the transfer clock is detected, the overrun flag is set.

Caution:

This flag is not reset automatically. It must be reset by the application.

SCONOO (bit 0): SIO0 interrupt request enable control

Enables or disables interrupt request generation at SIO0 transfer end.
When set to "0", the interrupt vector 0033H is called when SIOO0 transfer ends.

When reset to "0", no interrupt request is generated.

Caution:

The transfer end flag becomes "0" at the end of 8 bits (1 byte) transfer, regardless of the transfer bit
length control setting.
The overrun flag is only set when overrun was detected. It does not generate an interrupt.

VMD-105

Visual Memory Unit (VMU) Hardware Manual

S101 control register (SCON1)

Symbol Address R/W Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
SCON1 134H R/W SCON16 SCON14 SCON13 SCON12 SCON11 SCON10
Reset H 0 H 0 0 0 0 0
Bit name Function
SCON16 (bit 6) Overrun flag
0: No overrun
1: Overrun
SCON14 (bit 4) Transfer bit length control
0: 8-bit transfer
1: Continuous transfer
SCON13 (bit 3) Transfer control
0: Stop transfer
1: Start transfer
SCON12 (bit 2) LSB/MSB sequence select
0: LSB first
1: MSB first
SCON11 (bit 1) Serial transfer end flag
0: Transfer in progress
1: Transfer end
SCON10 (bit 0) Interrupt request enabled

0: Interrupt request disabled

1: Interrupt request enabled

SCON16 (bit 6): overrun flag

Detects serial transfer errors in SIO1.

When an 8-bit data transfer is completed (SCON11 became "0") and the transfer clock is received

(falling edge was detected), the flag is set.

During continuous transfer, the overflow flag is set every 8 bits.

Caution:

This flag is not reset automatically. It must be reset by the application.

VMD-106

Peripheral System Configuration

SCON14 (bit 4): transfer bit length control

Switches the SIO1 transfer data bit length to 8 bit continuous (1) or 8 bit (0).
When set to "0", data of 2 byte or more can be sent continuously in 8-bit units.

When reset to "0", only 8 bits of data (1 byte) can be sent. When the 8-bit transfer is completed, the
transfer end flag (SCON11) is set.

Caution:

This flag is not reset after transfer. It must be reset by the application.

SCON13 (bit 3): SIO1 operation control

Starts or stops SIO1 transfer.
When set to "0", 8-bit serial transfer at SIO1 starts. When 8 bits have been transferred, the flag is reset.
When reset to "0", serial transfer at SIO1 stops.

SCON12 (bit 2): LSB/MSB start select

Selects whether data are transferred starting with the MSB or LSB.
When set to "0", the transfer starts with the MSB.
When reset to "0", the transfer starts with the LSB.

Caution:

This flag applies both to sending and receiving data. The setting must match at both ends.

SCON11 (bit 1): SIO1 transfer end flag

Detects the end of serial transfer.
The flag is set when a serial transfer of 8 bits is completed.

When this flag is set, and a falling edge of the transfer clock is detected, the overrun flag is set.

Caution:

This flag is not reset automatically. It must be reset by the application.

SCON10 (bit 0): SIO1 interrupt request enable control

Enables or disables interrupt request generation at SIO1 transfer end.
When set to "0", the interrupt vector 003BH is called when SIO1 transfer ends.

When reset to "0", no interrupt request is generated.

Caution:

The transfer end flag becomes "0" after 8 bits (1 byte) have been transferred, regardless of the transfer
bit length control setting.

The overrun flag is only set when overrun was detected. It does not generate an interrupt.

VMD-107

Visual Memory Unit (VMU) Hardware Manual

Baud rate generator register (SBR)

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
SBR 132H R/W SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBRO
Reset 0 0 0 0 0 0 0 0

When the internal clock is used as transfer clock, this register sets the transfer rate. The value is common to
both SIO0 and SIO1. The transfer rate TSBR can be obtained by the following equation.

TsBR = (256 - [SBR setting value]) x 2 x Tcyc (Tcyc = cycle clock)

Shift clock _| '

~<——— Transfer rate ——
TSBR

Figure 2.55 S/00, SIO1 transfer rate

Serial buffer 0 (SBUFO0)

Stores transfer data (8 bits) from SIOO.

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bit0
SBUFO 131H R/W SBUF07 SBUF06 SBUF05 SBUF04 SBUFO03 SBUF02 SBUFO1 SBUF00
Reset 0 0 0 0 0 0 0 0

Serial buffer 1 (SBUF1)

Stores transfer data (8 bits) from SIO1.

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bit0
SBUF1 135H R/W SBUF17 SBUF16 SBUF15 SBUF14 SBUF13 SBUF12 SBUF11 SBUF10
Reset 0 0 0 0 0 0 0 0

Dedicated Dreamcast interface circuit

In addition to the serial interface described above, port 1 also operates as an input/output port for the
dedicated Dreamcast interface. It is not possible to use the dedicated Dreamcast interface and the serial
interface simultaneously.

VMD-108

Peripheral System Configuration

Serial Interface Operation

Transfer via the serial interface starts when the transfer control bit (SCONO03, SCON13) or transfer bit length select
bit (SCON04, SCON14) is set. The transfer mode can be the Maple bus mode or normal mode, but applications can
only use the normal mode.

Normal mode

Data transfer uses two data lines and one clock line. The data lines are S1 (dedicated input) and SO
(dedicated output). This mode follows conventional transfer principles and is suited for communication
with a specific device.

Caution: For communication between two VMU units, use normal mode.

VMS 1 VMS 2

SCKo SCK1
Send S00 | sh Receive
S100 SI01
Sio S01
SCK1 SCKo
Receive S | S00 Send
SI01 SI00
S01 SIo

Figure 2.56 Connection of two VMU units

The transfer mode can be specified by operating the Special Function Register assigned to port 1
(refer to below). The mode can be specified separately for SIO0 and SIO1.

Serial transfer timing

The shift registers are synchronized to the falling edge of the serial clock SCK0 and SCK1, and data from
the shift registers are output at the SO0 and SO1 pins. At the rising edge of the serial clock, the data input
from pins SI0 and SI1 are read into the shift registers.

Operation Mode Settings

Normal mode

The output pins or port latch data for the transfer clock used as internal clock must be reset. The following
pins are used in normal mode.

VMD-109

Visual Memory Unit (VMU) Hardware Manual

Table 2.23 Pins Used in Normal Mode

Mode SI00 SIO1
Input pin P11/S10/SB0 P14/S11/SB1
Output pin P10/S00_P11/S10/SBOA P13/S01_P14/S11/SB1_

Transfer clock

P12/SCKO

P15/SCK1

Caution:

Tcyc before starting transfer, SCKn is set to "0". At less than 1 Tcyc, correct data will not be output.

Table 2.24 Port 1 Settings for SI00 (Special Function Registers)

Pin Function Special function register value
P11/S10/SB0 Receive P11DDR =0
P10/S00 Send P10 =0

P10DDR =1

P10FCR =1
P11/S10/SB0 Receive P11DDR =0
P10/S00 General input/output P10FCR =0
P12/SCK0 Internal clock P12 =0

P12DDR =1

P12FCR =1

Note: The software clock is programmed to alternately write "0" and "0" to the port (P12), and the output

is used as transfer clock.

Table 2.25 Port 1 Settings for SI01 (Special Function Registers)

Pin Function Special function register value
P14/S111/SB1 Receive P14DDR =0
P13/S01 General input/output P13FCR =0

Note: The software clock is programmed to alternately write "0" and "0" to the port (P15), and the output
is used as transfer clock.

VMD-110

Peripheral System Configuration

SBUF1 (135H)

I I I [I I I
S101 shift register

Shift clock lllllllllllllll

P14 output control (145H)
Sh D_L_@ P14 function control (146H)
P14 port latch (144H)
P13 output control (145H)
SO1 | ;] (g I: P13 function control (146H)
P13 port latch (144H)

Figure 2.57 Normal mode signal path (SI01 example)

Caution:

To set Pn to “output”, PNFCR must be set to "0" before PnDDR. If PnDDR is set first, "0" may be output
from Pn when PnDDR is set. This applies both to SIO0 and SIO1.

Serial transfer clock

The serial transfer clock (shift clock) uses the P12 /SCKO pin for SIO0 and the P15/SCK1 pin for SIO1. According to
the applied circuit specifications, one of the following three clock types can be selected for SIO0 and SIO1 separately.
For SIOO, the transfer clock polarity can also be selected.

e Internal clock
e External clock

e Software clock
Internal clock

Normally, the internal clock is used for serial transfer. The dedicated serial baud rate generator (SBR)
integrated in the VMU custom chip generates the transfer clock which is supplied to the SIO0 and

SIO1 circuitry.

When the serial interface is driven with the internal clock, the baud rate generator must be activated.
When this is done, the serial transfer clock will be output from the serial interface clock pin (P12/SCKO,
P15/SCK1).

The relationship between the transfer rate and the baud rate generator setting is as shown below. The
setting values are decimal.

TSBR = (256 - [SBR setting value]) X 2 X Tcyc (Tcyc is the cycle clock)

VMD-111

Visual Memory Unit (VMU) Hardware Manual

TsBR = (256 - [SBR setting value]) x 2 x Tcyc (Teyc = cycle clock)

Transfer clock

<— Transfer rate ———

TsBR

Polarity

switching

circuit
2]
SCONOS -) — | P12/scko
SCON13
SCON14

8-bit counter

Cycle clock ﬁ

Reload register

g

Internal bus

|| Prsyscka

Figure 2.58 Baud Rate Generator Configuration Diagram

Caution: To set Pn to “output”, PnFCR must be set to "0" before PnDDR. If PnDDR is set first, "0" may be output
from Pn when PnDDR is set. This applies both to SIO0 and SIO1.

External clock
The VMU custom chip can perform serial transfer using an externally supplied clock.
Software clock

Using a program to alternately output "0" and "0" from ports P12/SCKO and P15/SCKI, the output can be
used as serial transfer clock.

Clock generation example

Transfer clock

} } }

SI00 SET1 P12 CLR1 P12 SET1 P12
SI01 5 5 5

Figure 2.59 Clock Generation Example

VMD-112

Peripheral System Configuration

To use this type of transfer clock, appropriate settings must be made first for ports P12 /SCKO0 and
P15 SCK1.

Table 2.26 Transfer Clock Settings

Pin Function Special function register value
P12/SCKO Internal clock P12=0
P12DDR =1
P12FCR=1
External clock P12DDR =0
Software clock P12=0/1
P12DDR =1
P12FCR=0
P15/SCK1 Internal clock P15=0
P15DDR =1
P15FCR =1
External clock P15DDR =0
Software clock P15=0/1
P15DDR =1
P15FCR=0
Caution: e Serial data and serial clock pulse width must be at least 1/2 the cycle time.

This is especially important when using the quartz oscillator or the external clock. For example, when
using the 32.768 kHz quartz oscillator, the cycle clock will be 366 ms, requiring a pulse width of at
least 183 ms.

e When outputting the serial clock from port 1, the port 1 registers must be set in the order shown
below, otherwise correct operation is not assured.

1) P1FCR setting
2) PIDDR setting
3) SCONN setting (transfer control bit setting)

Serial Transfer Timing

During serial transfer, the transfer clock SCKO0 of SIO0 (when SCONO07 = 0) and SIO1 outputs a "High" level (SCK0
= 1) before and after operation. The last transferred data is held at the output.

When SCONO7 = 1, the transfer clock SCKO of SIO0 outputs a "low" level (SCKO = 0) before and after operation. Bit
0 (SBUFO00) of the serial buffer 0 (SBUFO) is held at the output (refer to Table 4-40). In SIO1, polarity switching is
not possible.

VMD-113

Visual Memory Unit (VMU) Hardware Manual

SI00

SCON07 =0 At operation stop, SCKO = 1, maintain data output

SCONQ07 =1 At operation stop, SCK0 = 0, output data is bit 0 of SBUFO

SI01

At operation stop, SCKO = 1, maintain data output

SCKo

LU
PWS?J? X oo X o1 X b2 X 03 X pe X b5 X s X 07

P11/S10/SBO

Figure 2.60 Transfer Clock and Output Data (1)

SCKo

P10/S00

or X oo X o1 X b2 X b3 X ps X D5 X b X 07 X sBuFo

P11/S10/SB0

Figure 2.61 Transfer Clock and Output Data (2)
LSB/MSB Switchable Start Sequence

The serial transfer buffer read /write order for data can be set to either LSB [0 MSB or MSB [LSB.

Note: For VMU, either of these is acceptable.
The method used by computers complying to the RS-232C standard is LSB [J MSB.

This function allows selection of “LSB-first” or “MSB- first” order for serial data transfer. The setting is made with
the serial transfer control register (SCONO, SCON1).

Caution: The LSB/MSB order selection must be made before the start of transfer. If the setting is changed after
transfer has started, the transfer continues with the original setting.

R Internal bus /

SIo S00
sh | 7 6 5 4 3 2 1 0 —>SO1

MSB LSB

v

Serial transfer buffer

Figure 2.62 Serial Transfer Buffer and Internal Bus When LSB First Is Selected

VMD-114

Peripheral System Configuration

P12/SCKO pin

P10/S00 pin

P11/S10/SBO pin
SI00 shift

register

Upper 4 bits
Lower 4 bits

SCON03

SCONo1

P12/SCKO pin

P10/S00 pin

P11/S10/SBO pin

SI00 shift

register
Upper 4 bits
Lower 4 bits

SCONO03

SCONo1

R Internal bus 2

Slo S00
si | 7 6 5 4 3 2 1 0 —>SO1

LSB MSB

v

Serial transfer buffer

Figure 2.63 Serial Transfer Buffer and Internal Bus When MSB First Is Selected

The Figures below show the serial transfer send /receive timing in SIO0 when using LSB first and MSB first.

[I

oo)x o X 02 X 03 X o0 X 05 X 06 X 07

X o/ X n X2 X 8 X u X 5 X 86 X 0

07060504 10070605 11100706 12111007 13121110 lal3l2h 15141312 l6l5l4l3 1761514
03020100 04030201 05040302 06050403 07060504 10070605 11100708 12111007 13121110

AN
—

Figure 2.64 Serial Transfer Buffer and Internal Bus When LSB First Is Selected

¢\||||||||||l|||
MSB LSB

07})(s X 05 X oo X 0 X 02 X o X 00

X$|7/X|6X|5X|4X|3X|2X|1X|0

07060504 06050403 05040302 04030201 03020100 02010017 01001716 Ool7lsl5 17161514
03020100 02010017 01001718 Ool7lsl5 17161514 I6l5l4l3 1541312 lalsl2h 13121110

N
—

Figure 2.65 Serial Transfer Buffer and Internal Bus When MSB First Is Selected

VMD-115

Visual Memory Unit (VMU) Hardware Manual

Overrun Detection

The overrun detection function serves to catch serial transfer errors.

If the interrupt source flag (SCONO01, SCON11) is set, the overrun flag (SCON06, SCON16) will be set at the falling
edge of the transfer clock.

The normal send timing and overrun timing are shown in Fig. below. At the rising edge of the transfer clock for the
8th data bit, the interrupt source flag (SCONO01, SCONT11) is set. When the falling edge of the transfer clock is
detected in this condition, the overrun detection flag is set.

The overrun flag is only set when overrun is detected. It does not generate an interrupt or have other results.

Caution: e Before checking the overrun flag, wait at least 1/2 transfer clock cycles after the interrupt source flag
was set to "0".
¢ Also when a transfer mode exceeding 8 bits (continuous transfer mode) was set, the overrun detection
function operates in the same way as for 8-bit transfer.

Timing diagram for normal transfer (8-bit transfer)

Serial

transfer f | f | f | f | f | f_l u f—l

clock

Serial input X o X n X2 X 38 X u X5 X 6 X 0

data

Octal Counter 0 X ! X 2 X 3 X 4 X 5 X 6 X ! X 0
Interrupt /

source flag

Overrun flag

Normal transfer timing (8-bit transfer)
Noise = Qverrun occurs

. A
ter:zller clock * | * | * | f H_ﬂ_l t_l t_l J
gztréal input X 0 X n X n o X 15 X 7
Octal Counter 0 X 1 X 2 X 3 >®< 5 X 6 X 7 X
sourcs fag /S

Overrun flag

o

Figure 2.66 Serial Transfer Buffer and Internal Bus When LSB First Is Selected

VMD-116

Peripheral System Configuration

Transfer Bit Length Control

When sending more than 8 bits of serial data, continuous transfer can be selected with the transfer bit length control
bit SCON04 or SCON14.

e When SCONO04 or SCON14 is set, serial transfer starts. This bit is not reset also after 8 bits of data have
been transferred.

e The interrupt source flag is set with the same timing as for 8-bit transfer (at 8-bit transfer end).

¢ The overrun detection bit SCON06 or SCON16 is set at the serial clock falling edge when 8 bits have been
exceeded. For information on the timing, see section “Overrun Detection”.

* When the transfer bit length has been set to 8 bits, transfer starts when the transfer control bit SCON03
or SCON13 is set. When 8 bits of data have been transferred, the transfer control bit is reset which in turn
causes the interrupt source flag (SCON01, SCONT11) to be set. Serial transfer stops automatically.

* When the transfer bit length has been set to continuous, transfer starts when the transfer bit length
control bit SCON04 or SCON14 is set. Transfer continues until the bit is reset. The interrupt source flag is
set after 8 bits of data have been transferred.

Sample Program

SI00 serial transfer (1) (send) sample program
Transfer parameters

e 8-bit transfer

o Transfer data: 038H (8 bits)

® MSB-first

e Falling edge output

e Normal mode

e Internal clock

e Baud rate: 25.6 ms

¢ System clock: 32.768 kHz quartz oscillator

The baud rate equation yields the following
TSBR = (256 - [SBR]) x 2 x Tcyc
\[SBR] = 256 - TSBR / (2 x Tcyc)

Here, the result is TSBR = 25.6 ms, Tcyc = 366 us. The baud rate generator register (SBR) setting value
therefore is as follows.

[SBR] =256-25600 / (2 x 366)
= approx. 221 (decimal)
O ODDH (hex)

VMD-117

Visual Memory Unit (VMU) Hardware Manual

|<—.| Baud rate
P12/SCKO pin vl ooy

MSB LSB

P10/S00 pin X 0o X o X1 X 1 X 1 X0 X o X o

P11/S10/SBO pin X 7 X 5 X 58 X uw X 8 X2 X 1 X «

SI00 shift

register 0011 011 1110 1100 1000 000l 0011 ol I
Upper 4 bits 1000 000! 00171 0l7lsl I7l6ls1 I6lslal Islal3l lal3l2] 1312111
LOW9r4bit3 7 716 71615 7161514 6151413 5141312 4131211 3121110

Figure 2.67 Serial Transfer (1) Timing

Set transfer data SET1 SCONO,2 ; Set "MSB first" .
and Mov #38H,SBUFO ; Store transfer data in SBUF0
transzr rate MOV #0DDH,SBR ; Set transfer rate TSBR
CLR1 P1,0 ; Set P10 latch to "0"
Set SO0
CLR1 P1,2 ; Set P12 latch to "0"
MoV #05H,P1FCR ; Set P10FCR to "1"
Set SCKO : Set P12FCRto 1"
Set SI0 MoV #05H,P1DDR ; Set P10DDR to "1"
¢ ; Set P11DDR to ‘0"
; Set P12DDR to "1"
Switch system clock MOV #20H,0CR : Switch system clock
| ;to sub clock
(Start transfer) SET1 SCONO0,3 ; Start 8-bit transfer

End
Figure 2.68 Serial Transfer (Send) Sample Program

S101 serial transfer (2) (receive) sample program

Transfer parameters

* 16-bit transfer

* LSB-first

¢ External clock

* Same output data from SO1 as SB1

e Store upper 8 bit of read data at RAM address 031H, and lower 8 bit at RAM address 030H

VMD-118

Peripheral System Configuration

Transfer block

Transfer data

P14/SB1 pin
Overrun flag
SCON16
Interrupt & Setto "0" by software
source flag ﬂ/ —
SCONT1
Figure 2.69 Serial Transfer (2) Timing
CLR1 SCON1,2 ; Set "LSB first"
Set SB1 CLR1 P14 ; Set P14 latch to "0"
| CLR1 P1,3 ; Set P13 latchto "0"
Set SCK1 MoV #08H,P1DDR ; Set P13FCR to "1"
|
MoV #08H,P1DDR ; Set P13DDR to "1"
Set SO1
; Set P14DDR to 0"
; Set P15DDR to "0"
Start 8-hit transfer SET1 SCON1,4 ; Start 16-bit transfer
(lower 8 bits) SELFO:BN SCON1,1,SELFO : Wait until end of 8-bit transfer
LD SBUF1 : Store data in accumulator
ST #30H ; Store lower 8 bits in RAM30H
Start 8-bit transfer CLR1 SCON1,1 ; Set interrupt source flag to 0"
(upper 8 bits)
SELF1:BN SCON1,1,SELF1 ; Wait until end of 8-bit transfer
LD SBUF1 ; Store data in accumulator
ST #31H ; Store upper 8 bits in RAM31H
| End transfer | MOV #0H,SCON1 ; End transfer
End
Figure 2.70 Serial Transfer (Receive) Sample Program
Caution: In thisexample, if there is a rising edge (B) of the transfer clock between the instruction following SELF0O

and the SELF1 instruction, an error will occur. The transfer clock should be set with a sufficiently long
cycle in relation to the cycle clock.

* Set SCKn to "0" 1 Teyc before the start of transfer. If less than 1 Tcyc, correct data will not be obtained.
¢ To set Pn to “output”, PNFCR must be set to "0" before PnDDR. If PnDDR is set first, "0" may be output
from Pn when PnDDR is set. This applies both to SIO0 and SIO1.

VMD-119

Visual Memory Unit (VMU) Hardware Manual

Dot Matrix LCD Controller

The LCD controller/driver automatically reads data stored in display RAM and generates the signals to drive the
dot matrix LCD. The display mode is a graphics mode in which one bit of data in display RAM corresponds to on/
off of one dot on the LCD.

The dot matrix LCD controller/driver consists of the following circuit blocks.

¢ Display RAM (XRAM)
¢ Display control register

¢ LCD power supply

Functions

e Display duty cycle: 1/33

* Display bias: 1/5

* Graphics display

e LCD instruction display on/off

* Graphics display capability 48 (horizontal) x 32 (vertical) matrix + 4 mode icons

The following Special Function Registers must be operated to control the display.

* MCR: display on/off control

¢ STAD: display start address control

* CNR: horizontal byte number control
* TDR: display duty cycle control

¢ VCCR: display contrast control
e XBNK: display RAM bank address control

Display RAM (XRAM)

The display RAM consists of two banks of 96 x 8 bits for dot matrix control and three 6-bit banks for icon control.

The LCD controller/driver reads the data stored in XRAM and generates the signal to drive the LCD.

Caution: Before reading from or writing to XRAM, set the system clock to the RC oscillator.

VMD-120

Peripheral System Configuration

Not available for use

~ ~

(180H 181H 18BH 18CH - 18FH

190H 191H 19BH 19CH - 19FH

Bank 0 | | | | |

L 1FOH 1FH 1FBH 1FCH - 1FFH

(180H 181H 18BH 18CH - 18FH
Bank 1 | | | | _

L 1FOH 1F1H 1FBH 1FCH - 1FFH
Bank 2 180H 181H 18BH 18CH - 18FH

Figure 2.711 Display XRAM Configuration

Display Control Registers

Mode control register (MCR)

Controls display controller operation start/stop, cursor display, and LCD clock division ratio.

Caution: The mode control register is write-only. When a bit operation instruction or the INC, DEC, or DBNZ
instruction is used on a write-only register, a bit other than the specified bit will be set. Use the
following instructions for manipulating this register.

MOV, MOV@, ST, ST@, POP
When accessing the register, bits 7 - 5 and bit 0 must be set to their fixed values.

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
MCR 120H W MCR7 MCRG MCR5 MCR4 MCR3 - - MCRO
Reset 0 0 0 0 0 0 0 0

VMD-121

Visual Memory Unit (VMU) Hardware Manual

Bit name Function
MCR7 (bit 7) LCD clock division ratio selection
MCRG (bit) MCR7 MCR6 MCR5 Division ratio
MCR5 (bit 5)
0 0 0 1/1 * Always set MCR7 -
MCR5 to 0
MCR4 (bit 4) LCD clock 1/2 division ratio select circuit
0: Signal determined by MCR7 - MCR5 is divided by 2 and selected as LCD clock
1: Signal determined by MCR7 - MCR5 is selected as LCD clock (direct mode)
MCR3 (bit 3) LCD controller control
0: LCD controller stop
1: LCD controller start/continue
MCRO (bit 0) Display mode select
1: Graphic mode * Always set MCR4 to 1

MCR7, MCR5 (bits 7, 5): LCD clock division ratio

Be sure to reset MCR7, MCR5 to "0".

MCR4 (bit 4): LCD clock 1/2 division select

This bit controls whether to divide the LCD clock selected with MCR7 - MCR5 by 2.
When reset to "0", the LCD clock is divided by 2.

When set to "0", the LCD clock is not divided.

The frame frequency is as follows.

1/2 division (MCR4 = 0): 82.7 Hz

1/1 division (MCR4 = 1): 165.5 Hz

MCRS3 (bit 3): LCD controller control

This bit controls display controller operation start/stop.
When set to "0", the LCD controller operation starts.

When reset to "0", the LCD controller operation stops. This means that the display will not be updated also
when the XRAM contents change. The actual LCD is not switched on and off.

MCRO (bit 0): display mode select

The display mode should always be set to graphics mode.
Graphics display MCRO = 1

VMD-122

Peripheral System Configuration

Figure 2.72 Dot Matrix Display

Display start address control register (STAD)

Controls the display start address.

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
STAD 122H R/W STAD7 STAD6 STADS STAD4 STAD3 STAD2 STAD1 STADO
Reset 0 0 0 0 0 0 0 0
Bit name Function

STAD7 (bit 7) Display RAM start address setting
| STAD7 STAD6 STADS STAD4 STAD3 STAD2 STAD1 STADO Start address
STADO (bit 0)

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

v v v

1 1 1 1 1 1 1 1 255

Caution: Changing the STAD value affects not only XRAM bank 0 but also banks 1 and 2, which can cause icons

to flash or all icons to be shown simultaneously. In such a case, change the data in bytes 1 to 6 of the
display start address specified by STAD as follows.
This will cause the game icon only to be shown. Access to bank 2 of XRAM is normally prohibited, but
if STAD is set to a value other than 00H, it is allowed.
When flash memory access is carried out while STAD is set to a value other than 00H, a part of the
screen is rewritten. This is because the BIOS causes the flash memory access icon to be shown.
Therefore, STAD should be reset to 00H before calling the BIOS to access the flash memory.

STAD7, STADO (bits 7, 0): XRAM display start address setting

These bits set the starting address of the display data for the LCD (XRAM 180H is assumed as STAD = 00H).

VMD-123

Visual Memory Unit (VMU) Hardware Manual

The data changes in 2-byte units.

Start address XRAM address | STAD7 STADG STADS STAD4 STAD3 STAD2 STAD1 STADO
OH 180H (bank 0) | O 0 0 0 0 0 0 0
H 182H (bank 0) | 0 0 0 0 0 0 0 1
2H 184H (bank 0) | O 0 0 0 0 0 1 0
3H 186H (bank 0) | O 0 0 0 0 0 1 1
4H 188H (bank 0) | O 0 0 0 0 1 0 0
5H 18AH (bank 0) | O 0 0 0 0 1 0 1
6H Not available 0 0 0 0 0 1 1 0
7H Not available 0 0 0 0 0 1 1 1
8H 190H (bank 0) | O 0 0 0 1 0 0 0
9H 192H (bank 0) | O 0 0 0 1 0 0 1
0AH 194H (bank 0) | O 0 0 0 1 0 1 0
0BH 196H (bank 0) | O 0 0 0 1 0 1 1
0CH 198H (bank 0) | O 0 0 0 1 1 0 0
0DH 19AH (bank 0) | O 0 0 0 1 1 0 1
OEH Not available 0 0 0 0 1 1 1 0
OFH Not available 0 0 0 0 1 1 1 1
10H 1AOH (bank 0) | O 0 0 1 0 0 0 0
11H 1AZH (bank 0) | O 0 0 1 0 0 0 1
3DH 1FAH (bank0) | 0 0 1 1 1 1 0 1
3EH Not available 0 0 1 1 1 1 1 0
3FH Not available 0 0 1 1 1 1 1 1
40H 180H (bank 1) | O 1 0 0 0 0 0 0
41H 182H (bank 1) | O 1 0 0 0 0 0 1
7DH 1FAH (bank 1) | 0 1 1 1 1 1 0 1
7EH Not available 0 1 1 1 1 1 1 0
7FH Not available 0 1 1 1 1 1 1 1
80H 180H (bank 2) | 1 0 0 0 0 0 0 0
81H 182H (bank 2) | 1 0 0 0 0 0 0 1
82H 184H (bank 2) | 1 0 0 0 0 0 1 0
83H - FFH Not available

VMD-124

Peripheral System Configuration

Caution:

As indicated in the table, some start addresses can lead to operation errors. Do not use xx6H, xx7H,
xxEH, xxFH as start addresses.

Character number register (CNR) 123H

This register may not be accessed by applications.

Time division register (TDR) 124H

This register may not be accessed by applications.

Bank address register (XBNK)

Switches the XRAM bank.
Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit0
XBNK 125H R/W XBNK1 XBNKO
Reset 0 0 0 0 0 0 0 0
Bit name Function
XRBK1 (bit 1) Set display RAM start address
| XRBK1 XRBKO Bank address
XRBKO (bit 0)
0 0 0
0 1 1
1 0 2
1 1 Not available
XBNK1, XBNKO (bits 1, 0): display RAM bank address control
Switches the XRAM bank.
The dot matrix display RAM banks 0 and 1 have a capacity of 96 bytes each. Applications can access only
banks 0 and 1.
XRAM bank 2 contains 6 bytes and serves for the icons that indicate the VMU operation mode.
Caution: Applications may not manipulate XRAM bank 2.

LCD contrast control register (VCCR)

This register controls the LCD on/ off state.

VMD-125

Visual Memory Unit (VMU) Hardware Manual

Caution: * The unit does not incorporate a contrast control.
¢ The LCD contrast control register is write-only. When a bit operation instruction or the INC, DEC, or
DBNZ instruction is used on a write-only register, a bit other than the specified bit will be set. Use the
following instructions for manipulating this register.
MOV, MOV@, ST, ST@, POP
When accessing the register, bits 5 to 0 must be set to their fixed values.
Symbol Address R/W Bit7 Bit 6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
VCCR 127H W VCCR7 VCCRG6 VCCR5 VCCR4 VCCR3 VCCR2 VCCR1 VCCRO
Reset 0 0 0 0 0 0 0 0
Bit name Function
VCCR7 (bit 7) Liquid crystal display control
0: Liquid crystal display OFF
1: Liquid crystal display ON
VCCRG (bit 6) LCD RAM access control
0: CPU RAM access enabled
1: CPU RAM access disabled
VCCRS5 (bit 5) * Always set VCCR5 - VCCRO to 0
|
VCCRO (bit 0)

VCCRY7 (bit 7): LCD display control

This bit specifies whether display is carried out or not.
When reset to "0", power to the LCD is shut off, so that the display is deactivated.

(1) Liquid crystal display ON (VCCR7 = 1)

Figure 2.73 LCD ON State

When set to "0", power to the LCD is supplied, so that the display is activated.

VMD-126

Peripheral System Configuration

(2) Liquid crystal display OFF (VCCR7 = 0)

Figure 2.74 [CD OFF State

Caution:

Always start the display controller (MCR3 = 1) before activating the display (VCCR7 = 1).
To deactivate the display, first set VCCR7 to "0" and then set MCR3 to "0".

VCCRG6 (bit 6): LCD display RAM access control

When the quartz oscillator is used as system clock and LCD display is on, be sure to disable access from the
CPU to the XRAM (VCCR6 = 1) after changing the system clock.

When reading from or writing to XRAM, or when the RC oscillator is used for the system clock and the
display is used, enable access from the CPU to the XRAM (VCCR6 = 0).

The procedure for changing the system clock while the display is used is as follows.

® RC oscillator - quartz oscillator
VCRR6 =1
OCR5=1,0CR4=0

¢ Quartz oscillator & RC oscillator
VCRR6=0
OCR5 =0, OCR4 = 0 (RC oscillator)

VCCRS5 - VCCRO (bits 5 - 0)

Always set these bits to "0".

Caution:

When using the LCD, set the VCCR last.

VMD-127

Visual Memory Unit (VMU) Hardware Manual

External Interrupt Function

The VMU custom chip has a function that detects external input signals on P70/INTO, P71/INT1, P72 /INT2/TOIN,

and P73/INT3/TOIN and generates interrupt requests to four vector addresses.

The signal types to be detected can be selected by the application. P70 is used for detecting when the VMU is

connected to the controller. P71 is used for low-voltage detection.

Detection pins and interrupt vectors

Pin Vector address Pin Vector address
P70/INTO 003H P72/INT2/TOIN Pin 013H
P71/INT1 00BH P73/INT3/TOIN Pin 01BH

Signals that can be detected

The priority ranking of the INTO and INT1 pin interrupts can be set to either "High" or "Low" by the master
interrupt enable control register (IE). When set to "High", interrupt processing is carried out regardless of
the master interrupt enable setting. The priority ranking of interrupts other than INT0 and INT1 can be set
to either "High" or "Low" by the interrupt priority control register (IP). A noise filter with switchable time
constant is connected to the P73/INT3/TOIN pin.

INTO, INT1 pin

INTO, INT1 pin

—T 1 Rising edge
——— Falling edge
—— "H"level

— "L"level

—T 1 Rising edge
——— Falling edge

— Dual level

Figure 2.75 Interrupt Detection Signals

Detection of other VMU unit

When another VMU unit is connected, the values at pins P70 through P73 are as follows.

To use the external interrupt function, the following Special Function Registers must be operated.

—_~ o~~~
—_ — — —

P70 P72 P73
Connected to VMU L L H
Not connected to VMU | L L L

I01CR, I23CR, ISL, IE

VMD-128

Peripheral System Configuration

Circuit Configuration

P70/INTO
5V detect

P71/INT1
Low
voltage

P72/INT2
/TOIN
D0

P73/INT3
/TOIN
ID1

Interrupt request

—> Timer0

Interrupt request

External signal input

101CR (15DH)
l7[e[s[afaf2]1]o]
Y ¥
—_ /S)
] g A ™| MPX
> "H'level [
—> "L"level [
*v:
—— _/_ —
] L | mex
> "H'level [
—> "L'level > ISL
ISL(15FH) 0
¥
—
D L] L MPX
B t Y MPX
[Noise filter —E: { MPX
1
ISL :D
1
ISL (15FH)

Related Registers

[7fels]afsf2]r]o]

123CR (15EH)

Figure 2.76 External Interrupt Circuit Block Diagram

External interrupt 0, 1 control register (I01CR)

Interrupt request

Interrupt request

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit0
101CR 15DH R/W 101CR7 |01CR6 101CR5 101CR4 I01CR3 101CR2 101CR1 101CRO
Reset 0 0 0 0 0 0 0 0

VMD-129

Visual Memory Unit (VMU) Hardware Manual

Bit name Function
|01CR7 (hit 7) INT1 detection level/edge select
101CRG (bit 6) 101CR7 I01CR6 INT1 interrupt condition
0 1 Detect falling edge
0 1 Detect “L" level
1 0 Detect falling edge
1 1 Detect "H" level
I01CR5 (bit 5) INT1 interrupt source
0: Interrupt source disabled
1: Interrupt source enabled
|01CR4 (bit 4) INT1 interrupt control
0: Interrupt disabled
1: Interrupt enabled
|01CR3 (hit 3) INTO detection level/edge select
101CR2 {bit 2) 101CR3 101CR2 INTO interrupt condition
0 0 Detect falling edge
0 1 Detect "L" level
1 0 Detect falling edge
1 1 Detect "H" level
I01CR (bit 0) INTO interrupt source
0: Interrupt source disabled
1: Interrupt source enabled
|01CR1 (bit 1) INTO interrupt control

0: Interrupt disabled
1: Interrupt enabled

101CR7, 101CR6 (bits 7, 6): INT1 detection level/edge select

Selects the INT1 interrupt condition for signals input on the P71/INT1 pin.

101CR7 I01CR6 INT1 interrupt
condition

0 0 Detect falling edge

0 1 Detect “L" level

1 0 Detect rising edge

1 1 Detect “H” level

VMD-130

Peripheral System Configuration

Note: When level detection is used, an interrupt is generated continuously while the signal is at "High"
or "Low" level.

I01CR5 (bit 5): INT1 interrupt source

This bit is set if the condition specified by bits [01CR7 and I01CR6 is met. If INT1 interrupt is enabled
(I01CR4 = 1), the interrupt vector 00BH is called and interrupt processing begins.

Caution:

This flag is not reset automatically. It must be reset by the application.

101CR4 (bit 4): INT1 interrupt enable control

This bit enables or disables the external INT1 interrupt.
When set to "0", INT1 interrupt processing is carried out if I01CRS5 is set.

When reset to "0", interrupt processing is not carried out.

101CR3, 101CR2 (bits 3, 2): INTO detection level/edge select

Selects the INTO interrupt condition for signals input on the P70/INTO pin.

I01CR3 101CR2 INTO interrupt condition
0 0 Detect falling edge

0 1 Detect “L" level

1 0 Detect rising edge

1 1 Detect "H" level

Note: When level detection is used, an interrupt is generated continuously while the signal is at "High"
or "Low" level.

101CR1 (bit 1): INTO interrupt source

This bit is set if the condition specified by bits [01CR3 and I01CR?2 is met. If INTO interrupt is enabled
(I01CRO = 1), the interrupt vector 0003H is called and interrupt processing begins.

Caution:

This flag is not reset automatically. It must be reset by the application.

101CRO (bit 0): INTO interrupt enable control

This bit enables or disables the external INTO interrupt.
When set to "0", INTO interrupt processing is carried out if I01CR1 is set.

When reset to "0", interrupt processing is not carried out.

VMD-131

Visual Memory Unit (VMU) Hardware Manual

External interrupt 2, 3 control register (123CR)

For details, refer to “Timer/Counter 0 (T0)”, section “External Interrupt 2, 3 Control Register (I23CR)".

Symbol

Address

R/W

Bit 7

Bit 6

Bit5

Bit4 Bit3

Bit 2

Bit 1

Bit0

123CR

15EH

R/W

123CR7

123CR6

123CR5

123CR4 123CR3

123CR2

123CR1

123CRO

Reset

0

0

0

0 0

0

0

0

Bit name

Function

123CR7 (bit 7)

INT3 rising edge detect control

0: Detect disabled
1: Detect enabled

123CRG (bit 6)

INT3 falling edge detect control

0: Detect disabled
1: Detect enabled

123CR5 (bit 5)

INT3 interrupt source

0: Interrupt source disabled

1: Interrupt source enabled

123CR4 (bit 4)

INT3 interrupt control

0: Interrupt disabled

1: Interrupt enabled

123CR3 (bit 3)

INT2 rising edge detect control

0: Detect disabled
1: Detect enabled

123CR2 (bit 2)

INTZ falling edge detect control

0: Detect disabled
1: Detect enabled

123CR1 (bit 1)

INTZ interrupt source

0: Interrupt source disabled

1: Interrupt source enabled

123CRO (bit 0)

INTZ2 interrupt control

0: Interrupt disabled

1: Interrupt enabled

Input Signal Select Register (ISL)

VMD-132

Peripheral System Configuration

For details, refer to “Timer/Counter 0 (T0)”, section “External Signal Select Register (ISL)".

Symbol Address R/W Bit7 Bit 6 Bit b Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ISL 15FH R/W ISL5 ISL4 ISL3 ISL2 ISL1 ISLO
Reset H H 0 0 0 0 0 0
Bit name Function
ISL5 (hit 5) Base timer clock select
ISL4 (bit 4) ISL5 ISL
1 1 Timer/counter TO prescaler
1 Cycle clock
X 0 Quartz oscillator
ISL3 (bit 3) Use prohibited
0: fBST/16 (fixed)
1: Not allowed
ISL2 (hit 2) Noise filter time constant select
ISLT it 1) ISL2 ISL1 Time constant
1 1 16Tcyc
1 64Tcyc
X 0 1Teyc
ISLO (bit 0) TO clock input pin select
0: P72/INT2/TOIN pin
1: P73/INT3/TOIN pin
Master interrupt enable register (IE)
Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
IE 108H R/W IE7 IE1 |EO
Reset 0 H H H H H 0 0

VMD-133

Visual Memory Unit (VMU) Hardware Manual

Bit name Function

|E7 (bit 7) Master interrupt control (high level, low level)
0: All interrupt requests disabled
1: All interrupt requests enabled

IET (bit 1) INTO, INT1 interrupt priority control

IE0 {bit 0} IE1 IEO INT1 priority level INTO priority level
0 0 Highest Highest
1 0 Low Highest
X 1 Low Low

IE7 (bit 7): master interrupt enable control

Enables or disables acceptance of all interrupts, regardless of priority level.

When set to "1", all interrupt requests are enabled.

When reset to "0", interrupts of "high" and "low" priority are disabled.

IE1 - IEO (bits 1 - 0): INTO, INT1 interrupt priority control

Controls the priority level of external interrupts.

IE1 IEO INT1 priority level INTO priority level
0 0 Highest Highest

1 0 Low Highest

X 1 Low Low

Caution:

¢ INTO and INT1 can be set to "low" priority but not to "high" priority with IE7.

e [t is not possible to set the external interrupt INT1 only to "high" priority.

VMD-134

Peripheral System Configuration

Port Interrupt Functions

In addition to its digital I/ O functions, port 3 can be used to generate an interrupt in response to an external input
signal, or to cancel the sleep (HALT) condition.

A port interrupt can be implemented through port 3.
Function

In addition to its digital I/O functions, port 3 generates an interrupt when it detects a "Low" level signal.
To use the port interrupt function, the following Special Function Registers must be operated.

P3, P3DDR, P3INT, IE

Circuit Configuration

P3 (14CH)
[7lslsfafafaf1]o]
P30 [] Do
P31 [] Do
P32 [} Do
P33 [—o
P [} Do
P35 [] Do
P36 [] Do
P37 [] Do
[7l6]sfafaf2]1]0]
P3DDR (14DH) 7
|7|6|5|4|3|2||1|t|1|
P3INT (14EH) — |) Port 3 interrupt request

Figure 2.77 Port 3 Interrupt Circuit Block Diagram

VMD-135

Visual Memory Unit (VMU) Hardware Manual

Related Registers

Port 3 interrupt control register (P3INT)
For details, refer to the section “Port 3 Interrupt Control Register (P3INT)” in "Port 3".

Symbol Address R/W Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit0
P3INT 14EH R/W - - - - - P32INT P31INT P30INT
Reset H H H H H 0 0 0
Bit name Function
P32INT2 (bit 2) Port 3 interrupt control flag

0: Port 3 interrupt generation disabled

1: Port 3 interrupt generation enabled

P32INT1 (bit 1) Port 3 interrupt source flag

0: Interrupt source disabled

1: Interrupt source enabled

P32INTO (bit 0) Port 3 interrupt request control

0: Interrupt request disabled

1: Interrupt request enabled

Master interrupt enable control register (IE)

For details, refer to the section “Master interrupt Control Register (IE)” in “External Interrupt Functions”.

Symbol Address R/W Bit7 Bit 6 Bit b Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
IE 108H R/W IE7 - - - - - IE1 IEO
Reset 0 H H H H H 0 0

VMD-136

Peripheral System Configuration

Bit name Function

|E7 (bit 7) Master interrupt control (high level, low level)
0: All interrupt requests disabled
1: All interrupt requests enabled

IET (bit 1) INTO, INT1 interrupt priority control

IE0 {bit O} IE1 IEO INT1 priority level INTO priority level
0 0 Highest Highest
1 0 Low Highest
X 1 Low Low

Operation Description

Port 3 interrupt

1. Set bit 2 of the port 3 control register (P3INT) to "1". This selects port 3 interrupt.

2. Among the pins of port 3 (P37 to P30), select the Special Function Register on which "Low" level detection should
occur. The following conditions must be met to accept a port 3 interrupt.

e The corresponding bit in the port 3 control register (P3DDR) must be set to input mode.
P3mDDR =0 (m =0 to 7)

* The corresponding bit in the port 3 register (P3) must be set.

P3n=1(m=0to7)

3. When a "Low" level is detected, the interrupt source is set to "1". If the interrupt request enable flag has been set,
an interrupt request is generated, and if the master interrupt enable flag has been set, the interrupt vector 004BH

is called.

4. If the conditions listed in 2. are met while in HALT mode, the HALT mode is terminated and the interrupt vector
004BH is called.

State Transition

The flowchart below shows activation and cancellation of HALT mode.

HALT mode state transition

VMD-137

Visual Memory Unit (VMU) Hardware Manual

(Start)
'

| Port 3 state setting |

!

| HALT setting |

i

Port3

"L" level detect ?

NO

Interrupt

enable flag=17?

HALT mode

NO

Master
interrupt
enable flag=17?

HALT mode

Cancel HALT mode and
branch to address 004BH

!
C

Figure 2.78 Flow Chart

VMD-138

Peripheral System Configuration

VMU Work RAM

The VMU contains 256 bytes x 2 banks of RAM to be used as communications buffer when connected to the
Dreamcast. When not connected to the Dreamcast, this RAM is available for applications.

To determine whether data transfer with the Dreamcast is being carried out, check the ASEL flag in the VSEL

register.

When the flag is "1", data transfer is in progress.

Note that data integrity will not be assured if an application writes to this RAM while data transfer is in progress.

Work RAM Control Registers

VMU control register (VSEL)

Symbol Address R/W Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
VSEL 163H R/W - - - INCE - - SIOSEL ASEL
Reset H H H 0 H H 0 0

The application can alter only bit 4. Be sure to use a bit level instruction.

INCE (bit 4): VTRBF address counter automatic increment

This bit controls the automatic incrementing of the address counter when reading/writing VTRBE.
When set to "1", the address counter is automatically incremented by 1 after VIRBF has been accessed.

When reset to "0", the address counter maintains its setting.

SIOSEL (bit 1): P1 port use select control

Specifies whether the P1 port (P10 to P15) is to be used as a normal I/O port for synchronous serial
communication or as dedicated Dreamcast interface.

ASEL (bit 0): VTRBF address input select control

Controls access to the VTRBF used as buffer for the VMU and dedicated Dreamcast interface.

Table 2.27 Work RAM access address (VRMAD1, VRMAD2)

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit0
VRMAD1 164H R/W VRMAD7 | VRMAD6 | VRMAD5 | VRMAD4 | VRMAD3 | VRMADZ | VRMAD1 | VRMADO
Reset 0 0 0 0 0 0 0 0

VMD-139

Visual Memory Unit (VMU) Hardware Manual

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
VRMAD2 | 165H R/W - - - - - - - VRMADS8
Reset H H H H H H H 0

Set the address for reading / writing the work RAM (VTRBF). VRMADI1 specifies the lower 8 bits of the address and
VRMAD? the bank. When bit 4 of VSEL is set to "1", VRMAD is incremented each time the VIRBF is accessed.

Table 2.28 Work RAM (VTRBF)

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit0
VTRBF 166H R/W VTRBF7 VTRBF6 VTRBF5 VTRBF4 VTRBF3 VTRBF2 VTRBF1 VTRBFO
Reset 0 0 0 0 0 0 0 0

This register serves for reading and writing data in the address specified by VRMAD.

When this register is written to, the data are written to the RAM address specified by VRMAD.
When this register is read from, the data are read from the RAM address specified by VRMAD.
When bit 4 of VSEL is set to "1", VRMAD is incremented each time the register is accessed.

Accessing Work RAM

To access work RAM, store the desired RAM address in the VRMAD1 and VRMAD?2 registers. Then read or write
to VTRBEF to access data in the work RAM.

Caution: The VRMADI1 and VRMAD?2 registers are provided with an auto- increment function. To enable this
function, set the INCE bit of VSEL to "1". To disable it, set the bit to "0".

Precautions for Using Work RAM Address Register

The work RAM access procedure is shown in Fig. below.
To access work RAM from an application, specify the work RAM address in the VRMAD1 and VRMAD?2 registers.

If the INCE flag of the VSEL register is set to "1", VRMAD is incremented automatically after each time VTRBF is
accessed. The program therefore must be written so as to take the status of the INCE flag of the VSEL register
into account.

VMD-140

Peripheral System Configuration

INCE="1"
VTRBF
(work RAM)
VTRBF register
CPU data 1
data 1
INCE="0"
VTRBF
(work RAM)
VTRBEF register
CPU data 1
data 1

VRMAD1, VRMAD2
(system address register)

<—— Address value before access

-<—— Address value after access
(address before access + 1)

VRMAD1, VRMAD2
(system address register)

<—|: Address value before access
Address value after access

(no change)

Figure 2.79 Work RAM Access

VMD-141

Visual Memory Unit (VMU) Hardware Manual

Flash Memory

The VMU custom chip incorporates 128 KB of flash memory (EEPROM = Electrically Erasable Programmable ROM)
which can be used to store application program code or data.

Features and Functions

e Capacity: 131072 x 8 bits (program/data area)
¢ Programmable/erasable in block (page) units
1 block = 128 bytes (1 page)
e Number of write/erase cycles:
50,000 times/ page (managed by program) (at 25°C ambient temperature)
¢ Integrated step-up circuit for writing
* Write end detection possible (by calling OS program)
Toggle bit principle
Data polling principle

e Software batch erase possible

Accessing Program/Data Area of Flash Memory

The program/data area of flash memory is accessed by calling an OS program. For details, refer to the
"BIOS" section.

When connected to the Dreamcast, an application can be transferred to the VMU from the Dreamcast. For details
on the transfer procedure, refer to the section on the buSaveExecFile() function in the SEGA Library Manual Vol. 2.

By connecting the development computer to the Dreamcast with a special cable and using the dedicated Memory
Card Utility, an application can be transferred to the VMU. For details, refer to the VMU Tutorial.

VMD-142

Sega®@'Dreamcast

Control Functions

This section contains information about the interrupt controller and the system clock.

Interrupt Functions

Interrupts are used to temporarily interrupt a running program in order to execute other program with higher
priority. The VMU incorporates circuits for generating 13 types of interrupts. These are shown in the table below.

Caution: Some interrupt processing functions cannot be set freely by applications.

VMD-143

Control Functions

Interrupt Types

Table 2.29 Interrupt Table

Priority Interrupt type Internal/ | Vector Interrupt request | Source flag | Enable flag | Register Priority
sequence External | address address setting
1 External interrupt INTO External | 0003H P70/INTO event I01CR1 I01CRO 15DH Highest/low
detection
2 External interrupt INT1 External | 000BH P71/INT1 event |01CR5 |01CR4 15DH
detection
3 External interrupt INT2 External | 0013H P72/INT2 event 123CR1 123CRO 15EH High/low
detection
Timer/counter TOL Internal Timer/counter TOCNT1 TOCNTO 110H
(lower 8 bits) TOL lower 8 bits
overflow
4 External interrupt INT3 External | 001BH P73/INT3 event 123CR5 123CR4 15EH High/low
detection
Base timer Internal Base timer BTCR1 BTCRO 17FH
overflow BTCR3 BTCR2
5 Timer/counter TOH Internal 0023H Timer/counter TOCNT1 TOCNTO 110H High/low
(lower 8 bits) TOL lower 8 hits
overflow
6 Timer T1 Internal 002BH Timer T1L T1CNT1 T1CNTO 118H High/low
overflow
Timer TTH T1CNT3 T1CNT2
overflow
7 SI00 Internal 0033H SI00 end detect SCONO1 SCON0O 130H High/low
8 SI01 Internal 003BH SI01 end detect SCON11 SCON10 134H High/low
9 VMU interrupt Internal 0043H VMU transfer RFB RFBENA 160H/161H High/low
receive end
detect
10 Port 3 interrupt (P32INT=1) | External 004BH Port 3 "L" level P31INT P30INT 14EH High/low
detect
Caution: e The priority ranking indicates which interrupt is handled first if several interrupts are generated

simultaneously. The priority ranking changes if specified in the interrupt priority control register (IP).

VMD-144

Control Functions

Interrupt Function Operation

When an interrupt as listed in Table 5-1 is generated, the corresponding interrupt request flag is set. This indicates
to the interrupt control circuit that an interrupt request has occurred.

The interrupt control circuit accepts interrupts in the order of their priority. There are three priority levels: "highest",
"high", and "low". To enable interrupts with "high" and "low" priority, the master interrupt flag (IE7) must also be
setin addition to the individual interrupt enable flags. IE7 controls interrupts with "high" and "low" priority. If INTO
or INT1 are set to "highest" priority by the interrupt priority control flag (IE1, IE0), interrupt processing occurs
regardless of the master interrupt enable flag.

Interrupt sources with a priority ranking from 3 to 9 can be specified as having either "high" or "low" priority by the
interrupt priority control register (IP).

When an interrupt is generated, the interrupt control circuit waits until the currently executing instruction is
completed. Then it stores the program counter (PC) contents in the stack (in RAM) and executes the interrupt
processing routine. This operation uses 2 bytes of stack (RAM) and increments the stack pointer (SP) by +2. After
returning from the interrupt processing routine, the stack pointer is decremented by -2.

By executing a RETI instruction at the end of the interrupt processing routine, execution returns to the

original program.

Interrupt nesting is possible and can be up to 3 levels deep.

During execution of the RETI instruction or an instruction (MOV, ST, etc.) that writes to one of the special function

registers listed below, or while writing to flash memory, interrupt request flag acceptance processing is
not performed.

X RETI instruction X X

‘4_ Interrupt requestflag _,‘
not accepted

Figure 2.80 Cycle Without Interrupt Processing

To use the interrupt function, the following Special Function Registers must be operated.

IE, IP, SP < Caution >, special function registers in the function block that accepts the interrupt

Caution: System program settings are made during a hardware reset. It is not possible to directly manipulate the
SP from an application.

VMD-145

Visual Memory Unit (VMU) Hardware Manual

Circuit Configuration

INTO interrupt request

INT1 interrupt request

INT2 interrupt request BH
>:I> 003
TOL interrupt request Highest priority level interrupt signal
000BH
INT3 interrupt request 0013H
o i: High/low priority level
Base timer interrupt request 001BH interrupt signal
TOH interrupt request | o02H §
5
TiL interrupt request °
j:[) O0zBH s
o
T1H interrupt request 0033H
SI00 interrupt request 0038H E{108H)
SI01 interrupt request | |7|6|5|4|3|2|1|0|
0043H
VMS interrupt request 004BH
Port 3 interrupt request

l—
TTIP(HJQH)

[7]e]s]a]s]2]1]o0]

Figure 2.81 Interrupt Function 1 Block Diagram

Interrupt

VMD-146

Control Functions

Related Registers

Master interrupt enable control register (IE)

For details, refer to the section “Master Interrupt Control Register (IE)” in “External Interrupt Functions”.

Symbol Address R/W Bit 7 Bit 6 Bit b Bit 4 Bit 3 Bit 2 Bit 1 Bit0
IE 108H R/W IE7 - - - - - IE1 IEO
Reset 0 H H H H H 0 0

VMD-147

Visual Memory Unit (VMU) Hardware Manual

Bit name Function
[E7 (bit 7) Master interrupt control (high level, low level)
0: All interrupt requests disabled
1: All interrupt requests enabled
[ET (bit 1) INTO, INT1 interrupt priority control
IEQ (bit 0) IE1 IEQ INT? priority level INTO priority level
0 0 Highest Highest
1 0 Low Highest
X 1 Low Low
Interrupt Priority Control Register (IP)
Symbol Address R/W Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit0
P 109H R/W IP7 IP5 IP4 IP3 IP2 IP1 [P0
Reset 0 0 0 0 0 0 0
Bit name Function
IP7 (bit 7) Port 3 interrupt priority level setting
0: Low
1: High
IP5 (bit 5) SI01 interrupt priority level setting
0: Low
1: High
IP4 (bit 4) SI00 interrupt priority level setting
0: Low
1: High
IP3 (bit 3) T1 interrupt priority level setting
0: Low
1: High
IP2 (bit 2) TOH interrupt priority level setting
17 0: Low
1: High
IP1 (bit 1) INT3 and base timer interrupt priority level setting
0: Low
1: High
IPO (bit 0) INT2 and TOL interrupt priority level setting
0: Low
1: High

VMD-148

Control Functions

IP7 (bit 7): port 3 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the port 3 interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INTO and INTO interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

IP5 (bit 5): SIO1 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the SIO1 interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INTO and INTO interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

IP4 (bit 4): SIOO0 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the SIOO0 interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INTO and INTO interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

IP3 (bit 3): T1 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the T1 interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INTO and INTO interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

IP2 (bit 2): TOH interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the TOH interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INTO and INTO interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

IP1 (bit 1): INT3/base timer interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the INT3/base timer interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INTO and INTO interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".
IPO (bit 0): INT2/TOL interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the INT2/TOL interrupt priority level.

When set to "1", the priority setting for this interrupt is "high", giving the interrupt higher priority than the
INTO and INTO interrupts (IE0 = 1).

When reset to "0", the priority setting for this interrupt is "low".

VMD-149

Visual Memory Unit (VMU) Hardware Manual

Interrupt Priority Ranking

The priority ranking of interrupts is as follows.

Highest level > high level > low level

If multiple interrupts of the same priority level are generated simultaneously, the processing order will be as shown
in Table below. The multiple interrupt control circuit controls overlapping interrupts, allowing nesting of "low" level
O "high" level O "highest" level interrupts.

Highest level

The external interrupts INTO and INT1 can be set to the "highest" priority level. Interrupts with this priority
level are not controlled by the masking enable flag (IE7).

High level

Interrupt sources other than the external interrupts INTO and INT1 that correspond to the bits that are set
in the interrupt priority control register (IP). Interrupts with this priority level are controlled by the masking
enable flag (IE7).

Low level

Interrupt sources INTO or INT1 for which "low" level is set in IE0 or IE1 and that correspond to the bits that
are reset in the interrupt priority control register (IP). Interrupts with this priority level are controlled by the
masking enable flag (IE7).

Highest
INTO INT1 High @~—————— Priority —_—
High 1
N2 | NS Tou T sio0 | sior wMs | Port3
R base timer
Priority IP
INT2 INT3
- . INTO INT1 0L | pasetiner| TOM TI s100 sio1 VMS Port3
0
| IE1,IE0 | e [e | k2 | s | e | s | e | p7 |

Figure 2.82 Interrupt Priority Sequence

For example, to give the SIO1 end interrupt higher priority than the INTO interrupt, set IE0 and IP5 to "1" (IE0 =1,
IP = 00100000B).

VMD-150

Control Functions

INTO INT1
INT2 INT3 ToH T $100 SI01 VMS Port3

1 base timer
1 4
1P INT2 INT3
. INTO INT1 TC | basetimer| TOM T $I00 sio1 VMS Port3
0

| IE1,IEQ | PO | IP1 | P2 | IP3 | P4 | IP5 | IP6 | IP7 |

Figure 2.83 S/07 Interrupt Priority Sequence
To give the SIO1 end interrupt priority between INT2 and INTO, set IEO, IP5, and IPO to "1" (IE0 = 1, IP = 00100001B).

INTO INTI
1
INT2 INT3
x T [pane | ToH T S100 sio1 VMS Port3
P
. 4 4
0 INT2 INT3
INTO INTI 00 |basetimer| TOH T $100 s101 VMS Port3
IE1,IE0 | PO | IP1 | P2 | IP3 | P4 | IP5 | IP6 | IP7 |

Figure 2.84 70L 0 S/I07 00 INTO Priority Change

Multiple interrupt handling

If a "low" priority interrupt is generated while a "high" priority interrupt routine is being executed, the
"low" priority interrupt is accepted after the "high" priority interrupt routine is completed and one
instruction was executed.

If an interrupt routine is being executed and an interrupt of the same priority level is generated, the second
interrupt request is not accepted.

System Clock Generation

The VMU incorporates two oscillator circuits: a RC oscillator and a quartz oscillator. Either of these can be selected
to supply the system clock. This selection is performed through software.

The oscillation frequencies and cycle clock data for these circuits are shown below.

Oscillator Frequency Cycle clock Purpose Characteristics

RC oscillator 879.236KHz 6.284 ms Flash memory access Uses this clock for flash memory
For write operations, set the division ratio to 1/6.

Quartz oscillator | 32.768KHz 183.105 ms Standalone operation clock Processing speed is reduced for preserving
battery power

VMD-151

Visual Memory Unit (VMU) Hardware Manual

Note: Because the RC oscillator consumes more battery power, you should normally use the quartz
oscillator for the system clock. Due to individual tolerances in CR circuits, correct audio frequency
output will not be obtained with PWM. For PWM, use the quartz oscillator. The tolerance range of the
RC oscillator is 600 to 1200 kHz. Applications using the oscillator should be designed for a reference
frequency of 879.236 kHz.

VMD-152

Control Functions

Features and Functions

® Generation of system clock to be used as reference for instructions

e System clock can be selected through software, using either RC oscillator or quartz oscillator.
* Generation of base timer clock

* RC oscillator can be stopped through software.

* Two system clocks are generated: system clock 1 (S1) for circuit block that operates also in HALT mode,
and system clock 2 (S2) for circuit block that stops to operate in HALT mode

To use the system clock, the following Special Function Registers must be operated.
OCR, PCON

VMD-153

Visual Memory Unit (VMU) Hardware Manual

Circuit Configuration

The system clock generator configuration is shown in Fig. below.

Quartz oscillator...®

This quartz oscillator has an oscillation frequency of 32.768 kHz.

RC oscillator...[]

This circuit uses capacitors (C) and resistors (R) to generate a frequency of 879.236 kHz. The tolerance range
is 600 - 1200 kHz.

System clock selector...[]

Bits 4 and 5 of the oscillation control register (OCR) are used to select either the quartz oscillator or the RC
oscillator.

System clock generation circuit...(I

This circuit generates system clock 1 and system clock 2 from the source selected by the system clock
selector. System clock 1 (S1) operates while instructions are executed and during HALT mode. System clock
2 (S2) operates while instructions are executed.

Oscillation control register (OCR)... (

Serves for RC oscillator start/stop, system clock source selection, and cycle clock control.

Power control register (PCON)...)

Sets the standby state (HALT mode).

VMD-154

Control Functions

Block status during reset and HALT

Table 2.30 Operation Status at Standby

XT2

Quartz

oscillator
circuit

00

RC

oscillator

T

System clock
generator

— —

System clock selector

1: Stop operation

HALT signal

[47-T-T7T7T-1 L[=

OCR(10EH) ®

PCON(107H)

Note 1): System clock 1(S1) is used for circuits that operate during instruction execution and in HALT mode.
Note 2): System clock 2 (S2) is used for circuits that operate during instruction execution but not in HALT mode.

Figure 2.85 System Clock Generator Block Diagram

1
system clock 1 Note)

S2
system clock 2 Note2)

Block Condition
Reset HALT
RC oscillator Operates Same as when activated
Quartz oscillator Stops Same as when activated
System clock generator Operates Operates

Caution:

Immediately after a hardware reset, the RC oscillator is automatically selected for the system clock. The

system BIOS then switches to the quartz oscillator.

VMD-155

Visual Memory Unit (VMU) Hardware Manual

Related Registers

Oscillation control register (OCR)

Symbol Address R/W Bit 7 Bit 6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0
OCR 10EH R/W OCR7 OCR5 OCR4 OCR1
Reset 0 H 0 0 H H 0 0
Bit name Function
OCR7 (bit 7) System clock generator control
0: Cycle time source is oscillator frequency x 1/2
1: Cycle time source is oscillator frequency x 1/6
OCRBG (bit 6) System clock select
OCR4 {bit 4 OCRS OCR4 System clock
0 0 RC oscillator
0 1 Prohibited
1 0 Quartz oscillator
1 1 Prohibited
Reset/HALT cancel: RC oscillator
OCR1 (bit 1) RC oscillator select
0: RC oscillator operation start/continue
1: RC oscillator operation stop

OCRY7 (bit 7): system clock generation circuit control

This bit controls whether the clock source for the cycle clock is divided by 12 or by 6.

When set to "1", the cycle clock is 1/6 of the clock source.
When set to "0", the cycle clock is 1/12 of the clock source.
For the VMU, the setting should be as follows.

System clock OCR7
RC oscillator 0CR7=0/1
Quartz oscillator 0CR7=1

VMD-156

Control Functions

Caution: To use the quartz oscillator, be sure to set this bit to "1".
When using the RC oscillator, select the 1/12 division ratio (OCR7 ="0") except when writing to

flash memory.

OCR5, OCR4 (bit 5, 4): system clock select

This bit selects the system clock. During a hardware reset, the system clock is automatically set to the

RC oscillator.

OCRb OCR4 System clock
0 0 RC oscillator
0 1 Prohibited
1 0 Quartz oscillator
1 1 Prohibited
OCR1 (bit 1): RC oscillator control
This bit stops/starts the RC oscillator.
When set to "1", the RC oscillator is stopped.
When reset to "0", the RC oscillator operates.
Caution: Note that negative logic is employed here. "0" means start and "1" means stop.
Power control register (PCON)
Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit 3 Bit 2 Bit 1 Bit0
PCON 107H R/W PCONO
Reset H H H H H H 0 0
Bit name Function
PCONO (bit 0) HALT mode control
0:
1: Set to HALT mode

VMD-157

Visual Memory Unit (VMU) Hardware Manual

PCONO (bit 0): HALT mode control

This bit sets the VMU to the sleep state.

When set to "1", the VMU custom chip goes into HALT mode, causing the VMU to enter the sleep state.
Program execution stops at the address where HALT was execute, and the oscillator maintains its current
state. The system clock 2 (S2) stops.

The HALT mode is canceled by an interrupt. When the HALT mode is canceled, this bit will be
automatically reset.

Directly resetting the bit to "0" does not cause a state change.

Note: In HALT mode, the LCD driver, LCD, timer 0, and timer 1 continue to operate. For details, refer to
section on “Sleep Function”.

VMD-158

Control Functions

System Clock Operation Mode

There are three types of system clock.

RC oscillator

This clock is selected in the cases listed below. The oscillation frequency of the RC oscillator is 879.236 kHz.

Caution:

Due to the characteristics of RC oscillators, there is a wide variation in frequency. The tolerance range
for the VMU is 600 to 1200 kHz.

e Hardware reset

* Power-on (battery replacement)

Quartz oscillator

This oscillator allows implementing a slow processing mode with reduced current consumption, for
long-term backup. The oscillation frequency is 32.678 kHz.

When the quartz oscillator is used for the system clock, the RC oscillator can be stopped, using the
oscillation control register (OCR). This allows a further reduction in current consumption.

The VMU custom chip enters the HALT mode as shown in the state transition diagram of Fig. below.

VMD-159

Visual Memory Unit (VMU) Hardware Manual

RES-=L Reset
RES=H

RC 0SC : Operating PCONO= RC 0SC : Operating
MAIN 0SC : Operating |~ MAIN 0SC : Operating
SUB 0SC : Operating SUB 0SC H Operating
S1 : RC S1 : RC
S2 : Stopped Interrupt S2 : RC

0CR4=0

0CR5=1
RC 0SC : Stopped PCONO= RC 0SC : Stopped

. B ——————— .

MAIN 0SC : Operating MAIN 0SC : Operating
SuUB 0SC : Operating SUB 0SC : Operating
St : SUB S1 : SuB
S2 : Stopped Interrupt S2 : suB

0CR0=1
RC 0SC : Stopped PCONO= RC 0SC : Stopped

D

MAIN 0SC : Stopped MAIN 0SC . Stopped
SuB 0sC : Operating SUB 0SC : Operating
s1 : RC 81 : suB
52 : Stopped Interrupt S2 : SuB

(HALT MODE) C NORMAL MODE)

Figure 2.86 Clock Operation Mode Transition Diagram

RC OSC: RC oscillator SUB: Quartz oscillator frequency
SUB OSC: Quartz oscillator circuit PCONO: power control register bit 0 (HALT
control)
SI: System clock 1 OCRI: Oscillation control register bit 1
52: System clock 2 OCR4: Oscillation control register bit 4
RC: RC oscillator frequency OCR5: Oscillation control register bit 5
Caution: ~ When switching the system clock to the stopped quartz oscillator, a wait period is required to allow the

oscillator to stabilize. For the quartz oscillator in the VMU (32.678 kHz), this wait period is approx. 200 ms.

VMD-160

Control Functions

Sleep Function

The VMU custom chip provides a HALT mode designed to reduce power consumption during program standby
and to delay battery exhaustion. In this mode, the CPU does not execute instructions. The sleep mode of the VMU
makes use of the HALT mode.

VMD-161

Visual Memory Unit (VMU) Hardware Manual

Related Registers

Power control register (PCON)
For details, refer to the section “Power control register (PCON)” in “System Clock Generation”.

0:
1: Set to HALT mode

Symbol Address R/W Bit 7 Bit 6 Bit b Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
PCON 107H R/W PCONO
Reset H H H H H H 0 0
Bit name Function
PCONO (bit 0) HALT mode control

VMD-162

Control Functions

Standby Operation Status

Table 2.31 Block Operation Status in Standby Mode

Item HALT mode

Setting method PCONO=1
Oscillation circuits CF oscillator Operation continues

RC oscillator

Quartz oscillator Operation continues
Internal clock S1 Operation continues

S2 Operation stops
CPU Operation stops
/0 ports Hold data from immediately before HALT mode
RAM Hold data from immediately before HALT mode
Base timer Operation continues
Timer 0 Operation continues
Timer 1 Operation continues

Serial transfer

Operation continues

Interrupt circuits

Operation continues

LCD controller

Operation continues

Remote control circuit

Operation continues

Watchdog timer

Operation continues or stops

Released by

Reset

Accepted interrupt request

Note: If the quartz oscillator is selected for the system clock, stop the RC oscillator through

software (OCR1 =1).

VMD-163

Visual Memory Unit (VMU) Hardware Manual

HALT Mode

The HALT mode allows stopping program execution while keeping the quartz oscillator and RC oscillator
circuits running.

Power consumption can be reduced through intermittent operation of the system by recurringly setting HALT
mode and having it released in response to an interrupt.

Setting HALT mode

HALT mode is set by setting bit 0 of the power control register (PCONO).

Releasing HALT mode

HALT mode can be released in one of two ways: through a hardware reset or through receiving an interrupt
request.

Releasing HALT mode through hardware reset

When a "Low" level signal is input to the pin, HALT mode is released and the CPU enters the reset state.
Returning the pin to "high" level triggers a normal cold start procedure, with the system program executing
the VMU initialization routine.

Releasing HALT mode through interrupt request

When the master interrupt enable flag (IE7) and interrupt request enable flag are both set and an interrupt
request is generated, the HALT mode is canceled. Subsequently, the processing routine corresponding to
the interrupt is called.

If HALT mode was activated in interrupt processing routine A, and the interrupt requested generated while
in HALT mode has the same or a lower priority level than interrupt A, the interrupt is not accepted and
HALT mode will not be canceled.

Caution: e If the external interrupts INTO and INT1 are set to the "highest" priority level, the master interrupt
enable flag has no effect.
* Set the interrupt used to cancel HALT mode to a higher priority level than the interrupt in effect when
the system entered the HALT mode.

Table 2.32 HALT Mode Cancel Interrupt Priority Levels

Interrupt level in HALT mode Interrupt level for HALT mode cancel
Normal level Low, High, or Highest

Low High or Highest

High Highest

Highest (Cancel by interrupt not possible)

Normal level: No interrupt is present.

VMD-164

Control Functions

Hardware Reset Function

The hardware reset function serves for initializing the VMU for example when the batteries are replaced or while
the unit is running.

VMD-165

Visual Memory Unit (VMU) Hardware Manual

External Reset Pin Function

Applying an "L" level signal to the pin for 200 us or more reliably triggers a reset.

Caution: A very narrow "Low" level pulse can also cause a reset.

The configuration of the reset circuit is shown in Fig. below.

A %
RES
[1 & Synchronization »
circuit
r*
777

Figure 2.87 Reset Circuit Block Diagram

VMD-166

Control Functions

Hardware Status During a Reset

When a reset is generated through the pin, the entire hardware is initialized according to the reset signal, which is
synchronized with the system clock.

When a reset occurs, the system clock is switched to the RC oscillator. Therefore the hardware is initialized
immediately after power-on.

During reset, the program counter (PC) is set to 0000H. The special function registers (SFR) are set to the initial
values listed in the Table below.

The contents of RAM, work RAM, stack pointer, and XRAM are maintained.

Caution: The initial values listed below are the values established by the BIOS after a reset.

VMD-167

Visual Memory Unit (VMU) Hardware Manual

Table 2.33 Special Function Register Initial Values

Symbol Address R/W Designation Initial value See
page
RAM 000H-OFFH R/W Data memory XXXXXXXX 43
(bank 0) (retained after a reset)
RAM 000H-OFFH R/W Data memory XXXXXXXX 43
(bank 1) (retained after a reset)
ACC 100H R/W Accumulator 00000000 50
PSW 101H R/W Program status word 00HO0000 52
B 102H R/W B register 00000000 51
C 103H R/W C register 00000000 51
TRL 104H R/W Table reference register lower byte 00000000 54
TRH 105H R/W Table reference register upper byte 00000000 54
SP 106H R/W Stack pointer XXXXXXXX 53
PCON 107H R/W Power control register HHHHHHOO 158
IE 108H R/W Master interrupt enable control register OHHHHHOO 138
P 109H R/W Interrupt priority control register 00000000 151
EXT 10DH R/W External memory control register HHHHO0000
OCR 10EH R/W Oscillation control register 0HOOHHOO 156
TOCNT 110H R/W Timer 0 control register 00000000 67
TOPRR 111H R/W Timer 0 prescaler data 00000000 A
ToL 112H R Timer 0 low 00000000 71
TOLR 113H R/W Timer 0 low reload register 00000000 Al
TOH 114H R Timer 0 high 00000000 72
TOHR 115H R/W Timer 0 high reload register 00000000 72
T1CNT 118H R/W Timer 1 control register 00000000 83
TILC 11AH R/W Timer 1 low compare data 00000000 86
TIL 11BH R Timer 1 low 00000000 85
TILR W Timer 1 low reload data 00000000 85
T1HC 11CH R/W Timer 1 high compare data 00000000 87
THH 11DH R Timer 1 high 00000000 86

VMD-168

Control Functions

TTHR W Timer 1 high reload data 00000000 86
MCR 120H W Mode control register 00000000 127
STAD 122H R/W Start address register 00000000 129
CNR 123H W Character count register HO000000 130
TDR 124H W Time division register HHO00000 130
XBNK 125H R/W Bank address register HHHHHHOO 130
VCCR 127H W LCD contrast control register 00000000 131
SCONO 130H R/W SI00 control register 00H00000 108
SBUFO 131H R/W SI100 buffer 00000000 13
SBR 132H R/W SI0 baud rate generator 00000000 113
SCON1 134H R/W SI01 control register 00000000 1M
SBUF1 135H R/W SI01 buffer 00000000 113
P1 144H R/W Port 1 latch 00000000 58
P1DDR 145H Port 1 data direction register 00000000 58
P1FCR 146H Port 1 function control register 10111111 59
P3DDR 14DH Port 3 data direction register 00000000 62
P3INT 14EH R/W Port 3 interrupt function control register 11111107 62
P7 15CH R Port 7 latch HHHHXXXX 64
I01CR 15DH R/W External interrupt 0, 1 control 00000000 135
123CR 15EH R/W External interrupt 2, 3 control 00000000 137
ISL 15FH R/W Input signal select 11000000 138
VSEL 163H R/W Control register 11111100 143
VRMAD1 164H R/W System address register 1 00000000 144
VRMAD2 165H R/W System address register 2 HHHHHHHO 144
VTRBF 166H R/W Send/receive buffer XXXXXXXX 144
BTCR 17FH R/W Base timer control 01000001 101
RAM (XRAM) | 180H-1FBH R/W LCD display memory XXXXXXXX 126
(Bank 0) (retained after a reset)

RAM (XRAM) | 180H-1FBH R/W

(Bank 1)

RAM (XRAM) | 180H-185H R/W

(Bank 2)

VMD-169

Visual Memory Unit (VMU) Hardware Manual

VMD-170

Sega

Dreamcast

Programs in ROM

The ROM of the VMU contains the following programs. Together, these are called the system BIOS.

FFFFH

EFFFH

EO00H

4000H

0000H

0S program area
4KB

Reserved area

System program area

16 KB

ROM

CHANGE instruction

' ' 01FFH

Figure 2.88 ROM Memory Map

0000H

Application

0S program call

Header

Flash memory Bank 0

VMD-171

Programs in ROM

System Programs

Programs designed for performing VMU file management, clock display, and control functions when connected to
the Dreamcast are called system programs.

These programs are permanently placed in ROM. In addition, the ROM also contains the VMU initialization routine
that is executed when a hardware reset is performed.

VMD-172

Programs in ROM

OS Programs
OS programs perform basic VMU functions such as reading from and writing to flash memory, getting clock data,
checking for the low-voltage condition, etc.

These programs correspond to the BIOS in a conventional computer. The programs can be called by an application.
Because software interrupts cannot be used, headers defined in the upper region of the flash memory are used to

call the programs.

VMD-173

Visual Memory Unit (VMU) Hardware Manual

Headers
The assembler file GHEAD.ASMupplied with the VMU SDK contains the headers.

By using “include” when compiling an application, the headers are placed in the 0000H - 01FFH range of the flash
memory. The size can be changed by changing GHEAD.ASM

The header area defines the interface for switching between a game application and the system application, the
interface for calling an OS program from an application, as well as application-specific interrupt vectors.

Caution: It is not possible to obtain the system BIOS version or VMU hardware revision from an application.

VMD-174

Sega®@'Dreamcast

Memory Space

The system BIOS uses the following memory areas.

RAM

The system BIOS uses the RAM bank 0 for processing. The range from 080H to OFFH of RAM bank 0 is used
as stack area.

RAM bank 0 can generally not be accessed by an application, except for reading the internal clock and the
low-voltage auto detect flag.

The stack area (080H to OFFH of RAM bank 0) can also be accessed by an application, but care must be taken
not to corrupt the stack.

The 256 bytes of RAM bank 1 can be used by an application.

Special function registers (SFR)

The 100H to 17FH range at the top of RAM is designated as special function registers (SFR). This includes
the CPU registers, peripheral device control registers, and other registers.

Work RAM (VTRBF)

When connected to the Dreamcast, the system BIOS uses these 512 bytes as communication buffer. During
standalone operation, the memory is available to the application as RAM. Access is possible only through
SFR in 1-byte units.

XRAM

This is the RAM for the liquid-crystal display. It corresponds to the video RAM in a conventional computer.
XRAM consists of three banks. Banks 0 and 1 can be used by the application to drive the dot-matrix display.
Bank 2 serves for the VMU mode icons and cannot be accessed by the application.

VMD-175

Memory Space

FFFFH
EFFFH
0S
program
E000H area
01FFH
Reserved
area
B ———— =
4000H
System
program
area
0000H 0000H
ROM Work RAM
512 bytes

N

01FFH
01BFH
N\
\

0180H
\
\
Pointer

0000H

XRAM)
Bank 0] Bank 1 |
Upper half Lower half ‘IW‘
For icon use
SFR
Stack area
""""" For
application
For system use
use
Bank O Bank 1
RAM 256 bytes x 2

Figure 2.89 VMU Memory Map

1/

FFFFH| Block 7FH System
management
area
For For
application save
use data
Bank O Bank 1
_ S
0000H LBlock O0OH Block 80H

Flash memory 64 kb x 2

VMD-176

Sega®@'Dreamcast

System BIOS Functions

Applications can call subroutines that are part of OS programs making up the system BIOS. The system BIOS has
the following functions.

System initialization

This is performed when the VMU is reset.

Execution mode selection

This includes game data and application management, editing, application startup and shutdown, time
display and adjustment.

Mode selection is performed with the MODE button and the A button.

Subroutines

Subroutines can be used by applications. The subroutines allow flash memory access and readout of
internal clock data.

1) Flash memory write
2
3

Flash memory read

Flash memory verify

)
)
)
)

4) Clock count-up timer

VMD-177

System BIOS Functions

VMD-178

Sega

Dreamcast

Subroutine Call Procedure

The illustration below shows the operation flow for an application calling a subroutine (part of an OS program),
until the return to the application.

Flash memory space

(Header, user program)

LABEL MNEMONIC
WORLD EXTERNAL
OTHER SIDE SYSBOL os_call
PUBLIC os_call
jmp main
os_int:
change os_call —_
_head_ret:
® @ RET —> Return to main
os-ret:
br_hrad_ret
main:
callf os_int &— Call flow start
Start
jmp main

ROM space

(System program, OS program)

LABEL MNEMONIC
WORLD INTERNAL
PUBLIC os_call
os_call:
callf os_main
change os_ret
0S_main

OTHER SIDE SYSBOL os_ret

-

(0S main program starts here)

A

ret

Figure 2.90 Program Call Flow

VMD-179

Subroutine Call Procedure

Processing Contents of Labels

The purpose and function of labels in subroutines are explained below.

Reference: When reading this section, you should also refer to “GHEAD.ASK supplied with the VMU SDK.

Caution:

In the explanation below, labels are referred to using preliminary names.

Application (flash memory)
main
Application main program

os_int

Subroutine for switching to ROM space processing.

In the example, calling this subroutine will cause the program to move to ROM space processing.
When returning from ROM space, the main program resumes.

This subroutine is provided in the header.

os_ret

Subroutine for returning to the flash memory space.

While processing occurs in ROM space, executing a CHANGE instruction with this label as argument
causes a return to the flash memory. After the return, processing jumps to the interrupt return routine
provided in the header.

System BIOS (ROM)
os_CALL

This is a return routine for calling an OS program and returning to flash memory. It calls a subroutine in an
OS program and returns processing to the flash memory space after completion of the subroutine.

0s_main

This is the main OS program. It performs processing for the provided subroutines.

VMD-180

Subroutine Call Procedure

Interaction Between System BIOS and Application

Assuming that an application in the flash memory is running, the processing flow from calling an OS program until
return is described below. Refer also to the sample flow chart.
1) At the point where the running application wants to use an OS program, it calls the os_int subroutine.
2) Interrupt processing routines which need to jump to an OS program must contain the os_int subroutine.

3) The CHANGE instruction in the os_int subroutine jumps to the OS program call routine in ROM
(os_CALL).

4) The OS program call routine calls the subroutine in the OS main program (os_main).
OS program processing begins at this point.

5) When OS program processing ends, the RET instruction jumps to the next address of the CALL
instruction in the OS program call routine. The OS program call routine always must contain a
CHANGE instruction for returning to the flash memory after the OS program CALL instruction.

6) After returning from the OS program subroutine, the CHANGE instruction moves processing to the
flash memory. The application provides a subroutine (0s_ret) to be called when returning from ROM.

7) This subroutine is called a header. It is supplied as part of the library provided to developers, and must
be placed at a fixed location in the application.

8) (In the current example, the headers os_int and os_ret are used.)

9) From the above return routine, processing returns to the os_int subroutine and then to the main program
(main) through the RET instruction.

Note: CHANGE instruction

The CHANGE instruction is used to move from the flash memory space to the ROM space and vice
versa. Executing the CHANGE instruction causes processing of a program currently running in ROM
(or flash memory) to change to flash memory (or ROM). The program counter is set to the specified label
(or address).

VMD-181

Visual Memory Unit (VMU) Hardware Manual

VMD-182

Sega

Dreamcast

Application Shutdown Procedure
When MODE Button is Pressed

If the MODE button is pressed while an application is running, processing must be interrupted and the system
application mode management screen must be restored immediately.

This section explains the procedure for handing over control from the game application to the system application

Flash memory space

(Header, user program)

LABEL MNEMONIC

main:

WORLD EXTERNAL
OTHER SIDE SYSBOL int_ret:

jmp main

_game_end:

(User program data store)

change game_end

" Monitor MODE button
status When pressed,
jump to _game_end

jmp main

ROM space

(System program, 0S program)

LABEL MNEMONIC

WORLD INTERNAL
PUBLIC int_ret

game_end:

jmp mode_main

mode_main: -

(Mode select screen program)

ret

Figure 2.91 Mode Select Screen Restore Flow

VMD-183

Application Shutdown Procedure When MODE Button is Pressed

Processing Contents of Labels

The purpose and function of labels in subroutines are explained below.

Reference: When reading this section, you should also refer to “GHEAD.ASK supplied with the VMU SDK.

Caution:

In the explanation below, labels are referred to using preliminary names, except for game_end.

Application (flash memory)
main
Application main program

The application must be programmed to jump to the OS program return routine listed below when the
MODE button is pressed.

_game_end

Subroutine for terminating the application and moving processing to the OS program. If data for the
application are to be saved, the code for saving data must be included before jumping to this subroutine.

Caution:

The OS program does not save data.

System BIOS (ROM)
game_end

This subroutine serves as a window for returning to the system BIOS after the application ends. The
subroutine starts the mode selection program.

Caution:

All applications must be designed to speedily CHANGE to game_end when the MODE button

is pressed.

Any data required for returning to the game at a later point must be saved by the application in flash
memory. This must be performed before the CHANGE to game_end. The restore procedure for saved
data must also be handled by the application.

mode_main

This is the mode selection program.

Reference: For details on mode selection, refer to chapter 19 “VMU Mode Selection” in the appendix.

VMD-184

Application Shutdown Procedure When MODE Button is Pressed

Interaction Between System BIOS and Application

Assuming that an application in the flash memory is running, the processing flow for returning to the mode
selection screen is described below. Refer also to the sample flow chart.

1. At the point where the MODE button is pressed while the application is running, processing jumps to the
_game_end subroutine.

The CHANGE instruction in the _game_end subroutine hands processing over to the program in ROM. If data for
the application are to be saved, the code for saving data must be included before executing the CHANGE
instruction in the _game_end subroutine.

Caution: Do not use the port 3 interrupt for detecting a MODE button press. If the port 3 interrupt processing
routine contains a_game_end subroutine, the BIOS does not operate normally.

2. When processing jumps from the application to the _game_end subroutine, the CHANGE instruction in the
_game_end subroutine moves processing to the game_end subroutine in the ROM program.

3. After processing has changed from the flash memory to the game_end subroutine, the mode selection program
is started.

VMD-185

Visual Memory Unit (VMU) Hardware Manual

VMD-186

Sega@'Dreamcast

VMU Initialization

The VMU is automatically initialized in the following cases.

1) Unit is connected to Dreamcast, and Dreamcast is turned ON.
2) Reset switch on VMU is pressed.

3) Batteries are inserted.

The initialization routine includes the following steps.

Clear RAM

The entire contents of RAM (banks 0 and 1) are set to 00H. The contents of XRAM are not changed.

A hardware reset is applied to all registers, and then software initialization is carried out. For information
on initial register values after a hardware reset, refer to section “Reset” in the “Hardware” part of
this manual.

Set system clock and cycle time

The system clock is set to the quartz oscillator. The cycle time is set to 1/6 of the system clock.

Set base timer

The 14-bit base timer mode is selected, and the base timer clock is set to the quartz oscillator.

The base timer interrupt is enabled and counting starts.

Set master interrupt

The master interrupt is enabled.

VMD-187

VMU Initialization

Set LCD driver

The LCD controller is activated, and the LCD clock is set to 1/2 of the clock signal input to the LCD driver.

The display start address is set to 00H in XRAM, and the character count register and time division register
are set.

Then the LCD is set to ON.

Set port 1

All bits of port 1 are set to input. Bit 7 of port 1 is set to audio output.

Caution:

After initialization, bit 7 of port is in input mode. Therefore it must be again set to output mode by
the application.

Bits 5 to 0 of port 1 (VMU serial interface) are set to function as synchronous serial interface.

Set port 3

All bits of port 3 are pulled up and set to input mode. Port 3 interrupt source generation is enabled, and
interrupt request is enabled.

Initialize Maple bus interface circuit

The Maple bus interface circuit is initialized.

Set work RAM

The work RAM is set to be available to applications.

VMD-188

Sega®@'Dreamcast

Subroutine Reference

This section explains the subroutines contained in the system BIOS.

Flash Memory Access Functions

The following subroutines are provided for flash memory access.

Flash memory page data read

Reads 128 bytes of data from the flash memory space.

Flash memory write

Writes 128 bytes of data to the flash memory space.

Flash memory verify

Verifies data written to the flash memory space.

Caution: ~ When performing flash memory access, the application must switch the system clock to the
RC oscillator.

Do not switch the clock within GHEAD.ASM.

VMD-189

Subroutine Reference

Subroutine Use Precautions

When accessing the flash memory space, observe the following precautions.

The VMU incorporates three system clock types that can be used to synchronize instruction execution cycles.

In standalone operation, the quartz oscillator is used, but for flash memory write access, the clock must be switched
to the RC oscillator with the 1/6 division ratio setting before calling the flash memory access subroutine. For flash
read or verify access, the RC oscillator with any division ratio setting can be used.

When switching to the RC oscillator, inhibit all interrupts including the base timer.

After the subroutine is completed, enable all interrupts and switch back to the previously used clock. The proper

timing for clock switching is shown below.

System clock oscillator source Frequency Instruction cycle time
RC oscillator 879.236 kHz 6.284 ms
Quartz oscillator 32.768 kHz 183.105 ms

VMD-190

Subroutine Reference

Flash memory space ROM space

Application Header OS program

Switch to RC oscillator

|
Inhibit all interrupt
|
Call OS call routine ‘
OS call routine start
OS program call -—-} Subroutine execution start
Return from OS program p—)). [Subroutine execution end
‘ OS call routine end

Restore application

Enable interrupt

Switch to quartz oscillator

v

——— RC oscillator

Quartz oscillator

Figure 2.92 Clock Switching Flow for Flash Memory Access

VMD-191

Visual Memory Unit (VMU) Hardware Manual

Flash memory routines

fm_prd_ex(ORG 0120H)
Flash memory page data read

Arguments

Flash memory read start upper address: fmadd_h (RAM bank 1 07EH)
Flash memory read start lower address: fmadd_| (RAM bank 1 07FH)
Flash memory read bank address: fmbank (RAM bank 1 07DH)

Return values

Read data (128 bytes): RAM bank 1 080H to OFFH

Broken registers

When this subroutine is called, the following registers are broken.
ACC, TRL, TRH, r0

Function

Reads one continuous page of data (128 bytes) starting at the specified address in flash memory.

Description

By calling this subroutine, one continuous page of data (128 bytes) can be read from the flash memory. For
using the subroutine, the following settings must be made beforehand.

Caution:

This subroutine does not return error information. Make sure that arguments are specified correctly.
Call this subroutine only when STAD is set to 00H. If called while STAD is set to a value other than 00H,
a part of the screen will be rewritten.

RAM bank settings

1) Set RAM bank to “1” (set bit 1 of PSW to “1”)

Note: For information on the PSW register, refer to section 3.8 “Program Status Word (PSW)” in the
“Hardware” part of this manual.

Set flash memory read start address

2) Set upper address (8 bits): fmadd_h (RAM bank 1 07EH)
3) Set lower address (8 bits): fmadd_| (RAM bank 1 07FH)

VMD-192

Subroutine Reference

Set flash memory read bank

4) Set read flash memory bank to bank 0.
Set RAM bank 1 07DH to 00H.

Caution: If another value than the above is set, normal operation is not assured.

The read data are written to RAM bank 1 080H to 0FFH.

Caution: ~ When making the read settings, observe the following points.

¢ Data spanning two pages cannot be read. The read start address must be set to the start of a page. The

start address of a page can be determined as follows.

Start address value (2 bytes) = 080H x page number (0 to 511)

Because data are read in units of one page, bits 0 - 6 of the lower address must be set to “0”. If set to an
address different from the start address, normal operation is not assured.

* The read data overwrite the original location in RAM.

Note: About pages

The flash memory space is divided into pages of 128 bytes each. The flash memory is managed using
these page units. Because the size of one bank in the flash memory is 64 KB, a bank contains 512 pages.

The operation when fm_prd_ex executes is shown below.

*When set to
fmadd_h = AOh
fmadd_| = 80h (page no. 321)

Flash memory

128 bytes

OFFFFh
RAM 0A100h
OFFh
0A080h
128 bytes
80h Bank 1
00h
0000h

Figure 2.93 Data Transfer With fm_prd_ex

Bank 0

VMD-193

Visual Memory Unit (VMU) Hardware Manual

fm_wrt_ex(ORG 0100H)
Flash memory data write

Arguments

Flash memory write start upper address: fmadd_h (RAM bank 1 07EH)
Flash memory write start lower address: fmadd_| (RAM bank 1 07FH)
Flash memory write bank address: fmbank (RAM bank 1 07DH)
Flash memory write data (128 bytes): RAM bank 1 080H to OFFH

Return values

ACC At normal end, 00H is set in the accumulator. At abnormal end, OFFH is set in the accumulator.

Broken registers

When this subroutine is called, the following registers are broken.
ACC, B, C, TRL, TRH, r0

Function

Writes one continuous page of data (128 bytes) starting at the specified address in flash memory.

Description

By calling this subroutine, one continuous page of data (128 bytes) can be written to the flash memory. For
using the subroutine, the following settings must be made beforehand.

1) Set bit 1 of PSW to “1”, to select RAM bank 1.
2) Store data to write to flash memory in RAM bank 1 080H - OFFH.
3) Set 07DH of RAM bank 1 to 00H, to set write flash memory to bank 0.

Caution: Flash memory bank 1 may not be accessed by applications. Do not write any data to this bank.

4) Write flash memory upper address (8 bits) to 07EH of RAM bank 1, and write lower address (8 bits) to
07FH of RAM bank 1.

Caution: ~ When making the write settings, observe the following points.
¢ Data spanning two pages cannot be written. The write start address must be set to the start of a page.
The start address of a page can be determined as follows.
Start address value (2 bytes) = 080H x page number (0 to 511)
Because data are written in units of one page, bits 0 - 6 of the lower address must be set to “0”. If set to
an address different from the start address, normal operation is not assured.
e Call only when STAD is set to 00H. If called while STAD is set to a value other than 00H, a part of the
screen will be rewritten.
e Switch the system clock to RC oscillator with the 1/6 division ratio setting.

VMD-194

Subroutine Reference

The operation when fm_wrt_ex executes is shown below.

* When set to
fmadd_h = AOh
fmadd_| = 80h (page no. 321)

Flash memory

OFFFFh
RAM 0A100h
OFFh 128 bytes
128 bytes 0A080h Bank 0
80h Bank 1
00h
0000h

Figure 2.94 Data Transfer With fm_wrt_ex

fm_vrf_ex(ORG 0110H)
Flash memory page data verify

Arguments

Flash memory verify start upper address: fmadd_h (RAM bank 1 07EH)
Flash memory verify start lower address: fmadd_| (RAM bank 1 07FH)
Flash memory verify bank address: fmbank (RAM bank 1 07DH)

Flash memory verify data (128 bytes): RAM bank 1 080H - OFFH

Return values

The verify result is set in the accumulator. If there was no mismatch, 00H is set. If there was a mismatch, a
value other than 00H is set.

Broken registers

When this subroutine is called, the following registers are broken.
ACC, TRL, TRH, r0

Function

After writing data to flash memory, this function checks whether the data were written correctly. Use the
function after using fm_wrt_ex to write tot flash memory.

VMD-195

Visual Memory Unit (VMU) Hardware Manual

Description

This subroutine compares the 128 bytes of data specified when calling fm_wrt_ex to the data actually
written to the flash memory.

Caution: Call this subroutine only when STAD is set to 00H. If called while STAD is set to a value other than 00H,
a part of the screen will be rewritten.

This subroutine may therefore only be called immediately after calling the fm_wrt_ex subroutine.

When calling the subroutine, the same arguments as for the fm_wrt_ex subroutine must be supplied. If different
arguments are supplied, data verify will not yield correct results.

After calling the subroutine, 00H is set in the accumulator if all 128 bytes of data were matched. If there was a
mismatch, a value other than 00H is set.

The operation when fm_vrf_ex executes is shown below.

VMD-196

Subroutine Reference

* When set to

fmadd_h = A0
:Ezzjgl(z_s;(page no. 321) Flash memory
B OFFFFh
RAM 0A100h
OFFh
128 bytes Bank 0
0A080h
128 bytes
80h Bank 1
00h
Data content comparison
Data are matched Data are not matched
ACC ACC
00h Value other than 00h
Set 00h in ACC Set arbitrary value

other than 00h in ACC

Figure 2.95 Execution of fm_vrf_ex

VMD-197

Visual Memory Unit (VMU) Hardware Manual

Clock Function

timer_ex
Clock count-up timer

Arguments

None

Return values

Year : year_h
Month : mon_h
Day : day_h
Hour : hour_h
Minute : min_h
Second : sec_h

(RAM bank 0 017HAC18H)
(RAM bank 0 019H)
(RAM bank 0 01AH)
(RAM bank 0 01BH)
(RAM bank 0 01CH)
(RAM bank 0 01DH)

The year data use 2 bytes. The upper byte is stored in 17H and the lower byte in 18H. RAM bank 0 017H is assigned
to year_h . When accessing address 018H, the address for year_h + 1 must be accessed.

Caution: The time data obtained by this subroutine are all in hexadecimal format. They must be converted to
decimal format by the application.

The work area comprises a BCD date area, but this area is not updated by timer_ex

Function

Gets current date and time data and places them in the specified area of RAM bank 0.

Description

This subroutine is a timer/ counter using the base timer interrupt.

Caution: The base timer interrupt uses timer_ex . For using the base timer interrupt from the application, call
the user-side handler immediately after the label timer_ex_exit in GHEAD.ASM
Call this subroutine after generating a base timer interrupt source and jumping to the interrupt vector.
At this time, be sure to reset the base timer interrupt source (BTCR1 = 0).

If the interrupt source is not reset, the clock function will not work properly.

VMD-198

Sega@'Dreamcast

Low Battery Voltage
Auto Detection

An automatic low battery voltage detection function which displays a warning message on the LCD is incorporated
in the system BIOS.

Actions which cause high power consumption such as flash memory data write or data transfer to another VMU

may falsely trigger the warning. Therefore the detection function should be disabled before carrying out
such actions.

Low battery voltage auto detection flag

This flag specifies whether low battery voltage auto detection is performed or not. Applications can
manipulate this flag.

Caution: Be sure to set the low battery voltage auto detection flag to OFFH (off) before having an application
perform one of the following functions. Otherwise the high current consumption caused by these
functions may falsely trigger the low battery voltage auto detection.

e Communication with other VMU via serial interface
 Writing to flash memory

Address

06EH (RAM bank 0) Low battery voltage auto detection flag

When set to 00H, low battery voltage auto detection is carried out. When set to OFFH, low battery voltage
auto detection is not carried out.

Caution: Do not set the flag to values other than 00H or OFFH.

VMD-199

Low Battery Voltage Auto Detection

Operation

The low battery voltage auto detection function monitors the battery voltage. When it falls below a certain
threshold, the function interrupts the currently running program and displays a warning message for 3
seconds on the LCD.

Description

The low battery voltage auto detection function comprises code for both voltage detection and message
display. When the low battery voltage auto detection flag is set to 00H, these functions are carried out
automatically, regardless of the operation status of the VMU. When the low battery voltage auto detection
flag is set to OFFH, all functions related to automatic low battery voltage detection are turned off.

Caution: Programs to save data in flash memory when low voltage is detected should monitor the low voltage
detection flag (bit 1 of port 7) rather than using the low voltage interrupt.
If the low voltage interrupt is used, triggering may occur while writing to flash memory or during serial
communication, although the battery voltage is still sufficient.

Note: For information on the low voltage detection flag, refer to section on “Port 7" in the “Hardware”
part of this manual.

VMD-200

Sega

Dreamcast

List of Defined Variables

The following variables are required for using the OS program BIOS.

Time data variables

Symbol Address (RAM bank) Contents Comment
year 010H (Bank 0) Year (BCD 4 digits) Not updated by timer_ex
mon 012H (Bank 0) Month (BCD 2 digits) Not updated by timer_ex
day 013H (Bank 0) Day (BCD 2 digits) Not updated by timer_ex
hour 014H (Bank 0) Hours (BCD 2 digits) Not updated by timer_ex
min 015H (Bank 0) Minutes (BCD 2 digits) Not updated by timer_ex
sec 016H (Bank 0) Seconds (BCD 2 digits) Not updated by timer_ex
year_h 017H (Bank 0) Year (HEX 4 digits)
mon_h 019H (Bank 0) Month (HEX 2 digits)
day_h 01AH (Bank 0) Day (HEX 2 digits)
hour_h 01BH (Bank 0) Hours (HEX 2 digits)
min_h 01CH (Bank 0) Minutes (HEX 2 digits)
sec_h 01DH (Bank 0) Seconds (HEX 2 digits)
sec_f 01EH (Bank 0) Work area Use prohibited
leaf_f 01FH (Bank 0) Work area Use prohibited

VMD-201

List of Defined Variables

Caution:

The BCD data fields year, mon, day, hour, min, sec are a work area for applications accessing the clock
does not perform BCD conversion, this work area is not updated.

function. Because timer_ex

To perform low-battery checking from the application without using auto detect, check bit 1 of port 7.

Low battery voltage detection variables

Symbol

Address (RAM bank)

Content

None

06EH (Bank 0)

Low battery auto detect flag

00: Auto detect on

FFH: Auto detect off

Flash memory variables

Symbol Address (RAM bank) Content
Fmbank
fmadd_h
fmadd_| 07DH (bank 1)
07EH (bank 1)
07FH (bank 1) Specify flash memory bank

Flash memory address (upper 8 bits)

Flash memory address (lower 8 bit)

VMD-202

Sega@'Dreamcast

Sound Output Method

This section describes the VMU sound output method. The sound output uses timer 1.

Timer 1 Outline

This section describes the timer 1 used for VMU sound output. The timer 1 incorporated in the VMU is a 16-bit timer
with the following four functions.

Mode 0: 8 bit reload timer x 2 channels

Mode 1: 8 bit reload timer + 8 bit pulse generator

Mode 2: 16 bit reload timer

Mode 3: Variable bit length pulse generator (9 to 16 bits)

VMU uses mode 1 for producing sound. For information on use of the other modes, refer to section on “Timer 1
(T1)” in the “Hardware” part of this manual.

Timer 1 Block Configuration

The timer 1 used for VMU sound output has the following block configuration.

Timer 1 low (T1L)... O

This is an 8 bit reload timer which uses the cycle clock or 1/2 the cycle clock as clock.

At T1L overflow, the T1LR data are reloaded, and sent to T1L if TILRUN (T1CNT bit 6) is set to “0”.

Timer 1 low comparator (T1LC)... O

This comparator consists of the 8 bit timer 1 low comparison data register (T1LC) and an 8 bit data comparison
circuit. It serves to compare the T1L and T1LC data.

Timer 1 high (T1H)...O

This is an 8 bit reload timer which uses the cycle clock or the T1L overflow as clock.

At T1H overflow, TIHR data are reloaded, regardless of whether TTHRUN (T1CNT bit 7) is reset.

VMD-203

Sound Output Method

Timer 1 high comparator (T1HC)... O

This comparator consists of the 8 bit timer 1 high comparison data register (TTHC) and an 8 bit data
comparison circuit. It serves to compare the TIH and T1IHC data.

Timer 1 control register (T1CNT)... O

Controls timer 1 mode setting and interrupt control.

EEBTY—

| Comparison data register (T1LC) |‘7
12 ® l
cycle clock | Comparator |7
(=)}
Cycleclock __ [selector [T—] 8-bit counter (T1L) F— ” -
RIVAYTRV— .
I wwms || FH1EE
| Comparison data register (T1LC) i
TILOVF
[mws—sLoz5MH) |
(k)
| LB |
(k)
Loy [T 2| sEvbavrsmH |
[ua—kLozgmHR |+
TILONG
TIHOVF
TILOVF
Lr[els[alse]+[o] [s]s]s]es[2[1]0] [s]s]s[s[a]o]1]o]
TICNT(118h) PIFCR P1DDR
Figure 2.96 Timer 1 Block Diagram
Related Registers
To control timer 1, the following registers must be controlled.
Symbol Address Function
TIL 11BH Timer 1 lower counter register
T1LR 11BH Timer 1 lower reload register
T1LC 11AH Timer 1 lower comparison data register
T1CNT 118H Timer 1 control register
P1 114H Port 1 latch register
P1DDR 145H Port 1 data direction register
P1FCR 146H Port 1 control register
OCR 10EH Oscillation control register

For details on the above registers, refer to the “Hardware” part of this manual.

VMD-204

Sound Output Method

Mode Setting

This section explains how to set timer 1 to the mode required for sound output (mode 1). The following four
registers are required for the setting.

T1CNT (bit 5: TILONG)
P1 (bit7: P17)

PIDDR (bit 7: PI7DDR)
P1FCR (bit 7: P17FCR)

The register values for each mode are shown below. The available cycle clock setting for each mode is also shown.

Mode Clock frequency T1LONG P17FCR P17DDR P17

1 Teye 0 1 1 0

Tcyc in the table indicates the clock cycle.

To use the VMU sound output function, be sure to set the system clock to the quartz oscillator. At other settings,
correct sound output may not be obtained.

The cycle clock is as follows.
System clock 32.768 kHz (Tcyc = 183.105 ms)

For information on setting the system clock, refer to the “Hardware” part of this manual.

Caution: Problems when using other system clock settings
If the sound output function is used while the system clock is set to the RC oscillator, the tolerances of
the RC oscillator will adversely affect the sound output. Be sure to use the quartz oscillator.

VMD-205

Visual Memory Unit (VMU) Hardware Manual

8 Bit Counter Mode

This section explains VMU sound output using the 8 bit counter mode. For information on basic operation, refer to
the “Hardware” part of this manual.

Output Waveform and Parameter Setting

This section describes the waveform of the signal that can be output in 8 bit counter mode and the
available parameters.

8-bit counter value (T1L)

255

[T1LC] setting value

[T1LR] setting value

» Time (t)

Audio output signal

> TILC-T1LR -
-~ 256-T1LR I I:I Buzzer output

Figure 2.97 Output Waveform

VMD-206

Sound Output Method

8 Bit Counter Mode Setting

This section describes sound output in 8 bit counter mode. To use sound output in 8 bit counter mode, make the
following settings.

1 Output waveform setting

Set the parameters (T1LR, T1LC) to obtain the desired waveform. Use equations (1) and (2) shown below
to determine the waveform.

Audio output signal "Low" level pulse width (decimal) = (T1LC setting value ~ T1LR setting value) x
Teyc... (1)

Output signal frequency (decimal) = (256 - T1LR setting value) x Tcyc... (2)
Teyc: cycle clock

For details in output waveform parameter settings, refer to section 15.2.1 “Output Waveform and
Parameter Setting”.

Timer 1 mode setting

Set timer 1 to mode 1. The following four registers are required for mode setting.
T1CNT (bit 5: TILONG)

P1 (bit 7: P17)
P1DDR (bit 7: P17DDR)
P1FCR (bit 7: P17FCR)

The register values for mode 1 are shown below.
Mode TILONG P17FCR P17DDR P17
1 0 1 1 0

Sound start

Timer 1 (lower 8 bit) starts to count, and sound is output. To control timer 1 count start/stop, make the
following setting.

1) Waveform parameter update

Set TICNT bit 4 (ELDT1C)to “1”. If this setting is not made, the waveform parameter set with TILR, TILC
does not become effective.

If the waveform parameter is changed while TICNT bit4 is “1”, the new parameter setting becomes
effective immediately.

2) Timer 1 count start

Set TICNT bit 6 (TILRUN) to “1”.

Sound stop

To stop sound output in 8 bit counter mode, make the following settings.
Set timer 1 (T1L) count stop flag (TICNT bit 6) to “0”.

The waveform parameter can be changed also during sound output (while timer 1 operates). To
continuously output a different frequency, change the output waveform parameter without stopping timer
1. TICNT bit 4 (ELDT1C) should always be “1” in this case.

VMD-207

Visual Memory Unit (VMU) Hardware Manual

Frequency Characteristics
The frequency characteristics of VMU sound output are shown below.

The T1LR value indicates the setting value for the available frequency range. For details on the correlation between
the value of TILR and the output frequency, refer to section 15.2.4 “Output Frequency Table”

VMU frequency response

74

ZZ A\
68 / \
Zi TN

60

4

Volume (dB)

58

56 1

TP T 8 B & & & e o ¥ e
TILR

Figure 2.98 frequency Response Characteristics
Output Frequency Table

The following table shows the frequencies (theoretical values) available with the 32.768 kHz system clock.

Due to buzzer characteristics, not all frequencies can actually be output. Use the recommended frequencies
indicated in the table.

The sound output signal "Low" level pulse width is set to 1/2 (duty cycle 50%) of the output signal cycle.

VMD-208

Sound Output Method

T1LR(hex) | T1LC(hex)| Frequency (Hz)| |T1LR(hex)| T1LC(hex)| Frequency (Hz) T1LR(hex) | T1LC(hex)| Frequency (Hz)| [T1LR(hex)| T1LC(hex)| Frequency (Hz)
00 80 21.346 40 94 28.461 80 A8 42.691 co EO 85.383
01 80 21.429 41 A0 28.610 81 co 43.027 C1 EO 86.738
02 81 21.514 42 A1 28.760 82 C1 43.369 c2 E1 88.137
03 81 21.599 43 A1 28.913 83 C1 43.716 C3 E1 89.582
04 82 21.684 44 A2 29.066 84 Cc2 44.068 C4 E2 91.075
05 82 21.771 45 A2 29.222 85 Cc2 44.427 C5 E2 92.618
06 83 21.858 46 A3 29.379 86 Cc3 44.791 cé E3 94.215
07 83 21.946 47 A3 29.538 87 C3 45.161 Cc7 E3 95.868
08 84 22.034 48 A4 29.698 88 C4 45.537 c8 E4 97.580
09 84 22.123 49 A4 29.861 89 c4 45.920 c9 E4 99.354
0A 85 22.213 4A A5 30.025 8A C5 46.309 CA E5 101.194
oB 85 22.304 4B A5 30.191 8B C5 46.705 cB E5 103.103
oc 86 22.395 4c A6 30.358 8C Cc6 47.108 cC E6 105.086
oD 86 22.488 4D A6 30.528 8D cé6 47.517 CD E6 107.147
OE 87 22.580 4E A7 30.699 8E c7 47.934 CE E7 109.290
OF 87 22.674 4F A7 30.873 8F C7 48.358 CF E7 111.520
10 88 22.769 50 A8 31.048 90 cs 48.790 Do E8 113.843
1M1 88 22.864 51 A8 31.226 91 c8 49.230 D1 E8 116.266
12 89 22.960 52 A9 31.405 92 c9 49.677 D2 E9 118.793
13 89 23.057 53 A9 31.587 93 c9 50.133 D3 E9 121.433
14 8A 23.155 54 AA 31.770 94 CA 50.597 D4 EA 124.193
15 8A 23.253 55 AA 31.956 95 CA 51.070 D5 EA 127.081
16 8B 23.352 56 AB 32.144 96 CB 51.552 D6 EB 130.107
17 8B 23.453 57 AB 32.334 97 cB 52.043 D7 EB 133.280
18 8C 23.554 58 AC 32.527 98 cC 52.543 D8 EC 136.612
19 8C 23.656 59 AC 32.721 99 CcC 53.053 D9 EC 140.115
1A 8D 23.759 5A AD 32.919 9A CD 53.573 DA ED 143.802
1B 8D 23.862 5B AD 33.118 9B CD 54.104 DB ED 147.689
1C 8E 23.967 5C AE 33.320 9C CE 54.645 DC EE 151.791
1D 8E 24.073 5D AE 33.524 9D CE 55.197 DD EE 156.128
1E 8F 24179 5E AF 33.731 9E CF 55.760 DE EF 160.720
1F 8F 24.287 5F AF 33.941 9F CF 56.335 DF EF 165.590
20 90 24.395 60 BO 34.153 A0 DO 56.922 EO FO 170.765
21 90 24.504 61 BO 34.368 A1 Do 57.521 E1 FO 176.274
22 91 24.615 62 B1 34.585 A2 D1 58.133 E2 F1 182.149
23 91 24.726 63 B1 34.806 A3 D1 58.758 =) F1 188.430
24 92 24.839 64 B2 35.029 A4 D2 59.397 E4 F2 195.160
25 92 24.952 65 B2 35.255 A5 D2 60.049 E5 F2 202.388
26 93 25.066 66 B3 35.484 A6 D3 60.716 E6 F3 210.172
27 93 25.182 67 B3 35.716 A7 D3 61.399 E7 F3 218.579
28 94 25.299 68 B4 35.951 A8 D4 62.096 E8 F4 227.687
29 94 25.416 69 B4 36.189 A9 D4 62.810 E9 F4 237.586
2A 95 25.535 6A B5 36.430 AA D5 63.540 EA E5 248.385
2B 95 25.655 6B B5 36.674 AB D5 64.288 EB F5 260.213
2C 96 25.776 6C B6 36.922 AC D6 65.053 EC F6 273.224
2D 96 25.898 6D B6 37.173 AD D6 65.837 ED F6 287.604
2E 97 26.021 6E B7 37.428 AE D7 66.640 EE F7 303.582
2F 97 26.146 6F B7 37.686 AF D7 67.463 EF F7 321.440
30 98 26.272 70 B8 37.948 BO D8 68.306 FO F8 341.530
31 98 26.398 71 B8 38.213 B1 D8 69.171 F1 F8 364.299
32 99 26.527 72 B9 38.482 B2 D9 70.057 F2 F9 390.320
33 99 26.656 73 B9 38.755 B3 D9 70.967 F3 F9 420.345
34 9A 26.787 74 BA 39.032 B4 DA 71.901 F4 FA 455.373
35 9A 26.919 75 BA 39.313 B5 DA 72.860 [FA 496.771
36 9B 27.052 76 BB 39.598 B6 DB 73.844 F6 FB 546.448
37 9B 27.186 77 BB 39.887 B7 DB 74.856 F7 FB 607.165
38 9C 27.322 78 BC 40.180 B8 DC 75.896 F8 FC 683.060
39 9C 27.460 79 BC 40.478 B9 DC 76.965 S FC 780.640
3A 9D 27.598 A BD 40.780 BA DD 78.064 FA FD 910.747
3B 9D 27.738 7B BD 41.086 BB DD 79.195 FB FD 1092.896
3C 9E 27.880 7C BE 41.398 BC DE 80.360 FC FE 1366.120
3D 9E 28.023 7D BE 41.714 BD DE 81.559 FD EE 1821.494
3E 9F 28.167 7E BF 42.034 BE DF 82.795 FE FF 2732.240
3F 9F 28.313 7F BF 42.360 BF DF 84.069 FF FF 5464.481

|:| :Recommended settings

Figure 2.99 Waveform Parameters and Output Frequencies

VMD-209

Visual Memory Unit (VMU) Hardware Manual

VMD-210

Sega@'Dreamcast

Sample Program

Sample Program

(Start)

Initialize timer 1

Set audio output signal

Set signal frequency
Set "L" level width

Set timer 1

Timer 1 operation start

(Audio output)

Change audio output
signal setting

(Change "L" level width)

A

Stop audio output

nmov #A3h, ocr ; Set system clock to 32 kHz
; Set clock frequency division ratio to 1/6
nov #000h, T1LR ; TILR=0 - 256 -0 =256
nov #080h, TiLC ; TILC =128 - 256 - 128 = 128
; "L" level pulse width: 128 Tcyc
; Audio signal frequency: 256 Tcyc
nov #80h, P1FCR ; Set P17 to audio signal output mode
clrl P1, 7 ; Set audio output port
nov #80h, P1DDR ; Set P17 to output
nmov #0D4h, T1CNT ; Change waveform parameter
; Start count (audio output starts)
Output —
waveform
> 128 x Teyc |
4 256 x Tcyc —>1
nov #040h, TiLC ; TILC = 64 - 256 - 64 = 192
; "L" level pulse width: 192 Tcyc
; Audio signal frequency: 256 Tcyc
Output —
waveform
~<— 192 x Tcyc —>
<———— 256 x Teyc ——>
nov #000h, T1CNT ; Prohibit waveform parameter update

; End count (audio output ends)

Figure 2.100 Flow Chart and Program

VMD-212

Sega@'Dreamcast

Variable Bit Length
Pulse Generator

This section provides additional information about the equation shown in “Mode 3: Variable bit length pulse
generator (9 to 16 bits)” of section 4.3 “Timer 1 (T1)” in the “Hardware” part of this manual.

¢ Large interval P cycle Tp
Tp = 2[BIT] x Ttc
e Total "L" level pulse width <sigma>TL of large interval P
STL = (2[BIT] x TILC]/256 + [T1HC]) x Ttc
e TI1HC, T1LC are decimal.
e [T1HC] is the effective number of bits.

[BIT] is the bit length to be set. The number of small intervals T in the large interval P is determined by the
bit length. It is set by the timer 1 high reload register (TTHR) and timer 1 low reload register (T1LR). Set the
T1LR to 00H. For a 9-bit pulse generator, the setting is [BIT] = 9, large interval P cycle Tp =29 x Ttc = 512
Ttc. Since the small interval T is 256 Ttc (Ttc: pulse signal clock cycle), T is repeated 2 times in the large

interval P.

VMD-213

Variable Bit Length Pulse Generator

Table 2.34
Bit length Small interval T Pulse generator bit "L" level pulse width
repeat count length setting (binary) | setting (binary)
T1HR value T1LR value T1HR value (upper T1LR value (lower
bits) bits)

16 256 0000 0000 0000 0000 XXXX XXXX XXXX XXXX
15 238 1000 0000 0000 0000 XXXX XXXX XXXX XXX0
14 64 1100 0000 0000 0000 XXXX XXXX XXXX XX00
13 32 1110 0000 0000 0000 XXXX XXXX XXXX X000
12 16 1111 0000 0000 0000 XXXX XXXX XXXX 0000
I 8 1111 1000 0000 0000 XXXX XXXX XXX0 0000
10 4 11111100 0000 0000 XXXX XXXX XX00 0000
9 2 11111110 0000 0000 XXXX XXXX X000 0000

(X: 0 or 1) indicates effective bits

[T1LR] specifies the timer 1 low comparison data register (T1LC) value. It sets the "Low" level pulse width common
to all small intervals. If [TILC] = 3, a "Low" level pulse of 3 Ttc is applied to all small intervals, and the "Low" level
pulse width of the large interval is 6 Ttc (if [TIHC] = 0).

9 bits
10 bits
11 bits
12 bits

16 bits

1

128

64

Small interval T 256 Ttc

e

Small
interval 256

Small

-

-—

‘L" level width 3 Ttc

Large interval P

2 interval 256

401 4 2 4 intorv 256

6 2 8 4 8 1 8 4 8
128 32 128 64 128 16 128 64 128

2 8 4 8

32 .. 32 128 32

Figure 2.101 "L" Level Width for T1LC =3

il

Small
interval 256

128 64 128

Small
interval 256

VMD-214

Variable Bit Length Pulse Generator

[T1HC] specifies the effective value of the timer 1 high comparison data register (TTHC), determining the number
of "Low" level pulses to be added in the large interval P.

The position of the small intervals to which "Low" level pulses are added by [TIHC] is shown in the illustration
below. If [TIHC] =1, a "Low" level pulse of 1 Ttc is added to the intervals marked “1”. If [TIHC] = 6, a "Low" level
pulse of 1 Ttc is added to the intervals marked “2” and “4”.

In the above example, [T2HC] =0 applies. If [T2HC] =1, the situation is as follows, with the "Low" level pulse width
in the large interval P being 7 Ttc. For a 9-bit pulse generator, the effective bit is 1.

Small interval T 256 Ttc

‘L" level width 4 Ttc "L" level width 3 Tte

Large interval P

Figure 2.102 'L" Level Width (7 Ttc) for TIHC = 1
Next, consider the 11-bit pulse generator.

[BIT] =11, large interval P cycle TP =211 x Ttc = 2048 Ttc. Since the small interval T is 256 Ttc (Ttc: pulse signal clock
cycle), T is repeated 8 times in the large interval P.

Fig. 17-3 shows the change in output waveform caused by TIHC when T1LC is constant.
For [T1ILC] =10 (0AH), [TIHC] = 0, a "Low" level pulse of 10 Ttc is output for all small intervals.

For [T1HC] = 3, three small intervals with a "Low" level pulse width of 11 Ttc will be generated in the large interval,
as shown by (B). For [TTHC] = 4, four small intervals with a "Low" level pulse width of 11 Ttc will be generated in
the large interval, as shown by (C). For [TIHC] =5, five small intervals with a "Low" level pulse width of 11 Ttc will
be generated in the large interval, as shown by (D).

VMD-215

Visual Memory Unit (VMU) Hardware Manual

Large interval

Small interval T = 256 Ttc
TILC=10 :

[TIHC] =0 ' —
Case (A) J

—_ - — -
10Ttc 10Ttc
TILC=10 _
[TIHC] =3 J
Case (B) L | L | L | L | L] L] L] L |
P -~ — - — - — - —p - — - —p - — -
10Ttc MTtc 10Ttc MTtc 10Ttc 11Ttc 10Ttc 10Ttc
TILC=10

[T1HC] =4
Case (C) J

1Ttc 10Ttc 1Tte 10Ttc 11Ttc 10Tt MTte 10Tt
TILC=10
[TTHC] =5 _
Case (D) J J J

MTte 10Ttc NTte MTtc 11Ttc 10Ttc 1MTtc 10Ttc

Figure 2.103 T7HC Value and 11 Ttc "L" Level Pulse Count

VMD-216

Sega@'Dreamcast

Symbol Table

Caution: The initial values are the values established by the BIOS after a reset.

Symbol Address R/W Designation Default value See page
RAM 000H-OFFH R/W Data memory XXXXXXXX (stored at reset) 43
(bank 0)

RAM 000H-OFFH R/W Data memory XXXXXXXX (stored at reset) 43
(bank 1)

ACC 100H R/W Accumulator 00000000 50
PSW 101H R/W Program status word 00H00000 52
B 102H R/W B register 00000000 51
C 103H R/W C register 00000000 51
TRL 104H R/W Table reference register lower byte 00000000 54
TRH 105H R/W Table reference register upper byte 00000000 54
SP 106H R/W Stack pointer XXXXXXXX 53
PCON 107H R/W Power control register HHHHHHOO 158
IE 108H R/W Master interrupt enable control register OHHHHHOO 138
P 109H R/W Interrupt priority control register 00000000 151
EXT 10DH R/W External memory control register HHHHO000 _
0CR 10EH R/W Oscillation control register OHOOHHO0 156
TOCNT 110H R/W Timer 0 control register 00000000 67
TOPRR 111H R/W Timer 0 prescaler data 00000000 Al

VMD-217

Symbol Table

ToL 112H R Timer 0 low 00000000 7
TOLR 113H R/W Timer 0 low reload data 00000000 71
TOH 114H R Timer 0 high 00000000 72
TOHR 115H R/W Timer 0 high reload data 00000000 72
T1CNT 118H R/W Timer 1 control register 00000000 83
T1LC 11AH R/W Timer 1 low comparison data 00000000 86
TIL 11BH R Timer 1 low 00000000 85
TILR W Timer 1 low reload data 00000000 85
T1HC 11CH R/W Timer 1 high comparison data 00000000 87
THH 11DH R Timer 1 high 00000000 86
T1HR W Timer 1 high reload data 00000000 86
MCR 120H Mode control register 00000000 127
STAD 122H R/W Start address register 00000000 129
CNR 123H W Character count register H0000000 130
TDR 124H W Time division register HH000000 130
XBNK 125H R/W Bank address register HHHHHHOO 130
VCCR 127H W LCD contrast control register 00000000 131
SCONO 130H R/W SI00 control register 00H00000 108
SBUF0 131H R/W S100 buffer 00000000 113
SBR 132H R/W SI00 baud rate generator 00000000 13
SCON1 134H R/W SI01 control register 00000000 m
SBUF1 135H R/W SI01 buffer 00000000 113
P1 144H R/W Port 1 latch 00000000 58
P1DDR 145H W Port 1 data direction register 00000000 58
P1FCR 146H Port 1 function control register 10111111 59
P3DDR 14DH W Port 3 data direction register 00000000 62
P3INT 14EH R/W Port 3 interrupt function control register 11111101 62
P7 15CH R Port 7 latch HHHHXXXX 64
I01CR 15DH R/W External interrupt 0, 1 control 00000000 135
123CR 15EH R/W External interrupt 2, 3 control 00000000 137

VMD-218

Symbol Table

ISL 15FH R/W Input signal select 11000000 138
VSEL 163H R/W Control register 11111100 143
VRMAD1 164H R/W System address register 1 00000000 144
VRMAD2 165H R/W System address register 2 HHHHHHHO 144
VTRBF 166H R/W Send/receive buffer XXXXXXXX 144
BTCR 17FH R/W Base timer control 01000001 101
RAM 180H-1FBH R/W LCD memory XXXXXXXX (stored at reset) 126
(XRAM)

(Bank 0)

RAM 180H-1FBH R/W

(XRAM)

(Bank 1)

RAM 180H-185H R/W

(XRAM)

(Bank 2)

VMD-219

Visual Memory Unit (VMU) Hardware Manual

VMD-220

Dreamcast

Sega

VMU Mode Selection

The operation modes available for the VMU and the selection principles are shown in the illustration below.

[Reset or power-on j

@ I:> MODE button pushed
Time data
M% A button pushed

adjustment mode

@ OO0

@ OO0

@ OO0

e XA Mode selection screen
RS G
File mode Game mode Clock mode i
select select select '

File mode Game mode Clock mode

Figure 2.108 Mode Select Transition Diagram

Mode selection screen

The mode selection screen serves to select and execute one of the three modes of the VMU.

With each push of the MODE button, the mode is switched. During selection, the corresponding LCD icon
flashes. Pressing the A button then executes the selected mode.

VMD-221

VMU Mode Selection

File mode

This mode serves for managing and editing game data and applications stored on the VMU.

While the file mode is active, pressing the MODE button switches to the mode selection screen.

Game mode

This mode serves for running an application transferred to the VMU.

The application must be programmed to restore the mode selection screen when the MODE button
is pressed.

Caution:

The return to the mode selection screen from the game mode is not supported by the BIOS. It must be
incorporated in the application.

Clock mode

In this mode, the current date and time are shown.

While the clock mode is active, pressing the MODE button switches to the mode selection screen. Keeping
the A button depressed while pressing a direction key activates the time set mode.

VMD-222

Sega@'Dreamcast

Calculation of Battery Life

Because the VMU incorporates two system clocks with different current consumption, battery life will differ with
different applications. Another important factor that influences battery life is whether a program is designed only
for standalone operation or for use in conjunction with another VMU.

The instruction manual of the VMU therefore contains only the specification “With new lithium batteries, the built-
in clock will operate continuously for about 130 days if only the OS is used.”

This section contains information about how to calculate expected battery life based on the source code of an
application. Developers should use these data to determine expected battery life, and this information should be
conveyed to the user. Since the price of a lithium battery of the type used in the VMU is approximately 280 Japanese
yen (as of November 1998 in Japan), each replacement will cost the user about 560 yen for the two batteries.
Programs should therefore be designed so as to consume as little power as possible.

Methods for Enhancing Battery Life

The VMU incorporates two system clocks, an RC oscillator (879.236 kHz; tolerance range 600 to 1200 kHz), and a
quartz oscillator (32.768 kHz).

The RC oscillator increases processing speed compared to the quartz oscillator, but it also consumes more power.
An important consideration when programming an application is therefore how to use the RC oscillator as little as
possible without impairing playability.

Writing to XRAM or flash memory always requires use of the RC oscillator, which will increase the RC oscillator
load. When two VMU units are connected for serial transfer, the load will also increase. Depending on the circuit
configuration, not only the transfer but also the connection process itself can consume considerable power.

With regard to power consumption, take the following points into account when coding an application.

* Use the RC oscillator as little as possible.

e Avoid frequent writing accesses to flash memory.

* Keep communication sessions short.

¢ Clearly specify the connect/disconnect timing for communication applications.
¢ Do not redraw the LCD frequently.

VMD-223

Calculation of Battery Life

Oscillator Circuit and Current Consumption

The following table shows the current consumption of the two oscillator circuits.

Oscillator circuit Clock frequency Current consumption
RC oscillator 879.236 kHz 2.600 mA
Quartz oscillator 32.768 kHz 0.610 mA

Caution: An RC oscillator inherently is subject to frequency tolerances. The oscillator used in the VMU has a
tolerance range of 600 - 1200 kHz. Consequently, there will also be differences in current consumption.
The battery life calculations in this section assume a frequency of 1000 kHz.
The tolerance of the quartz oscillator is 50 ppm - 30 ppm from the center frequency of 32.768 kHz.

When using the RC oscillator, select a cycle time of 1/12 the system clock, except when writing to the flash memory.

Oscillation Control Register

The oscillation control register (OCR) serves for selecting the oscillator circuit, start/stop control, and setting the
system clock division ratio. By effectively managing these settings, battery life can be extended.

System Clock Division Ratio Setting

The OCR?7 bit serves for setting the cycle time to 1/12 or 1/6 of the system clock.

When set to "1", the cycle time is 1/12 of the system clock. For drawing the LCD image, use the RC oscillator with
the 1/12 setting.

When reset to "0", the cycle time is 1/6 of the system clock. At this setting, current consumption is about 1.2 times
higher than at the 1/12 setting. For writing to the flash memory, use the RC oscillator with the 1/6 setting.

Division ratio Quartz oscillator cycle time RC oscillator cycle time
1/12 (OCR7 = 0) 366.210 ms 12.568 ms
1/6 (OCR7 =1) 183.105 ms 6.284 ms

Oscillator Circuit Selection

The OCR5 and OCR4 bits serve for selecting the oscillator circuit.
When set to OCR5 = 0, OCR4 = 0, the RC oscillator is used for the system clock.
When set to OCR5 = 1, OCR4 = 0, the quartz oscillator is used for the system clock.

Caution: OCR5 and OCR4 only select the oscillator circuit to be used for the system clock. To reduce power
consumption, it is also necessary to perform start/stop control of the RC oscillator.

When switching the system clock to the stopped oscillator circuit, insert a wait of at least 300 microseconds.

VMD-224

Calculation of Battery Life

Oscillator Circuit Start/Stop

The OCRI bit serves for starting and stopping the RC oscillator.
When set to "1", the RC oscillator is stopped.
When reset to "0", the RC oscillator starts or continues to operate.

The RC oscillator should be stopped while using the quartz oscillator. When the RC oscillator operates, current
consumption is about 1.1 times higher.

Caution: The quartz oscillator is used by the clock and therefore should not be stopped.

Calculating Battery Life

Use the “Battery Life Calculation Chart” at the end of this section to calculate expected battery life, as follows.

The lithium battery (CR2032) used in the VMU has a capacity of 210 mAh. 82% (174 mAh) of this can be used by
the VMU.

Before performing the calculation, the source code of the application under development must be available. Main
processing parts should be extracted as model programs.

Calculate total number of instruction cycles where quartz oscillator is operating
Enter this value at position A in the chart.
Calculate total number of instruction cycles where RC oscillator is operating

Enter this value at position B in the chart.

Reference: For information on instruction cycles used by the various instructions, refer to the “VMU
Programmer's Guide”.

Calculating Continuous Operating Time

Calculate division ratio

Calculate RC oscillator operation time at 1/12 ratio setting (OCR7 = 0) and 1/6 setting (OCR7 =1)

Enter these values at positions C and D in the chart.

Calculate total operation time of quartz oscillator

There are two C positions in the chart. Add up the two values, multiply by 30.5 ms, and enter the result at
position E in the chart.

Calculate total operation time of RC oscillator

There are two D positions in the chart. Add up the two values, multiply by 1 ms, and enter the result at
position F in the chart.

VMD-225

Visual Memory Unit (VMU) Hardware Manual

Calculate average current consumption of quartz oscillator

Multiply the value in E by 0.610 mA, and enter the result at position G in the chart.

Calculate average current consumption of RC oscillator

Multiply the value in F by 2.600 mA, and enter the result at position H in the chart.

Calculate combined average current consumption of quartz oscillator and RC oscillator

Calculate (G + H) [(E + F), and enter the result at position I in the chart.
Calculate battery life (hours) from effective battery capacity (190 mA)
174 mAh [I yields battery life J (hours).

Provide a 10% safety margin.

Possible factors influencing the actual battery life are sub-processing cycles, flash memory write access, load
during data transfer, temperature influences, etc.

J x 0.9 = K (battery life in hours, with margin)

This value can be included in product documentation. It should be defined as the expected life of one set of
batteries for continuous operation of the software.

Calculating Battery Life in Days

The following steps show how to calculate expected battery life in days, assuming a certain number of hours of use
every day, and assuming that the unit is in sleep mode (0.060 mA) at other times.

Calculate current consumption during play hours

Calculate I x number of play hours per day L (hours), and enter the result at position M in the chart.
Calculate daily current consumption in sleep mode

Calculate 0.060 mA x (24 hours - L), and enter the result at position N in the chart.

Calculate daily average current consumption

Calculate (M + N) [1 24, and enter the result at position O in the chart.

Calculate effective battery life in days

Calculate (174 [24) [1 O, and enter the result at position O in the chart.

Provide a 10% safety margin.

P x 0.9 = Q (battery life in days, with margin)

This value can be included in product documentation. It should be defined as the expected life of one set of
batteries when using the software for n hours per day.

VMD-226

Calculation of Battery Life

Select model program that is used frequently during play

Provide source code of model program

Total number of instruction cycles in commands that use the quartz oscillator = ‘ ‘ A
Total number of instruction cycles in commands that use the RC oscillator = ‘ ‘ B
Quartz oscillator active and 0CR7 =0 Ax12 = ‘ ‘ C
Quartz oscillator active and OCR7 =1 Ax6 = ‘ ‘ C
RC oscillator active and OCR7 =0 Bx12 = ‘ ‘ D
RC oscillator active and OCR7 =1 Bx6 = ‘ ‘ D
—— C x 305 109 = | | E
D x1x10° = | | F
—— Ex 0610 = | | 6
— F x 2.600 = \ \ H
(G+H)=(E+F) - | N
174+1 = | |y
Jx09 = | |
The expected life of one set of batteries
when operating the software continuously is K ‘ hours.
Expressing battery life in days
I x Number of play hours per day L ‘ = ‘ ‘ M
0.060 x Number of non-play hours per day = ‘ ‘ N
(M + N)+ 24 = | | o
(174+24)+ 0 = | P
PX09 = | !
The expected life of one set of batteries when operating
the software for L hours per day is ‘ Q days.

Figure 2.105

VMD-227

Visual Memory Unit (VMU) Hardware Manual

VMD-228

Sega@'Dreamcast

Serial Communication
Precautions

This chapter describes points to be observed regarding serial communication between two connected VMU units.
Techniques for ensuring proper communication are also explained.

Serial Communication Timing Chart

A timing chart for connecting two VMU units and performing serial communication is shown below.

Correct sequence diagram Data

overrun
Send wait time

Sending Sending \
Send n 1byte 1 byte

Receive Data receive
/ wait
Base timer
interrupt processing
etc.
Receive processing time
Receive Base timer

interrupt interrupt etc

When data are sent while the receive side is in the receive wait condition, the data will be received correctly.
Otherwise, data overrun may occur, as shown in the next illustration.

Data overrun diagram
Send wait time

Sending Sending '\
Send 1 byte 1 byte
Receive Data receive Data receive wait
I iwait :

Receive processing time

Receive interrupt Receive interrupt
When the send wait time is longer than the receive processing time, data transfer will be carried out correctly.

However, the base timer interrupt is generated also during receive processing, and the processing time will be
longer than the actual time required for all receive processing handler steps.

VMD-229

Serial Communication Precautions

Measures to Ensure Problem-Free Serial Transfer

The following measures for ensuring smooth serial transfer are possible.

1) Mask all interrupts except those needed for serial transfer.
2) Give highest priority to receive interrupt.
3) Make send wait time longer than sum of receive wait time and time required for other processing steps.

Method (1) will result in a slow-down of the built-in clock of the VMU, because the clock uses the base timer
interrupt, and interrupts cannot be counted while masking is active.

If method (2) were adopted, the receive interrupt handler located in the flash memory space would not be called,
because the base timer interrupt handler (clock processing routine) is located in the ROM space.

When a base timer interrupt is generated, the CHANGE instruction causes the CPU to start program fetch from
ROM. When a receive interrupt occurs while the base timer interrupt of the ROM BIOS is being processed, the CPU
references the interrupt table (equivalent address) in the ROM space and jumps to that address. Because the CPU
is carrying out ROM fetch, jumping to the appropriate receive interrupt handler is not possible. Therefore method
(2) is not suitable and cannot be used.

For method (3), the processing time required for all interrupts with higher priority than the receive interrupt is
calculated and added to the receive processing time, and the result is taken as the send wait time. This ensures
correct data transfer but increases the time required for sending.

The decision of whether to adopt method (1) or (3) must be made by the application designer, while taking into
account the advantages and disadvantages of either approach. These are described in more detail below.

Mask All Interrupts

When all interrupts except those needed for serial transfer are masked, the clock which uses the base timer interrupt
will be slowed down. But compared to method (3), method (1) will result in higher transfer speed and simplified
programming logic.

For transfer of only a few bytes, the clock slow-down will be within the tolerance specifications. But for frequent
data transfer or transfer of a larger amount of data, method (3) should be adopted.

The send wait time is calculated as follows.

1) Count the total number of steps required for receive processing.

In addition to the number of steps in the interrupt processing handler, also include the steps immediately before
and immediately after the interrupt.

2) Check the system clock and division ratio used during execution of these steps.
3) Calculate the send wait time from the total number of steps, system clock, and division ratio.

4) Incorporate the wait time calculated in (3) into the NOP or similar for send side processing.

VMD-230

Serial Communication Precautions

Set Maximum Send Wait Time

Compared to masking all interrupts, this method results in a considerable decrease of transfer speed. When coding
an application using this method, the send wait time calculation and priority assignment must be carried out with
care. The advantage of this method is that there will be no clock slow-down.

For calculating the send wait time, it is assumed that all interrupts with higher priority than the receive interrupt
have been generated. The processing time required for these is added to the receive processing time, and the result
is taken as the send wait time.

Note: Because the port 3 interrupt is a level interrupt, it will be generated continuously for as long as the
user presses a button. If this happens during a transfer, data overrun may occur regardless of how long
the send wait time is set.

For checking the button press status during a serial transfer, inhibit the port 3 interrupt and use timer 0 or other
means for monitoring port 3 latch data.

1) Check whether there is an interrupt with equal priority to the receive interrupt. If there is such an
interrupt, set the interrupt to a higher or lower priority than the receive interrupt.

2) Count the total number of steps required for receive processing. In addition to the number of steps in
the interrupt processing handler, also include the steps immediately before and immediately after
the interrupt.

3) Check the system clock and division ratio used during execution of these steps.

4) Calculate the processing time from the total number of steps, the system clock and division ratio.
5) Pick up interrupts with higher priority than the receive interrupt, except the base timer interrupt.
6) Count the total number of steps for the interrupt handlers of these interrupts.

7) Calculate the processing time for each handler, according to the method of steps (2) to (4).

8) Calculate the base timer interrupt processing time. Because the base timer interrupt handler is processed
within the BIOS, the number of steps can be assumed as shown below. These figures apply only if
GHEAD.ASMvas not changed. If GHEAD.ASMvas changed, count the actual number of steps.

Shortest case

Second count processing only
5 steps (until CHANGE instruction in GHEAD.ASM)
+ 48 steps (in BIOS)
+ 3 steps (until return to user program in GHEAD.ASM)
Total 56 steps

VMD-231

Visual Memory Unit (VMU) Hardware Manual

Longest case

Year increment processing necessary
5 steps (until CHANGE instruction in GHEAD.ASM)
+ 145 steps (in BIOS)
+ 3 steps (until return to user program in GHEAD.ASM)
Total 153 steps

Caution: Because the longest case shown above will occur only once per year, it is not necessary to always
provide for this number of steps.
The system clock and division ratio are derived from the settings established by the application.

9) Calculate the base timer interrupt processing time from the system clock and division ratio.
10) Add up the receive interrupt handler processing time and the time required for all calculated interrupts.

11) Incorporate the wait time calculated in (10) into the NOP or similar for send side processing.

VMD-232

Sega®@'Dreamcast

Visual Memory Unit (VMU)
Programing Manual

Sega®@'Dreamcast

Table of Contents

Y 1 VMC-1
Executing the SEtup PIOGTAINc.c.oveuieuiciieiicinicinecteeete ettt ettt neaessae VMC-1
Post-Installation OVEIVIEWccciiiiiiiiiiiiiiic s VMC-7
Setting Environment Variables i VMC-9
Environment Variables for the Development TOOIScccciueiiueiieiniuernieinieineeieeistesseesessesesesesesessesessesesssaes VMC-9

Environment Variable SEtHNGSccccoeiiiiiiiiiiiiiiccceeee e VMC-10
Specifying Filesfor Assembly.................ccoiiiii i VMC-11
Specifying File NAMESccooiiiiiiie e VMC-11
Specifying Parameters on the Command LINeccoccurieuricinicunicinicieicieeeeeeieseeesseeessesessesessssesessesessesessesens VMC-12
Specifying Parameters at the Promptsccccccoviiiiiiiriiiiiicccc s VMC-13
Option Switches. ... i e VMC-15
Environment Variables and Reserved Word File VMC-17
Environment Variables ... VMC-18
Reserved WOrd File ... VMC-19
ErrOrS .o VMC-21
WAATTINES ..o s VMC-22
INON-Fatal BITOTScoviiiiiiiiiiiii bbbt VMC-25

N =Y B 80 o) TSRS VMC-31

ListingFormat. i i i i i i ettt VMC-35

Specifying Files forLinking................. ..o VMC-39
Specifying File INAIMESccciiiiiiiiiiiiiiiccc e VMC—40
Specifying Parameters on the Command LiNecccoieieiiiiiiniriniiniiccicicieeeieessieseeesessee e VMC-41
Specifying Parameters at the PTOMPLScccocueiiiiiiiiciiciciieitci ettt saeeees VMC-42
Files Referenced DUring LINKINg ..o sessesse et ssesaes VMC-44
Option Switches. ... it e e VMC-45
Object Alignment........ot i i VMC-49
A OPLIOTL oottt VMC-50
“A F OPHIONS oot a st bea st et aa VMC-51
“A mO OPLIONS oottt s VMC-52
“A SR OPHIONS .ot b et bsa et aa VMC-53
ErTOrS . e VMC-55
Fatal EITOTScooviiiiiiiiicc bbb VMC-55
INON-Fatal BITOTS ..o VMC-56
Startingthe Program. ... i VMC-57
Specifying File INAIMEScccciiiiiiiiiiiiicce e VMC-57
Specifying Parameters on the Command LiNecccocureeinicinieinicinieinieeicieeieseiessesesseeessesessesesessesessesessesens VMC-58

OPHIONL bbb bbb VMC-59

Examples of Command Line EXeCUIONccccvviiiiiiniiiiiniiiiiiii s VMC-59
Operation With the PrOmMPESccoiciiiiiiiiiiicice ettt VMC-60

Prompt Line EXtENSIONcciiiiiiiiiiiiiiiiicc e VMC-60

Default RESPONSES ... VMC-60
Error Messages ..ottt i i i i e VMC-61
Cross-Reference...............ccoiiiiii i VMC-63
Startingthe Program.o i i e VMC-65
SPecifying File INAMESc.ccceuiiiiiiiuiiiiieiecceieieeeetetete ettt ettt VMC-66
SPecifying Parametersccccccuiiiiiiiiiiiiiiiiiiceceee e VMC-67
OPHION SPECIICALIONcvvuiiiieiiieieieieieiceeeiete ettt et VMC-68
Error Messages ...t i i i i e e et VMC-69

=N = B S o) o TSR VMC-69

Startingthe Program. i i ittt VMC-71

Specifying File NAMESccccoiiiiiiice et VMC-71
SPeCfYINg ParamEtersc.ccccuiuiuiiiuiuieieiieeeicicieeeeeie e VMC-72
Error MesSSagesottt VMC-73
FAtal EITOTS ..oveuiiiiieieietet ettt sttt ettt ettt sttt et st et e b et e bt e b e st e bt st eme st ene st e st st et ebentebens VMC-73
OvervieW Of MAKE. i ittt ittt in s VMC-75
RUNNIng MAKEc.ciiiii e VMC-76
Build Priority SEQUENCE ..o s VMC-76
Command Line OPHiONScccciuiuiiiiiiieceeeeceee e e nene VMC-76
MaAKEFIle SYIIEAX ...ttt VMC-78
GENETAION RULES ..ottt e et e ettt e e st e e e aae e seaaeeesaaeessasaeessseeesnseesssaeesesseessnseessnnes VMC-78
IMLACTOS vttt ettt ettt ettt st st e bbbttt et et et e ae bt b e e bt et b e bt bbbt et e b e s e e e et ent VMC-80
DIITECEIVES .ottt e e ettt e e e et e e e s e abae e e e sesaaateeesessasseeeesseasaaseeesassaaaseessessnrasseessssanseessannes VMC-81
IMPLCIE RULES ..ot enne VMC-82
AV Y S a0 1 (< 51 LTRSS VMC-82
Assembler Syntax ...l i i i i it VMC-85
o] £=1 (<) 0 4 1<) 0 1< ST RO VMC-85
Label and SYMDOL INAINESc.cceuiuiuimiiiiiieeceieeeeeieie et e senne VMC-86
(@041 113 0L 1< JUTUU SRR VMC-86
OPLTALOTS ..ot VMC-86
JANRS B TS0 (ol 0] 4 1] 7= 1 L= SRR VMC-87
Character CONSLATIES ..veueeveeeieeeeeeeeeeeeeeeeteeeeeteeteeteeteseeeteteeeessesseesessessessessessensensentensententeneessenesssessasessessessensessessensensensen VMC-88
Character String CONSLANES ..o VMC-89
SPECIAl SYIMDOLS ...ttt e e ee VMC-89
Assembler Pseudoinstructions.ccoiiiiiiii ittt i e VMC-91
LC86K Instruction Summary.ottt i i VMC-147
INSruction SUMIMATY ...oveviiiiiiiiiiicc et n e VMC(C-147
ATINIMEIC TNSEIUCHIONS ettt ettt et et e et e e e et eeae et eeseeseeeseeeeesssesesaeensesaeeesestesnesnsessesasesnenn VMC-147
Logical INSTIUCHONScvviiiiiiiiiiiiiiiiiiicicccc e VMC-148
Data Transfer INSIIUCHIONS ..oooviviiiiieeeiieeeeeee ettt ettt et e et e e sttt essaaeeseasteesaateesssseesenseeesseeessnseesssseesnsnesans VMC-148
JUMP INSEIUCHON et VMC-148
Conditional Branch TNSTITUCHONSveevieeeeeeeeeeeeeeeeeeeeeeeeee e et eee et eeeeeeeeseeseeeteesesseesseseessestessesssesesesesnes VMC-149
IS1010) (016 R ha Tl haTs]n b el ute) o NRUURURRRT RS RTORRRRTT VMC-149
Bit Manipulation INSTIUCHONScoiiiiiiiiiiiiii s VMC-149
Other TNSTIUCHONS ettt ettt et et eeeete et e eue st eeae et eese et eeseeteeseeeesssesesseensesseeesesatesnesasesseessennens VMC-149
J\Y/ =X (o 30 1= 0 6 Lai) s KNSR VMC-149
AAAIESSING ..ot VMC-149
Program Memory AddIeSSINgccooeiieiiiiieiiieiiciecce s VMC-150

RAM and Special Function Register (SFR) Addressing ..o VMC-152

Instruction Set Reference ...ttt it et e arenenns VMC-155

ATIthMEtic INSTIUCHONS ..viviieevceceeet ettt ettt ettt ettt ettt st ese s s et eseasesesessas et ebessasaseseseneassens VMC-156

Logical INSTIUCHONSc.cucuiiiiiiiiiciiiiiciccccc e VMC-173

Data Transfer INSIIUCHONS ...ccocvverierieieieieieieeeeeeeese sttt se e e e esee e sseesessessessasessessensessessensensans VMC-186
JUMP INSEIUCHONS et VMC-197
Conditional Branch INSTIUCHONSc.ccvoveviuiieieietieieieietcteet ettt ettt st es et st et sese s esesesssssesessanasesesean VMC-201
SUDTOULINE INSLIUCHONS ..vvivieeiiiieiieeeie ettt e et e st e e re e b e sseesbesssesseessessesssesssessasssessenssansenssensennsenns VMC-214
Bit Manipulation INSTIUCHONSccceuiiiiiiiiiiiiiiiiciiice e VMC-219
MiSCellaneoUus INSEIUCHONcvicviiiieieiieiecte ettt ettt e st e et este s e e be e s e sseessessesssesssessasssessenssassenssensesssenns VMC-222
AV E=Ted o 30 9151 w6 ot o o KPS ST PR ST PRSRURRN: VMC-223
LC86K Instruction SetSummaryiiiiiiiii i VMC-225

Assembler Pseudoinstructions.oiiiiiiit it ie e e arnrnnnns VMC-227

Sega@'Dreamcast

Setup

This installs the Visual Memory tools supplied with the Dreamcast SDK.

Caution: This description assumes Version 1.3] of the Dreamcast SDK.

Executing the Setup Program

1) Insert the Dreamcast SDK CD-ROM into the drive, and using Explorer or another tool, open the
VM_SDKdirectory.

Caution: There may be last-minute changes which do not appear in the manual. Be sure to check the

README.TXTrile.

2) For automatic setup, including environment variables, double-click on VMSETUP2.EXE.
3) When the next dialog box appears, click the Yes button.

InstallShield Self-extracting EXE

Thizs will install Wizual Memary SDK. Do you wish to continue?

| oz

4) When the next dialog box appears, wait until the progress indicator reaches 100_. Two dialog boxes
are shown.

IhstallShield Self-extracting Exe

Please wait while InstallShield extracts the files
— which will ingtall this application

VMC-1

Setup

6) When the next dialog box appears, enter your name and your company name. When these are complete,
click Next.

Hide Yukawa
Company: [SEGA OF JAPAN

7) When the next dialog box appears, enter the drive and path specification of where you want to install
the Visual Memory SDK. After you have entered this, click Next.

vMmcC-2

Setup

Destination Location

e the directory for installation

[= e

= wM_SDK
£ doc
£ 186k
£ zample
£ witiliby

o IDET -

8) When the next dialog box appears, select the internal components of the Visual Memory SDK to
be installed.

VMC-3

Visual Memory Unit (VMU) Programing Manual

Setup Type

Click the type of Setup you prefer, then click Next.

Program will be installed with the most common
options. Recommended for most users.

¢ Compact Program will be installed with minimurn required
options.

£ Custom “r'ou may choose the options you want to install.
Recommended for advanced users.

"Deslinalinn Directory

o WM_SDK Browse... I
< Back ' Nest > I Cancel |

Select Typical to install all SDK components.
Select Compact to install the whole SDK except for sample programs.

Select Custom to select individual components in the next dialog box.

Select the components you want ta install, clear the components
you do not want to install.

Components

y 5
isual Memory Simulator
Sample Programs

c:WWM_SDK Browse... |
Space Required: 37545 K -
Space Available: 2096832 K ml

< Back ' __.L_lexw I Cancel |

’> Destination Directory ‘

Select Visual Memory SDK to install the assembler, linker, and other tools, and the Memory Card Utility
for application transfer.

Select Visual Memory Simulator to install the Visual Memory simulator.

Select Sample Programs to install the sample programs.

9) Add the program to the start menu. Enter the name, then click Next.

VMC-4

Setup

Caution: Only the Visual Memory simulator can be added to the Start menu.
Other tools are MS-DOS programs, and cannot be added to the Start menu.

10) Copying of the files now starts. Wait until this finishes.

il Y aiiory S0 ety

11) A restart confirmation dialog box appears. Select Yes, I want to restart my computer now and click
Finish to restart the computer immediately.

12) If the following dialog box appears, click Next.

VMC-5

Visual Memory Unit (VMU) Programing Manual

Infor mation

The following filels) failed to Self Register

C:5WINDOWSASYSTEMANMORJPN. DLL _:_]
C:SWINDOWSASYSTEMANMORENU.DLL
C:SWINDOWSASYSTEMANMSCKN DLL

i o

< Back

Cancel |

Note: The setup program adds the following to the AUTOEXEC.BATile.
SET PATH=%PATH%;C:\VM_SDK\LC86K

SET CHIPNAME=LC868700

SET M86KRSVDFILE=c:\VM_SDK\lc86k\m86krsvd.rwd

SET TOOL86=c:\VM_SDK\Ic86k

VMC-6

Setup

Post-Installation Overview

Installing the Visual Memory SDK creates the following directories.

1 Vm_sdk
EI:I doc
=
2] ete
L] chklist
E-{] leBk
-] asm
-] include
. ;3 ohj
=] sample
] b_timer
{1 bmp
<] buttonl
] flashi
-] ledl
-] led2
] lowbattl
-] minutel
-7 siol
{7 sio2
{7 sio3
{7 sound?
<] timer1
-] utility
=] VmsSimulator
] Files
7] Help

Name Meaning

Utility Contains the utility for transfers PC_Dev. Box_Visual Memory, This program is a Dev. Box executable file. Run it using
CodeScape or similar.

Doc Contains documents relating to Visual Memory.

Ic86k Contains the assembler, linker, and other development tools. Also includes header files, libraries, and the GHEAD.ASM file.

Sample Contains sample programs.

VMUSimulator Contains the Visual Memory simulator.

vMcC-7

Visual Memory Unit (VMU) Programing Manual

VMC-8

Sega@'Dreamcast

Setting Environment
Variables

Environment Variables for the Development Tools

The following environment variables are used with the L86K series development tools.

PATH

Defines the search path, by adding to the existing PATH definition.

Name Search file
MB86K Searches for the reserved word file M86KRSVD.RWD in the directories specified by the PATH variable.
186K Searches for the reserved word defined symbol file LC86L.LIB in the directories specified by the PATH variable.

CGR86K Searches for the default character generator data file DEFAULT.CGR in the directories specified by the PATH variable.

CHIPNAME

This defines the chip name (or series name) on which the software will run.

For developing Visual Memory applications, specify LC868700.

Name Meaning

M86K Defines the chip name for the assembly. This is ignored if there is a CHIP pseudoinstruction (see Chapter 21, “Assembler
Pseudoinstructions”) in the source program; it is referenced at assemble time if there is no CHIP pseudoinstruction. If the ROM
size of the chip (the last two digits) is set to "00", then no ROM size check is carried out, and the assembly proceeds as though
with 64K installed.

SUB6K Defines the chip name for option data creation. The ROM size specification (the last two digits of the chip name) is ignored.

CGR86K Defines the chip name for character generator data file creation. The ROM size specification (the last two digits of the chip
name) is ignored.

vMC-9

Setting Environment Variables

If the last two digits of the chip name are "00", this does not indicate a specific chip. It is a generic label for
a series, but is given the maximum ROM capacity in the series. Such a chip name can be used in order to
determine the size of an assembled program.

M86KRSVDFILE

Defines the name of the reserved word file.

Name Search file

M86K Defines the directory in which the reserved word file is stored, and the file name. If this
environment variable is not defined, the default file name is M86KRSVD.RWD, and the
directories in the PATH specification are searched in sequence for the file
M86KRSVD.RWD.

M86KWORKEFILE

Defines the name of the work file.

Name Search file

MB86K Specifies the name of the file which will be used as a kind of expansion memory for work
space when the working memory dynamically allocated during the assembly process of the
MB86K compiler will not fit into main memory, and EMS memory is not installed, or is not
available. It is possible to specify a drive and path name.

TOOLS86K

Defines the directory holding the assembler, linker, LC86K.LIB, and so on.

Caution: This environment variable must be set.

TMP

Defines the directory for temporary workfiles.

Name Search file

MB86K When MB86K needs to create a work file (see "M86KWORKFILE"), if the environment
variable MB6KWORKFILE is not defined, then a work file is created in the directory
specified by this environment variable. If this environment variable is not defined, the work
file is created in the current directory. In either case, the file name is fixed, and is always
M8BKWORK.TMP.

Environment Variable Settings

Use the SET command to set environment variables in MS-DOS. For details of the SET command, refer to the
documentation and help files supplied with MS-DOS.

Example: To set the default chip name to LC868700
C> SET CHIPNAME=LC868700g

VMC-10

Sega@'Dreamcast

Specifying Files for Assembly

There are two ways of specifying the parameters when starting M86K.

1) Specifying all parameters on the M86K command line
2) Specifying parameters by responding to the prompts displayed by M86K

To force an exit from M86K, press the following key combinations.

Computer type Keys
PC/AT compatible Ctrl + C or Ctrl + Pause/Break
NEC PC-9800 series CTRL + C or Ctrl + Stop

Specifying File Names
When specifying file names to M86K, either in the command line, or in response to the prompts, case is ignored. For

example, the following file names all refer to the same file.

sample.asm
SAmMplE.ASM
SAMPLE.asM

If a file name is specified without an extension, M86K supplies the following default extensions.

File format Default extension
Source file ASM

Object file .0BJ

Listing file LST
Cross-reference file .CRF

Error file .ERR

VMC-11

Specifying Files for Assembly

Specifying Parameters on the Command Line

M86K _options_ _msource_,_mobject_,_mlist_,_mcross_,_merror_[J

options

Specify assembler options as listed in Chapter 4, “Option Switches.” If options are specified they must come
before other parameters.

source

Specify the source file to be assembled. If the file extension is omitted, the default extension .ASM is added.
If a file extension is specified, it takes precedence. In either case, a drive name and full path specification
is possible.

object

Specify the object file name for the assembler output. A drive name and full path specification is possible.
If this file specification is omitted, the object file name is the source file name, with the extension changed
to .OB]J. If the file already exists, it is overwritten.

list

Specify a file name for the assembly listing output. A drive name and full path specification is possible. If
this file specification is omitted, no listing file is created. If the listing file already exists, it is overwritten.

Cross

Specify a file name for the assembly symbol cross-reference output. A drive name and full path
specification is possible. If this file specification is omitted, no cross-reference is output. If the
cross-reference file already exists, it is overwritten.

error

Specify a file name for the output of assembly error messages. A drive name and full path specification is
possible. If this file specification is omitted, no error file is created. If the error file already exists, it
is overwritten.

Example

C> M86K MAIN.ASM,MAIN, TEST.CXX @

This begins assembly of the MAIN.ASMsource file in the current directory. The object file MAIN.OBJ is
created; no listing file is output, but a cross-reference is written to file TEST.CXX,

VMC-12

Specifying Files for Assembly

Specifying Parameters at the Prompts

Enter the following command to start the assembler without specifying any file names. Then follow the prompts
from the assembler to enter the file names.

prompt M86K [options]a

SANYO (R) LC86K series Macro Assembler Version X.XX

Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.
Source filename[. ASM]:

Object filename[.OBJ]:

Source listing [NUL.LST]:

Cross reference[NUL.CRF]:

Error messages [NUL.ERRY]:

options

Specify assembler options as listed in Chapter 4, “Option Switches.”

Source filename

Specify the source file to be assembled. If the file extension is omitted, the default extension .ASM is added.
If a file extension is specified, it takes precedence. In either case, a drive name and full path specification is
possible. This file name may not be omitted. Pressing the Enter key alone results in a reprompt for the
source file name. To cancel the operation at this point, use the following keys.

Computer type Keys
PC/AT compatible Ctrl + C or Ctrl + Pause/Break
NEC PC-9800 series Ctrl + C or Ctrl + Stop

Object filename

Specify the object file name for the assembler output. A drive name and full path specification is possible.
If this file specification is omitted (by pressing the Enter key alone), the object file name is the source file
name, with the extension changed to .OB]J. If the file already exists, it is overwritten.

Source listing

Specify a file name for the assembly listing output. A drive name and full path specification is possible. If
this file specification is omitted (by pressing the Enter key alone), no listing file is created. If the listing file
already exists, it is overwritten.

Cross reference

Specify a file name for the assembly symbol cross-reference output. A drive name and full path
specification is possible. If this file specification is omitted (by pressing the Enter key alone), no
cross-reference is output. If the cross-reference file already exists, it is overwritten.

Error messages

Specify a file name for the output of assembly error messages. A drive name and full path specification is
possible. If this file specification is omitted (by pressing the Enter key alone), no error file is created. If the
error file already exists, it is overwritten.

VMC-13

Visual Memory Unit (VMU) Programing Manual

VMC-14

Sega@'Dreamcast

Option Switches

This chapter describes the assembler options which can be used to control the operation of M86K itself. All options
are indicated by a prefixed minus sign or slash. The options are not case dependent. Thus, for example, -i, -1, /i, and
/1 all mean the same.

-l
Do not distinguish case in identifiers

When this switch is specified, the assembler ignores case in treating user-defined identifiers (labels, macro
names, and symbols). If this switch is not specified, then uppercase and lowercase letters are distinguished.
This applies only to user-defined identifiers, and not to mnemonics, SFR names and so forth.

-D
Do not output debugging information

When this switch is specified, the assembler does not include symbol information and source line numbers
in the object file. If this information is not present in the object file, source line mode debugging is not
possible. If this switch is not specified, symbol information and source line numbers are both included, and
source line mode debugging is possible.

-J
Do not optimize jump instructions

If this switch is specified when assembling a source including pseudoinstructions (JMPO, CALLO, BRO)
which require optimization, the optimization is suppressed. The result is that each of these
pseudoinstructions is interpreted as a three-byte instruction, regardless of the jump destination. If this
switch is not specified when assembling a source including pseudoinstructions which require optimization,
then the optimization is carried out. If the source does not include pseudoinstructions which require
optimization, this switch has no effect.

VMC-15

Option Switches

-N
Suppress copyright notice

When this switch is specified, the copyright notice displayed when the assembler starts up is suppressed.
This is convenient when starting the assembler from make or another utility, so that error messages are not
obscured by other unnecessary messages.

-R

Specify reserved word file

The character string immediately following this switch until the next space indicates the name of the
reserved word file to the assembler. The following example shows this:

m86k -rm86krsvd.rwd source.asm,,source.lst

Inthisexamplethe name ofthe reserved wordfile nameis M86KRSVD.RWD. This specification
takes precedence over a setting of the M86KRSVDFILE environment variable.

-P
Specify working buffer size

The numerical value immediately following this switch is used as the size of the assembler's internal
working buffer. The working buffer is a memory area used by the assembler for increasing the speed of
macro registration and expansion, and is reserved in main memory when the assembler is started. The
default size is 4096 bytes, and this is normally sufficient for most source programs. If the assembler runs
out of working buffer, however, the following error message is issued.

no more PARAMETER buffer (123) 45

The assembler issues this message, then abandons processing (the two digits at the end of the message are
an internal value, and may change). If this message should appear, use this switch to specify a large buffer
size, and repeat the assembly. For example, use the following specification:

m86k -p8192 source.asm

In this case, the working bulffer size is set to 8192 bytes. The value must be in decimal, and immediately
follow the switch letter 'p'. If the switch letter only is specified, or the numeric value cannot be found, the
buffer size reverts to the default 4096 bytes.

2

Show options

If this switch is specified, the assembler displays the following list of options, then immediately terminates.
Note that any other option specifications are ignored.

Usage: m86k [option] source,[object],[list],[xref]

option:

/D do not make local symbol table and source line
attributes in object file

Nl ignore case for user defined symbol

1 do not try to optimize

/N skip displaying copyright message

/Psize parameter buffer size in decimal

IRfile read “file' as reserved word file

VMC-16

Sega®@'Dreamcast

Environment Variables and
Reserved Word File

Environment Variables and Reserved Word File

Environment Variables

In MS-DOS, to set environment variables use the SET command. For details of the SET command, refer to your
MS-DOS documentation and help files.

Example: set the default chip name to LC868700.

C> SET CHIPNAME=LC868700g

MB86K refers to the following environment variables as required.

PATH

This is used as the search path for the reserved word file. For details of the reserved word file and the search
algorithm used to find it, see Section , “Reserved Word File,”.

CHIPNAME

This defined the chip for which assembly will be carried out. It is ignored if the CHIP pseudoinstruction appears in
the source program. However, if the chip name in the CHIP pseudoinstruction is different from the environment
variable chip name, a warning message is issued. This value is thus used if the CHIP pseudoinstruction does not
appear in the source program.

M86KRSVDFILE

This defines the directory in which the reserved word file is stored, and the file name. Note that there is no default
extension for the file name defined by this environment variable. Specify the drive name and path as required, but
always specify the file name and extension.

M86KWORKEFILE

Specifies the name of the file which will be used as a kind of expansion memory for work space when the working
memory dynamically allocated during the assembly process of the M86K assembler will not fit into main memory,
and EMS memory is not installed, or is not available. It is possible to specify a drive and path name.

TMP

When M86K needs to create a work file (see "M86KWORKFILE"), if the environment variable M86KWORKFILE is
not defined, then a work file is created in the directory specified by this environment variable. If this environment
variable is not defined, the work file is created in the current directory. In either case, the file name is fixed, and is
always M86KWORK.TMP.

VMC-18

Environment Variables and Reserved Word File

Reserved Word File

The reserved word file is always read when M86K starts up, and includes various information specific to the chip
for which the program will be assembled (RAM/ROM size, SFR mnemonics, etc.). M86K will not operate correctly
without the reserved word file. When M86K starts, it searches for the reserved word file in the following sequence.

1) When a file name is explicitly specified by assembler option-R, that file is loaded. If the file is not present
or reads are inhibited, an error occurs.

2) If the environment variable M8B6KRSVDFILE is defined, the file specified in that variable is loaded. If the
file is not present or a read-only file, an error occurs.

3) If reads are enabled and the file M86KRSVD.RWD is present in the directory containing M86K.EXE, that
file is loaded.

4) If reads are enabled and the file M86KRSVD.RWD is present in the current directory, that file is loaded.

5) Directories specified by the environment variable PATH are accessed in succession a the first readable
nd M86KRSVD.RWD file encountered is read.

If the reserved word file is not found after doing all of the above checks in succession, an error occurs and M86K
operation stops. Ordinarily, reserved word files are stored in the same directory as M86K.EXE. This file's contents
are vital for normal M86K operation, and Sega will not accept any responsibility for problems with M86K operation
if they are deleted or altered. For this reason, it is strongly recommended that this file be write-protected.

VMC-19

Visual Memory Unit (VMU) Programing Manual

VMC-20

Sega@'Dreamcast

Errors

Errors detected by M86K fall into three categories: fatal errors, (non-fatal) errors, and warnings. When a fatal error
is detected, M86K immediately abandons execution. This level includes problems such as the working buffer being
exhausted. When a non-fatal error is detected, the assembler continues to the end of the current pass (pass 1 or pass
2), then aborts. This level includes syntax errors in the source program. Warnings are issued for problems that do
not warrant "error" classification, such as operands with values outside the permitted range; in this case M86K
continues execution.

When a fatal error is detected, all output files which M86K is creating are not produced. When a non-fatal error
occurs in pass 1, the files are not produced, but if a non-fatal error occurs in pass 2 the listing file only is output
(when specified). The following is the format for showing errors.

filename(linenumber): source line
error message

Example

sample.asm(54): LD xyz
xyz: undefine symbol

The symbol xyz is undefined.

VvMcC-21

Errors

Warnings

The following are the warning messages which can be detected by M86K. In the list below, question marks indicate
portions which may vary.

???: bit number exceeds limits

In a bit manipulation instruction, the number of bits exceeds the permitted range.

absolute expression expected

The expression must be able to be evaluated at assemble time.

address beyond zero

The value specified for the operand of an ORG instruction is negative.

address exceeds limits

The value specified for the operand of an ORG instruction exceeds the specified ROM capacity.

address exceeds ROM size

An address in assembled instruction exceeds the ROM capacity.

chip name is different from one specified by CHIPNAME (???).

The operand of a CHIP instruction is different from the current environment variable setting.

END in included file

An END pseudoinstruction was encountered in a source file specified by an INCLUDE pseudoinstruction.

ENDF without FUNCTION

ENDF was encountered while not in a function definition.

ENDM without MACRO

ENDM was encountered while not in a macro definition.

EXITM outside MACRO

EXITM was encountered while not in a macro definition.

function code buffer overflow

A function definition is too large, and will not fit in the buffer.

VMcC-22

Errors

illegal combination of attributes: ???

The two sides of an arithmetic operator have incompatible attributes (bank or segment values).

illegal style expression

The operand expression of a SET or EQU is illegal.

JMP/CALL placed at the end of memory block (FREE)

AJMP or CALL instruction was encountered at an address with the bottom 12 bits equal to OFFEH or
OFFFH. Since the segment alignment mode is "FREE" there may be no problem with the result of linking,
but when the segment is aligned from the beginning of a memory boundary, the linker will give errors.

Jump address is out of range (FREE)

The destination address of a jump is outside a memory boundary. Since the segment alignment mode is
"FREE" there may be no problem with the result of linking, but when the segment is aligned from the
beginning of a memory boundary, the linker will give errors.

LOCAL outside MACRO

LOCAL was encountered while not in a macro definition.

macro name in expression

A symbol defined as a macro was encountered in an expression.

macro name required

The macro name is missing from a macro definition.

no character in string

Character was not found in a string constant.

page width must be 72 ~ 132: ???

The operand of a WIDTH instruction must be in the range 72 to 132.

public ??? not defined

A symbol declared as public is not defined.

SET conflicts with PUBLIC

An attempt has been made to reset a symbol declared as public with a SET.

VMC-23

Visual Memory Unit (VMU) Programing Manual

symbol name required

There is no symbol as the operand of a PUBLIC, EXTERN, or OTHER_SIDE_SYMBOdeclaration.

undefined symbol in expression

An undefined symbol occurs in an expression (only detected on pass 2).

value is out of range

A value is outside the permitted range (the range depends on the operand).

zero divide: ??? modulo 0

The right-hand operand of a MOD operator is zero.

zero divide: ??? /0

The right-hand operand of a division operator is zero.

VMC-24

Errors

Non-Fatal Errors

The following are the non-fatal error messages which can be detected by M86K. In the list below, question marks
indicate portions which may vary.

???: 2,8, 10 or 16 required

The operand of a RADIX pseudoinstruction must be 2, 8, 10, or 16.

???: constant required

A numeric constant is missing.

???: duplicated label

A duplicate label occurred.

???: duplicated symbol

A duplicate symbol occurred.

???: illegal character in numeric constant

A numeric constant includes an illegal character.

???: no such chip in the table

A symbol specified in a CHIP instruction cannot be found in the reserved word file.

???: open error

An error occurred when opening a file.

???: undefined symbol

An undefined symbol has been referenced.

???: radix violation

A character in a numeric constant is improper for the base being used.

???H, ???: out of internal RAM area

The address allocation in a data segment is outside the permitted range.

' not seen

The closing single quote of a character constant is missing.

VMC-25

Visual Memory Unit (VMU) Programing Manual

"' not seen

In the explicit segment format of an EXTERN operand, the colon separating the segment and symbol is
missing.

0x???: RAM address exceeds limits

The address allocation of a data segment is outside the permitted range.

address duplicated

There is a RAM address conflict specified by a DS pseudoinstruction.

address exceeds absolute limits

The address of an assembled instruction exceeds 65535.

bank number should be 0~15

The bank number must be in the range 0 to 15.

Branch address beyond zero

The destination address of a branch is below zero (the start address of the current code segment).

Branch address exceeds limits

The destination address of a branch exceeds the ROM capacity.

CSEG conflicts with WORLD EXTERNAL_DATA

It is not possible to have WORLD EXTERNAL_DATAN a pseudoinstruction specifying a segment in the
same source file.

CSEG isn't allowed in macro

It is not possible to have a pseudoinstruction specifying a segment in a macro definition.

DS must be in DSEG

A DS pseudoinstruction can only appear in a data segment.

DSEG conflicts with WORLD EXTERNAL_DATA

It is not possible to have WORLD EXTERNAL_DATANd a pseudoinstruction specifying a segment in the
same source file.

DSEG isn't allowed in macro

It is not possible to have a pseudoinstruction specifying a segment in a macro definition.

VMC-26

Errors

ELSE without IFxxx

The conditional assembly IFxxx pseudoinstruction corresponding to an ELSE is missing.

ENDF not seen

The ENDF pseudoinstruction ending a function definition is missing.

ENDIF without IFxxx

The conditional assembly IFxxx pseudoinstruction corresponding to an ENDIF is missing.

ENDM not seen

The ENDM pseudoinstruction ending a macro definition is missing.

external symbol can't be public

An external symbol has been declared as public_B

Hardware configuration violation

An instruction (such as CHANGE) corresponds to a function not implemented on the specified chip.

identifier expected

Something other than an identifier was encountered in a macro definition formal parameter list or
EXTERN operand.

illegal character in ??? constant

A numerical constant includes a character illegal for the specified base.

illegal character in binary constant

A numerical constant includes a character illegal for the specified base.

illegal symbol type

A symbol type is improper for a PUBLIC declaration.

illegal word in external list

A syntax error occurred in an EXTERN operand.

instructions can't be in DSEG

Instructions other than DS cannot be included in a data segment.

vMmce-27

Visual Memory Unit (VMU) Programing Manual

JMP/CALL placed at the end of memory block (INBLOCK)

A JMP or CALL instruction was encountered at an address with the bottom 12 bits equal to OFFEH or
OFFFH. Since the segment alignment mode is "INBLOCK" the linker will give errors.

Jump address beyond zero

The destination address of a jump is below zero (the start address of the current code segment).

Jump address exceeds limits

The destination address of a jump exceeds the ROM capacity.

Jump address is out of range (INBLOCK)

The destination address of a jump is outside a memory boundary. Since the segment alignment mode is
"INBLOCK", the linker will give errors.

local symbol can't be public

Alocal symbol has been given a public declaration.

lost SET symbol

a symbol defined in a SET pseudoinstruction could not be found in pass 2. This may be an assembler
internal error.

macro can't be public

A macro has been given a public declaration.

maximum nesting of macro is 10

Macros cannot be nested more than 10 deep.

Multiple WORLD specified

More than one WORLD pseudoinstruction appears in the same source file.

name required for macro

The name is missing from a macro definition.

no room for source line attribute object

There is insufficient memory to store source line information (for debugging).

no value for EXT

Even though a CHANGE instruction is used, a register EXT for an SFR is missing.

VMC-28

Errors

not the symbol defined by SET

An attempt was made to reset a value using SET, even though the symbol was not defined with SET.

operand exceeds limits

The repeat count in an REPT macro pseudoinstruction is not in the range 1 to 65535.

ORG isn't allowed in macro

The ORG pseudoinstruction may not appear in a macro.

other-side symbol isn't allowed

A symbol declared with OTHER_SIDE_SYMBOtannot be specified here.

other-side symbol isn't allowed here

A symbol declared with OTHER_SIDE_SYMBOtannot be specified here.

other-side symbol or absolute constant is required

A symbol declared with OTHER_SIDE_SYMBO&r constant is required.

positive value required

A negative value cannot be used.

public ??? not defined

A symbol declared as PUBLIC is not defined. This error is at the warning level when a PUBLIC symbol is
neither given a value nor referenced, and at the (non-fatal) error level when the symbol is not given a value
but is referenced.

string is too long

The length of a character string constant exceeds the limit (255 characters).
symbol name required

There is no symbol on the left-hand side of a SET or EQU.

symbol not defined

In pass 2, a symbol specified as a PUBLIC, EXTERN, or OTHER_SIDE_SYMBO&perand is missing. This
may be an assembler internal error.

syntax error

A syntax error was detected.

VMC-29

Visual Memory Unit (VMU) Programing Manual

syntax error near ???

A syntax error was detected near ???.

too complexed expression for an operand

An expression for an operand is too complex to be parsed.

too many CHIP pseudo operation

There is more than one CHIP pseudoinstruction in a single source file.
too nested if-statements

The nesting level of conditional assembly pseudoinstructions exceeds 10.
unbalanced conditional assembling controllers

The source file ended while skipping in a conditional assembly.
unbalanced IF statement

The source file ended while skipping in a conditional assembly.
unexpected end of file in string

The source file ended while reading a character string constant.
unexpected end of line in string

Aline end was encountered while reading a character string constant.
unexpected EOF in conditional assembling

The source file ended while skipping in a conditional assembly.
unexpected terminator ??? in conditional assembling

The parser produced a fault while skipping in a conditional assembly. This may be an assembler
internal error.

unmatched ELSE in skipping

The source file ended while skipping in a conditional assembly.
unmatched ENDIF

The source file ended while skipping in a conditional assembly.
WORLD conflicts xSEG

It is not possible to have WORLD EXTERNAL_DATAnNd a pseudoinstruction specifying a segment in the
same source file.

VMC-30

Errors

Fatal Errors

The following are the fatal error messages which can be detected by M86K. In the list below, question marks indicate
portions which may vary.

77?2(22?):

722(2?7):

27?):

77?2(22?):

722(2?7):

27?):

77?2(22?):

722(2?7):

27?):

77?2(227?):

chip name not seen

chip name not seen.

decimal value required

hex-value and reserved-word are required
no chip name list

no reserved word seen

ROM size not seen

too many chip names

???: unknown chip name

???: unknown flag

There is a syntax error in the reserved word file.

???: illegal file name

The specified file name contains an illegal character.

???: no such chip in the table

The chip name specified by the environment variable CHIPNAME was not found in the reserved word file.

???: no such user

The user name specified by ~user is missing.

???: open error

An attempt to open the specified file failed.

???: unknown flag

An unknown assembler option was specified.

VMC-31

Visual Memory Unit (VMU) Programing Manual

?2??: unreadable

The specified file cannot be read.

The EMS driver version is too old to support the application. Version 3.2 or later is required.

EMS allocation (??? pages) was failed

An attempt to allocate EMS memory failed.

EMS deallocation was failed

An error was detected when deallocating EMS memory.

flushing error in workfile

An error was detected when flushing a workfile (no disk space left, or similar errors).

Getting EMM version was failed

Getting EMS status was failed

Getting free page count on EMS is failed
Getting physical page frame address was failed

An error was detected during the initialization of EMS memory, such as while checking the EMS
driver version.

making temp. name for ??? failed

An error was detected while giving the output file a temporary name.

Neither CHIP pseudo operation nor CHIPNAME environment variable were defined. Further
execution aborted.

Neither the CHIP pseudoinstruction nor the environment variable CHIPNAME specify a chip, so assemble
cannot continue.

no more MAAIN memory (???) ???

Although there is a region which must be allocated to main memory, there is no more main memory left.

no more memory (???)

There is no dynamically allocatable memory (main memory, EMS memory, or work file).

VMC-32

Errors

no more NODE buffer (???) ???

The working space used for parsing expressions is used up.

no more PARAMETER buffer (???) ???

The working space used for macro definitions and calling argument list processing is used up.
no reserved word file available.

An attempt to read in the reserved word file failed.

no room for file: ???

A file cannot be written because the disk is full.

Pxxxx must be less than 65536

The parameter buffer size must be specified to be 65535 or less.

read error in workfile (???)

An error occurred when reading a workfile.

removing ??? failed

After an error was detected, an attempt to delete a partially created file failed.
renaming ??? ==_ ??? failed

An error occurred at the point of attempting to rename a file created with a temporary name with its real
name. This can occur if a file with the new name already exists, and is read-only.

too many file names

Five or more file names are specified on the command.
too many nested include files

The nesting level of include files exceeds 10.
unlinking work file is failed

An error was detected attempting to delete a workfile.
workfile ???: already exist

workfile ???: open error

An error was detected creating a new workfile.

VMC-33

Visual Memory Unit (VMU) Programing Manual

VMC-34

Sega®@'Dreamcast

Listing Format

The format of the listing file created by M86K is shown below. This basically reproduces the content of the source
file, with line numbers and machine code on the left. The arrangement of rows and columns is also designed to fit
the page size. That is, a page is 60 lines (including header), and each line consists of 132 character positions (source
lines exceeding this limit are folded), and the left part has fixed character columns. Tab characters in the source are
converted to spaces, to preserve layout.

VMC-35

Listing Format

Page number Source file name Assembly language statements
page: 1 <sanpl e. AS\W>)
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sanple for source |isting
0002 Line numbers
0003 -————— chip LCB866032
0004
0005 i ncl ude macros. asm
1/0001 ; a header file that contains shared macro definitions
1/ 0002
1/ 0003 clr_reg mcro xxx
10004 Symbolvalue mv #0, xxx
1/0005 endm
0006 Include level
0007 cseg
0008 0000007B PARAML equ 123
0009 Expanded line number
0010 clr_reg acc
0010+1 C 0000 230000 mv #0, acc
0011 C 0003 23407B mv #PARAML, pO
8815 t—§§9m§ﬂUQEMEE£ rept 10
0015 endm
0015+1 C 0006 00 nop
0015+2 C 0007 00 nop
0015+3 C 0008 00 nop
0015+4 C 0009 00 nop
0015+5 C 000A 00 nop
0015+6 C 000B 00 nop
0015+7 C 000C 00 nop
0015+8 C 000D 00 nop
0015+9 C 000E 00 nop
0015+10 C 000F 00 nop
0016
0017 C 0010 73616D ness0: dc "sanpl e message #00EHN"
0017 C 0013 706C65
0017 C 0016 206D65
0017 C 0019 737361
0017 C 001C 676520
0017 C 001F 233030
0017 C 0022 0A
0018 Codes
0019 —mm end
Address
\ J

Header

This appears at the top of each page, and includes a blank margin, the page number, source file name, and
headings for the columns of the listing.

Page number

The pages are numbered from 1.

VMC-36

Listing Format

Source file name

This is the name of the source file specified for assembly. If the specification includes a drive name or path,
this is also shown.

Assembly language statements

This shows the text of the source file, macro expansions (when their output is not suppressed), and
include files.

Line numbers

These are line numbers (in decimal) in the source file. When the code section occupies more than one line
in the listing the source file line numbers are repeated.

Include level

This shows the nesting level of include files. Lines from the source file itself have no include depth shown.
Then the contents of an included file are shown as depth 1, and nested includes as 2, and so forth. The slash
separates the include level from the line number.

Symbol value

When a symbol is given a value, if that value is explicit at assemble time it is shown here, as an 8-digit
hexadecimal value. If the value is not known, it is not shown.

Expanded line number

This indicates a line not present in the source file, which has been produced by a macro expansion. The
extra lines are numbered from 1 for each macro expansion.

Segment identifier

This character indicates whether the corresponding line is assembled as CSEG or DSEG code. Uppercase
'C' indicates CSEG INBLOCK, lowercase 'c' indicates CSEG FREE, and D indicates DSEG.

Address

When a line generates CSEG or DSEG code, this shows the address of the first byte as a four-digit
hexadecimal value. This address is an offset from the beginning of the segment.

Codes

When code to be written to ROM is generated by assembling a source line, it is shown here, as two
hexadecimal digits for each byte. A maximum of three bytes are shown on each line, in order of increasing
address. When more than three bytes are assembled, they are shown on subsequent lines with the same
source line number.

VMcC-37

Visual Memory Unit (VMU) Programing Manual

VMC-38

Sega@'Dreamcast

Specifying Files for Linking

There are two ways of specifying the parameters when starting L86K.

1) Specifying all parameters on the L86K command line
2) Specifying parameters by responding to the prompts displayed by L86K

To force an exit from L86K, press the following key combinations.

Computer type Keys
PC/AT compatible Ctrl + C or Ctrl + Pause/Break
NEC PC-9800 series CTRL + C or Stop

VMC-39

Specifying Files for Linking

Specifying File Names

When specifying file names to L86K, either in the command line, or in response to the prompts, case is ignored. For
example, the following three file names all refer to the same file.

sample.obj
SAmMpIE.OBJ
SAMPLE.OBJ

If a file name is specified without an extension, L86K supplies the following default extensions.

File format Default extension
Object file .0BJ

Executable file EVA

Library file .LIB

Option file .0PT

Font file .CGR

Flash memory data file Hnn

The number nn is that specified by the -B option.

VMC-40

Specifying Files for Linking

Specifying Parameters on the Command Line
L86K_options_objectfiles_, evafile , libraryfile ;.
options

Specify linkage loader options as listed in Chapter, “Option Switches.” If options are specified they must come
before other parameters.

objectfiles

Specify the object files to be linked, the linking start address, and library file names. At least one file name is
required. When specifying multiple files, separate them by space characters. If the file names do not fit into one line,
add a plus sign (+) to the end of the line to indicate a continuation. If the object file extension is omitted, the default
extension .OB] is added. If a file extension is specified, it takes precedence. In either case, a drive name and full path
specification is possible. If .LIB is specified as the file name extension, the library is linked as well.

evafile

Specify a file name for execution on (downloading to) EVA86K. If no name is specified, the first file name specified
in objectfiles is used, with the file name extension changed to .EVA.

Caution: EVAS86K is a device for emulating the LC86K series on the computer.
For Visual Memory, the EVA86K data is converted to HEX format, and run on the Visual
Memory simulator.

libraryfile

Specify a library name. If no library is required, the specification can be omitted.

Caution: If a DUMMY.OBUile is attached to the Visual Memory SDK, link this file in as well.

Example

C> L86K MAIN SUBO SUB1,TEST,TEST.LIB g

This links the object modules MAIN.OBJ, SUB0.0OBJ, SUB1.0BJ, MAIN.OPT , and MAIN.CGR. If there
are any symbols remaining undefined after linking MAIN.OBJ"'SUBO0.OBJ , and SUB1.0BJ, the linker
searches TEST.LIB for these symbols, and links the appropriate modules.

VMC-41

Visual Memory Unit (VMU) Programing Manual

Specifying Parameters at the Prompts

Enter the following command to start the linkage loader without specifying any file names.

L86K_moptions_n

L86K produces the following prompts, one line at a time. Enter the parameters as required.

SANYO (R) LC86K series Linkage Loader Version 4.00

Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.
Object modules.OBJ]:

EVA filenamebasefilename.EVA]:

Libraries.LIB]:

Option filenamebasefilename.OPT]:

Font filenamebasefilename.CGR]:

L86K waits for a response before displaying the next prompt. Section 3.1, “Specifying File Name” describes the
conventions for responding to the prompts.

The responses to the L86K command correspond to the parameters on the L86K command line, except for Option
filename and Font filename. These are described below.

Reference: For details of the L86K command line, see Section, “Specifying Parameters on the Command Line.”

Prompt Command line argument
Object modules objectfiles

EVA filename evafile

Libraries libraryfiles

When using the L86K prompts, enter the above four items, then the following two items.

Option filename

Enter the name of the option file for the chip for which the EVA file will be created.

Font filename

Enter the font file name.

If the last character typed on the response line is a plus sign (+), the prompt returns another line, so the input
can be continued. In this case the plus sign must come at the end of a complete file or library name, path
name, or drive name.

Caution:

This file specification is not necessary for Visual Memory. This file specification is not necessary for
Visual Memory.

VMC-42

Specifying Files for Linking

Default Responses

To select the default response to the current prompt, press the Enter key, without entering a file name. The
next prompt appears.

To select the default response to the current prompt and all of the remaining prompts, enter a semicolon (;)
and press the Enter key. This disables input to the rest of the prompts for this linking session, and saves

time when using the default settings. Since, however, there is no default for the Object modules prompt, it
is not possible to enter a semicolon for this prompt.

The following table shows the defaults for the L86K prompts.

Prompt Default
EVA filename The name of the first file in the response to “Object modules,” with the file extension changed from .0BJ to .EVA.
Libraries No libraries are searched.

Option filename

The file name specified in response to the “EVA filename” prompt, with the file extension changed from .EVA to .OPT.

Font filename

The file name specified in response to the “Option filename” prompt, with the file extension changed from .OPT to .CGR.

VMC-43

Visual Memory Unit (VMU) Programing Manual

Files Referenced During Linking

L86K always references the following files during linking.

Caution: For Visual Memory, the system BIOS used for reading and writing flash memory is in ROM, and
therefore the following do not necessarily apply.

LC86K.LIB

System information is stored in LC86K.LIB. At linking time, L86K gets system information for the target CPU from
LC86K.LIB, and stores it in the EVA file.

It also references the following option file during linking.

LCnn00.OPT ... nn is a two-digit value corresponding to the device type

LC86K.LIB and LIBnn00.OPT must be present in the same directory as L86K.EXE or in a directory to be found in the
PATH environment variable.

VMC-44

Sega®@'Dreamcast

Option Switches

This chapter describes how to use the linkage loader options to control the operation of L86K. The options are all
introduced with the linkage loader option character, which is slash or minus.

-B=bank number
Creating a flash memory HEX file for the LC86800 series

The -B option specifies the bank number for LC86800 series flash memory (WORLD EXTERNAL_DATAThe
bank number is written as a hexadecimal value from 1 to FF. Here the bank number is the data file extension.

Caution:

Only bank 0 of flash memory is available to applications in Visual Memory.
Do not specify this option.

Example

C> L86K /B=1 SAMPLE;

In this case the data file created is SAMPLE.HO1.

-C=address
Specifying a CSEG loading address

The -C option applies to the immediately following object module, and specifies a code segment loading
address. The address is written in hexadecimal.

If this option is omitted, L86K may load the object module code segment at any address.

-D=address
Specifying a DSEG loading address

The -D option applies to the immediately following object module, and specifies a data segment loading
address. The address is written in hexadecimal.

If this option is omitted, L86K may load the object module data segment at any address.

VMC-45

Option Switches

-E
Allowing DSEG address overlaps

If the -E option, more than one symbol can be defined in data segments at the same address, without
causing an error.

-l
Do not distinguish case

By default, L86K treats lowercase and uppercase letters as distinct. If the -I option is specified, case is
ignored.

-P
Create a loading map

Specifying the -P option creates a file containing a listing of the linker mappings (the linking state of each
segment, and public symbol locations). This map file has the file name specified on the command line or in
the prompts for the EVA file, with the extension changed to.MAP. If, however, a fatal error prevents linking
from continuing, the map file is not created.

Note: A map file will be necessary when using the reverse assembly function of the Visual Memory
simulator to display address labels.

-L
Create a local symbol listing

The -L option is only valid in combination with the -P option, and adds a listing of local symbols for each
module in the map file.

Note: A map file will be necessary when using the reverse assembly function of the Visual Memory
simulator to display address labels.

VMC-46

Option Switches

-

Module name

Lsanpl el

sanpl e2
sanpl e2

synbol
ACC
ADCR
ADRR

I ocal synbol
synbol

** sanpl el
1

** sanpl e2
|2

-

sanpl el. EVA | oadi ng nap

LC86K series Linkage nmap |ist

PAGE 1

Li nkage date: \Wed Dec 09 13:28:02 1992

CSEG-I means segment attribute is INBLOCK; CSEG-F means FREE

public symbol |ist

Start address of segment block

Segment block size (bytes)

v v
CSEG- | 0000 0004 0004
CSEG F 1 0004 0005 0009 -~
CSEG F 2 0009 0003 000C
End address of
segment block + 1
Sequence numbers of segment blocks in order within a module,
when there is more than one
segnent address
DSEG 0: 0100 [EQU]
DSEG 0: 0160 [EQU]
DSEG 0: 0161 [EQU]
) Outputs bank number and address for DSEG symbols
l'ist
segnent address
* %
CSEG 0000
Output for each module when there are local symbols
CSEG 0004

W

Issue warning messages for operand values

When the -W option is specified, operands of JMP instructions and so forth are checked to be in range (for
a JMP, the low 12 bits of the operand are allowed, and the value must thus be in the range 0 to 4095). If not,
a warning message is issued (only for the number of valid bits stored in the instruction code; overflow bits

are discarded).

-A, -F, -0, -R

Optimizing loading of CSEG FREE blocks

Normally L86K links the code segments in the order in the object modules and following the order of
specification on the command line, and at this point L86K aligns the executable file segment data (code

segments) on 4096-byte boundaries. For this reason, gap may appear between code segments.

To minimize this wasted space, there are four types of optimization of segment block positioning to use
memory more efficiently.

The following are the loading methods.

VMC-47

Visual Memory Unit (VMU) Programing Manual

-A option

With the -A option all code segment blocks to be linked are loaded in decreasing order of size. If a segment
block that crosses a 4096-byte boundary has the INBLOCK attribute, it is aligned on a boundary; if it has the
FREE attribute it is not repositioned.

-F option

The -F option is only valid in combination with -A. After code segment blocks with the INBLOCK attribute
are linked in the order specified on the command line, code segment blocks with the FREE attribute are
located in gaps occurring as described above (if there are no regions to locate code segment blocks with the
FREE attribute, they are located from the last address, in decreasing order of size).

-0 option

The -O option is only valid in combination with -A. After first linking code segment blocks with the
INBLOCK attribute in decreasing order of size, code segment blocks with the FREE attribute are located in
empty regions (if there are no regions to locate code segment blocks with the FREE attribute, they are
located from the last address, in decreasing order of size).

-R option

The -R option is only valid in combination with -A. After first linking code segment blocks with the
INBLOCK attribute in decreasing order of size, code segment blocks with the FREE attribute are located in
empty regions. At this stage, if two consecutive 4096-byte regions include empty space, the later code
segment block with the INBLOCK attribute is repositioned at the end of the region, and a code segment
with the FREE attribute is located in the empty region (if there are no regions to locate code segment blocks
with the FREE attribute, they are located from the last address, in decreasing order of size).

-S
Specify symbol sorting

If the number of public symbol definitions in the linked object files (including SFR definitions in the file
LC86K.LIB) exceeds 8192, or the number of local symbol definitions in the linked object files exceeds 8192,
then because of the drop in processing speed for symbol sorting, the following messages appear, showing
the progress of the sorting.

Public(Local) symboal table: Sorting. nn / nn blocks
Public(Local) symbol table: Sorting(merge).. nn %

However, if the -S option is specified, in this case symbol sorting is not carried out and linking is abandoned,
with the following error message.

VMC-48

Sega®@'Dreamcast

Object Alignment

As described under “Optimizing loading of CSEG FREE blocks” in Chapter 9, “Option Switches” (the -A, -E, -O, and
-R options), when optimization is specified for linking, objects are aligned differently from the normal case. The are
four types of optimization, and the corresponding object alignment for each of the types is described below.

VMC-49

Object Alignment

-A option

There are two alignment specifications for code segments: CSEG INBLOCK (aligned within a 4096-byte block) and
CSEG FREE (align regardless of 4096-byte boundaries). When the -A option is specified segments are placed in the
best positions in order of decreasing size, taking the INBLOCK and FREE segments together (the INBLOCK
segment are located within 4096-byte blocks, but the FREE segments are aligned freely).

Consider, for example, the following objects:

A B C D
= = =
[T] [T) [T] ©
= = =)
ol
£ £ = =
1K bytes 1.5K bytes 2.5K bytes 2K bytes

If the -A option is specified for linking, then the segments with INBLOCK/FREE specifications are located in
decreasing order of size as follows.

L86K-AABCD;

o

inblock | ©
free
inblock | o

inblock | >

4K bytes 4K bytes

In this example, the segment straddling a 4096-byte boundary is object D, which has the FREE attribute, thus not
requiring alignment. If object D has the INBLOCK attribute, the following is the result.

C B D A
x~ -~ -~ x~
o X} X} X}
= = = =
= = = =
= = = =
I
4Kbytes 4Kbytes

VMC-50

Object Alignment

-A -F options

When -A-F is specified, the segments with the INBLOCK attribute are located in their order on the command line,
then segments with the FREE attribute are located in decreasing order of size, in the best available positions.

Consider the following set of objects.

A B C D E
S S S
() @
= g | 3 = @
= - = = -
1.5Kbytes 1Kbytes 1Kbytes 3Kbytes 1.5Kbytes

When these are linked with -A-F specified, A, C, and D are located in the command line order (with D aligned to a
4096-byte boundary), then E and B in sequence in the best available positions.

L86K-A-FABCDE;

A C E D B
x~ - x~
o [T} %}
S | o 2 S 2
E |E| ¥ £ =
| I
4KKbytes 4KKbytes

VMC-51

Visual Memory Unit (VMU) Programing Manual

-A -0 options

When -A-O is specified, the segments with the INBLOCK attribute are located in decreasing order of size, then
segments with the FREE attribute are located in decreasing order of size, in the best available positions.

Consider the following set of objects.

inblock | >
free

inblock | &

inblock | ©

2Kbytes 1Kbytes 1.5Kbytes 3Kbytes

When these are linked with -A-O specified, D, A, and C are located in the best available positions in order of
decreasing size, then B is located in the best available position.

D B A C
e~ = -~
X} X} [X)
S o S S
£ =| = =
I
4Kbytes 4Kbytes

VMC-52

Object Alignment

-A -R options

When -A-R is specified, the segments with the INBLOCK attribute are located in decreasing order of size, then if
two consecutive 4096-byte regions include empty space, the segments in the second of the two regions are realigned
to bring the empty space together, and segments with the FREE attribute are inserted in this space. alignment the
later code segment block with the INBLOCK attribute is repositioned at the end of the region, and a code segment
with the FREE attribute is located in the empty region (if there are no regions to locate code segment blocks with
the FREE attribute, they are located from the last address, in decreasing order of size).

Consider the following set of objects.

inblock | >
free

inblock | &

inblock | ©

2Kbytes 1.5Kbytes 1.5Kbytes 3Kbytes

When these are linked with -A-R specified, after locating D, A, and C, segments A and C are realigned with the end
boundary of their 4096-byte block, to open up a space, in which B can be located.

D B A C
== = =
[X) [T] [T]
S] =] S
£ = = =
[I |
4Kbytes 4Kbytes

In all optimization operations, if an object module includes a space created by use of an ORG pseudoinstruction,
this space is made available for optimized segment alignment.

The following is an example of this.

Consider the following set of objects.

1K space created by ORG
AL

B C
v
S S
S ° >
e
£ = =
3Kbytes+1Kbytes 1.5Kbytes 1Kbytes

VMC-53

Visual Memory Unit (VMU) Programing Manual

If these are linked without optimization the following is the result.

A B C

4Kbytes 4Kbytes

When these are linked with optimization, the space created within segment A by the ORG pseudoinstruction is
filled as follows.

4Kbytes 4Kbytes

If aloading address (-C option) is specified together with the optimization specification, then if the first segment of
the file has a FREE attribute, the loading address specification is followed for this segment only (subsequent FREE
blocks are optimized).

VMC-54

Sega@'Dreamcast

Errors

Fatal Errors

When a fatal error is detected during linking, L86K displays a message, and aborts processing. The following are
the L86K error messages.

Chip name unmatched

An attempt was made to link object modules for different chips.

Data file specified

A data file was specified for EVA file creation.

Data segment size exceeds

An attempt was made to link a DSEG object exceeding the RAM size.

External undefine symbol

An external symbol is undefined.

lllegal bank number specifed

The specified flash memory bank number is incorrect.

lllegal file format

The specified file is not for the LC86K series.

lllegal option specified

An illegal option was specified.

VMC-55

Errors

Internal module not specified

In linking an internal program file was not specified.

Loading address multiple assignment

More than one object has been allocated to the same address.

No such file or directory

The specified file does not exist.
Program file specified
A program file was specified when creating a flash memory data file (bank 1).

Public symbol multiple define

A public symbol is multiply defined._

Segment size exceeds

An attempt was made to link when exceeding the segment size.

WORLD attribute unmatched

A program file with the WORLD INTERNAL or WORLD EXTERNAL attribute and a data file with the
WORLD EXTERNAL_DATAttribute are combined.

Non-Fatal Errors

If a non-fatal error is detected during linking, a message appears, but linking continues. L86K produces the
following warning messages.

Cannot access file: LC86K.LIB

The library file LC86K.LIB containing the reserved words does not exist. LC86K.LIB contains the reserved
words for each chip, and must be present in the current directory or a directory specified in the PATH
environment variable.

Module not in library

A reserved word for the target chip is not present in the file LC86K.LIB.
Operand data overflow

The value specified in the operand field exceeds the designated range. (Range varies according
to statement.)

Operand data type mismatch

An illegal segment symbol was specified in the operand field.

VMC-56

Sega@'Dreamcast

Starting the Program

There are two ways of starting LIB86K and specifying the parameters.

1) Specifying all parameters on the LIB86K command line
2) Specifying parameters by responding to the prompts displayed by LIB86K

To force an exit from M86K, press the following key combinations.

Computer type Keys
PC/AT compatible Ctrl + C or Ctrl + Pause/Break
NEC PC-9800 series CTRL + C or Stop

Specifying File Names

When specifying file names to LIB86K, either in the command line, or in response to the prompts, case is ignored.
For example, the following file names all refer to the same file.

sample.obj
SAmMpIE.OBJ
SAMPLE.OBJ

If a file name is specified without an extension, LIB86K supplies the following default extensions.

File format Default extension
Library file LB

Object file .0BJ

Listing file None

VMC-57

Starting the Program

Specifying Parameters on the Command Line
LIB86K_option_oldlibrary_commands__,_listfile _, newlibrary ___ ;

option

The only option which can be specified is /?.

oldlibrary

Specify the library file to be processed. This parameter cannot be omitted. If the library file extension is .LIB,
it can be omitted. However, if the user's library file extension is other than .LIB, it cannot be omitted. There
is no default for the library file, so if this parameter is missing an error message results. If the specified
library file does not exist, the following prompt appears.

Library file does not exist. Create? (y/n)

To create a new library, enter "Y". If any character other than "Y" is entered, the library manager terminates.

Entering an existing library file with just a semicolon carries out a consistency check on the library. This
checks whether all of the modules within the library can be used. If an error is found, an error message is
produced.

commands

The commands parameter includes symbols such as +, -, -+, *, and -*, which are used to control the program
operation. One object file name or module name can be specified for each command, to carry out a number
of operations. If the commands are omitted, no changes are made to the library file.

Command Meaning

+ Add a module. The madule in the object file specified following the command is added at the end of oldlibrary.
This command cannot be used to merge libraries.

Delete a module. The module specified following the command is deleted from oldlibrary.

-+ Replace a module. The module in the object file specified following the command is added at the end of oldlibrary,
and the existing module of the same name is deleted.

* Copy a module. A search is made in oldlibrary for the module specified following the command, and this is written
to an object file of the same name. The copied module is left in oldlibrary.

- Move a module. A search is made in oldlibrary for the module specified following the command, and this is
written to an object file of the same name, but the module is deleted from oldlibrary.

listfile

In listfile, specify a file for output of a list of the public symbols, external reference symbols, and module
names in the library. If omitted the listing is sent to standard output.

newlibrary

The newlibrary parameter specifies an output library name. If this is omitted, the existing version of the
oldlibrary file has the extension changed to .BAK, and the new library is written to the file oldlibrary.

VMC-58

Starting the Program

Option
Specify the /? option to display a help message.

Examples of Command Line Execution

Example 1

LIB86K HOME-+ROM; [

This example deletes the module ROM from the library HOME, and adds the object file ROM.OBJat the
end of the library.

Example 2

LIB86K HOME-ROM+ROM]
LIB86K HOME+ROM-ROM;!

In the first version, the module ROM is deleted from the library HOME, and then the object file ROM.OBJ
is added at the end of the library. In the second version, the ROM.OBJobject file is added to the library
HOME first, and then the ROM module is deleted. Therefore, in the first version, the ROM module remains
in the library, but in the second version it does not. This is because the command symbols are executed in
the order they are specified.

Example 3

LIB86K HOME,LCROSS.PUB [

After carrying out a consistency check on HOME.LIB, a cross-reference listing is written to the file
LCROSS.PUB.

Example 4

LIB86K FIRST *STUFF*MORE, SECOND [

The module STUFF is extracted from the library FIRST.LIB and written to the file STUFF.OBJ, and then
the module STUFF is deleted from the library. The module MORE is written from the library to the file
MORE.OBJbut remains in the library. The rewritten library is named SECOND.LIB, and corresponds to
FIRST.LIB , with the STUFF module deleted.

VMC-59

Visual Memory Unit (VMU) Programing Manual

Operation with the Prompts

Enter the following command to start LIB86K without specifying any parameters. Then follow the prompts from
the assembler to enter the parameters.

LIB86K_moption n [

LIB86K displays the following prompts, one at a time.

Library name:
Operations:
List file:
Output library:

After displaying each prompt, LIB86K waits for user input. After user input, it displays the next prompt, and
waits again.

The responses to the prompts correspond to the parameters entered on the command line, as shown in the
following table.

Prompt Corresponding command line parameter

Library name Corresponds to the oldlibrary parameter. If the library name is followed by a semicolon, LIB86K
carries out a consistency check.

Operations Corresponds to the commands parameter.
List file Corresponds to the listfile parameter.
Output library Corresponds to the newlibrary parameter.

Prompt Line Extension

In response to the Operations prompt, entering an ampersand (&) at the end of the line produces another Operations
prompt, so that the specification can be continued.

Default Responses

Except for the Library name prompt, there are default values, which are used when the response to the prompt is a
semicolon or the Enter key. The following table shows the prompt default values.

Prompt Default value

Operations Make no changes to the library file.

List file Select standard output for the listing. No list file is created.
Output library The output library name is the same as the original library name.

VMC-60

Sega@'Dreamcast

Error Messages

This chapter lists error message and their meanings.

cannot access file

LIB86K cannot open the specified file.

cannot create new library

The disk or root directory is full, or the library file already exists and is read-only.

cannot rename old library

The .BAK version is read-only, and LIB86K cannot rename the old library with the .BAK extension.

comma or newline missing

A comma or newline is missing on the command line.

error reading from library

LIB86K cannot read data from the specified library file.

error writing to new library

The disk or root directory is full

insufficient memory

There is insufficient memory for LIB86K to run.

VMC-61

Error Messages

interrupted by user

LIB86K execution was interrupted by the user.

invalid library header

The input library file is in an invalid format.

module not in library_ ignored

The specified module to be replaced was not found in the library.

output-library specification ignored

In the case of a new library name, an output library was also specified.

syntax error : illegal file specification

A command operator such as a minus sign (-) is not followed by a module name.

VMC-62

Sega@'Dreamcast

Cross-Reference

This chapter describes the cross-reference listing format.

LC86K series Library Analysis List PAGE 1
Tue Feb 18 13:56:12 1992
Number of Module count: 2 Library create date: Wed Oct 16 15:34:531991

Library update date: Tue Feb 18 10:55:231992

Including Modules: 1 2
Module name: 1 Source hame: 1.ASM
Assembler name: SASM 1.0 Assembly date:Tue Oct 22 15:54:43 1991

Target chip name: LC868700
Including Public symbols:
Including External symbols:

Test sample labell
Module name: 2 Source name: 2.ASM
Assembler name: SASM 1.0 Assembly date:Tue Oct 22 15:54:43 1991

Target chip name: LC868700

Including Public symbols:

Including External symbols:

labell label2 label3

VMC-63

Cross-Reference

VMC-64

Sega@'Dreamcast

Starting the Program

Using E2H86K to convert an EVA format file into a HEX format file produces files with the extensions .HEX
and .HOO.

The file with the extension .HEX is a 64K-byte flash memory file in HEX format. The region not used for the program
is filled with zeros. This file is not normally required.

The file with the extension .H00 is a HEX format file including only the program itself. This file can be read into the
Visual Memory simulator, or converted to a BIN format file with H2BIN.EXE, for reading into a Visual
Memory device.

VMC-65

Starting the Program

Specifying File Names

When specifying file names to E2H86K, case is ignored. For example, the following three file names all refer to the

same file.

sample.eva
SAmMplE.EVA
SAMPLE.EVA

If a file name is specified without an extension, E2H86K supplies the following default extensions.

File format Default extension
EVA file EVA
HEX file HEX

VMC-66

Starting the Program

Specifying Parameters

E2H86K_option_ EVA filename _HEX filename_

option

Specify the option as described in Section , “Option Specification,”.This must immediately follow the

command name.

EVA_filename

Specify the debugged file (with the extension .EVA). This is referred to as the EVA file.

HEX filename

Specify the name of an Intellec HEX format file. If HEX_filename

is omitted, the same file name as the

EVA_filename is used. When a flash memory data file is converted the extension is .HOO0.

Caution:

There is no prompt option.

Example 1

C>E2H86K PROG012
EVA file HEX file, _flash memory HEX file
PROGO012.EVA__ PROG012.HEX, PROG012.HO0

Example 2

C>E2H86K o
This displays the following help message.

SANYO LC86000 Series EVA-file to HEX-file generator V1.00A
Copyright (C) SANYO Electric Co.,Ltd. 1992

Usage: e2h86k options] EVA _filename HEX_filename]
Options: /I ... information on/off (default: on)

VMC-67

Visual Memory Unit (VMU) Programing Manual

Option Specification

The option must be introduced with a slash (/).

Caution: It is not possible to use a minus sign (-).

/l
Suppress information display during conversion

The /I option suppresses the display of information during conversion of the EVA file to the HEX file. If this
option is not specified, the progress of the conversion is indicated.

Example display

4 SANYO LC86000 Series EVA-file to HEX-file generator V1.00A
Copyright (C SANYO Electric Co.,Ltd. 1992

EVA file name: Aeva == EVA file name
ROM dat a packed: FF(hex) - Default Data
Chi p nane: LC868016 —= Device type

Progress of conversion

Internal CSEQ I n) 0000 - 0063 records: 0007

Modul e name: Internal CSEGQIn) 0064 - 00DB records: 0008

Modul e name: Internal CSEGQIn) 00DC - 02DD records: 0033

CGROM data 4block records: 00256

Option data | block records: 00016 Addresses allocated to specified
programs, and record lengths

Modul e name:

O W >

Names of programs

linked in above
EVAfile Record length of data

VMC-68

Sega@'Dreamcast

Error Messages

Fatal Errors

If E2H86K detects a fatal error during operation, it displays one of the messages listed below, and terminates.

Error message: Fatal error : ... message ...

‘efilename’ File not close.

The file 'filename' cannot be closed.

‘efilename’ File not create.

The file 'filename' cannot be created.

‘efilename’ File not open.

The file 'filename' cannot be found.

‘efilename’ not EVA file format.

The file 'filename' is not in EVA format.

‘efilename’ user disk full.

The disk became full while writing the file 'filename.'

Chipname undefined.

The chip name in the EVA file is not known.
ROM size over. (ROM size: XXXX)

The program size exceeds the ROM size.

Tablename allocation error.

There is insufficient memory to reserve space for tablename.

VMC-69

Error Messages

VMC-70

Sega@'Dreamcast

Starting the Program

Using H2BIN, a BIN format file for reading into the Visual Memory device can be created. The BIN format file can
be transferred to Visual Memory using a development computer, Dev. Box, and the Memory Card Utility
special-purpose transfer utility.

Alternatively, using the Shinobi library backup functions, the BIN format file can be transferred to Visual Memory.

Reference: For the method of transfer using a development computer, Dev. Box, and the special-purpose transfer
utility, see “Visual Memory Tutorial.”
For the method of transfer using the Shinobi library, refer to the buSaveExecFile () function under
“Backup Functions” in the SEGA library manual, Vol. 2.

Specifying File Names

When specifying file names to H2BIN, case is ignored. For example, the following three file names all refer to the
same file.

sample.HOO
SAmpIE.HOO
SAMPLE.HOO

VMC-71

Starting the Program

Specifying Parameters

H2BIN _HEX filename__BIN_filename_ O

Note: H2BIN has no command line options.

HEX filename

Specify the file created with E2H86K with the extension .HO00.

Starting H2BIN without specifying a file name produces a brief help message.

Note: This file must be in the Intellec HEX format.

BIN_filename

Specify the name for the BIN format file. If BIN_filename is omitted, the same file name as the

HEX_filename is used, with the extension .BIN.

Caution:

H2BIN does not run in the full screen mode of MS-DOS. If started in the full screen mode, it forcibly

switches to the window mode.

This is important when using MAKE or a batch operation.

Example 1

C>H2BIN PROG012.H00 [
HEX file BINfile_
PROGO12.H00__PROG012.BIN

Example 2

C>H2BIN O
The following message (brief help) appears.

INTELLEC HEX to binary converter Version 0.10 SEGA SYSTEM R&D
Usage: H2BIN <HEX file name > [<binary file name>]

HEX file name is the source file

Binary file name is the output file (can be omitted)
Function: converts INTELLEC HEX format file to binary.

If the output file name is omitted, it is the source file name with the
extension changed to .BIN.

Example: C:\VM_SDK\LC86K\H2BIN.EXE Icd_puu3.hex Icd_puu3.bin

VMC-72

Sega@'Dreamcast

Error Messages

Fatal Errors

If H2BIN detects a fatal error during operation, it displays one of the messages listed below, and terminates.

file 'filename’ not found.

The specified HEX format file cannot be found. Check the path and file name. Do not omit the
extension .HOO.

file 'filename' cannot be created.

A wrrite to the specified BIN format file failed. Check the available disk space, and whether other
applications have the file open.

Conversion failed.

The HEX format file CRC is bad. The HEX file may be corrupted. Run E2H86K.EXE to recreate the HEX
format file.

Not an INTELLEC HEX format file.

The HEX format file is of a different type. Run E2H86K.EXE to recreate the HEX format file.
error: extended address code detected - not currently supported.
The HEX format file is of a different type. Run E2H86K.EXE to recreate the HEX format file.

error: unknown record type detected.

The HEX file may be corrupted. Run E2H86K.EXE to recreate the HEX format file.

VMC-73

Error Messages

VMC-74

Sega@'Dreamcast

Overview of MAKE

MAKE automates program development. It automatically updates an executable file (EVA) when a source file
(ASM), object file (OB]), option file (OPT), CGROM file (CGR), and so on is updated.

To run MAKE requires a file, the makefile, including the necessary information. This is a text file, of the instruction
used to build the program. These instructions include generation rules, macros, directives, and implicit rules. A
generation rule consists of a target, and files it depends on, together with commands for building the target. MAKE
compares the time stamp of the target with the time stamp of the files on which it depends, and if any of these have
been updated more recently than the target, uses the specified command to rebuild the target.

VMC-75

Overview of MAKE

Running MAKE

To start MAKE, enter the following command.

MAKE [options] [/f makefile] [/x errorfile] [targets]

options

Enter any MAKE options. For details, see Section 19.1.2, “Command Line Options.”

makefile

Specify the name of the makefile. Note that a space is required between '/{' and 'makefile’. The makefile
name may be omitted if it is MAKEFILE.'

errorfile

Specify a file for output of errors. Note that a space is required between '/x' and 'errorfile'. The error output
is normally to the display, but with this option can be to a file.

targets

Specify the target or targets to be built. If this specification is omitted, and there is no . TARGET directive,
the first target in the makefile is built.

Build Priority Sequence

MAKE looks for the rules for a build in the following priority sequence.
1) If the /f option is specified, MAKE looks for the specified makefile in the current directory or specified
directory. If the file is not found, MAKE terminates.

2) If the /f option is not specified, MAKE assumes the file name is ' MAKEFILE," and looks in the
current directory.

3) Unless the /r option is specified, MAKE looks for a makerule file in the current directory. If not found
in the current directory, MAKE looks in the directory containing MAKE itself. If the makerule file cannot
be found, MAKE terminates.

Command Line Options

The following options control the operation of MAKE. The option letters are not case-dependent, but are always
preceded by a slash (/).

/E
Give priority to external macros

When referencing a macro, give priority to an external macro. The default is to give priority to an
internal macro.

VMC-76

Overview of MAKE

N

Ignore result codes, and continue processing

This ignores the result code from a command specified in the makefile. MAKE continues processing to the
end of the makefile, even if errors occur. To ignore result codes in a particular part of the makefile only, use
the hyphen (-) command modifier or IGNORE directive.

/N
Show sequence of build without executing commands

This just displays the commands which would be executed in the makefile build, without actually carrying
them out. This is useful for makefile debugging, and for checking which target files should be updated.

/R
Do not read rule file

When this option is specified, MAKE will not read a makerule file. The default is to allow the makerule file
to be read.

/S
Suppress command display

Do not echo commands in the makefile. To suppress command display for parts of the makefile only, use
the at sign (@) command modifier or .SILENT directive.

r”
Show help

Display the MAKE command line syntax.

VMcC-77

Visual Memory Unit (VMU) Programing Manual

Makefile Syntax

The makefile is a text file: create it using a text editor. Normally the makefile is called "MAKEFILE," but if there are
a number of different makefiles, they can have distinct names. The makefile contains generation rules, macros,
implicit rules, and directives.

Generation Rules
The generation rules are the core of the makefile. They are written as follows.

Target : dependent files

sample.eva : sample.obj sample.opt sample.cgr _dependency rule
186k/p sample; _generating command
copy sample.eva c\myprog\ _generating command

Dependency rules

Each generation rule starts with a dependency rule. This is in two parts, separated by a colon. The item
before the colon is the target, which is the file which MAKE is going to update. The items after the colon are
the files on which the target is dependent (also referred to as the source files). In the above example,
sample.eva is the target, depending on the files sample.obj, sample.opt, and sample.cgr. There must be no
spaces or tabs at the beginning of the dependency rule. There can be more than one target or dependent file,
separated by spaces.

The dependency rule means that the target must be updated if it either does not exist, or is older than any
of the files on which it depends. As an exception, if there are no files to the right of the colon, the target is
always updated. If there are multiple dependency rules in the makefile, by default the first is the final target,
so it is best to make the dependency rule for the EVA file the first in the makefile (it is also possible to specify
the target explicitly when running MAKE). For the final target, the default target file extension can be set
using the TARGET directive. If a dependency rule is long, it can be broken into a number of lines, by ending
all but the last line with a backslash character.

Example of continued lines

sample.eva : sample.obj \
sample.opt\
sample.cgr
186k/p sample;
sample.obj : sample.asm
m86k sample;
Commands

The commands immediately follow a dependency rule. Each of the command lines must begin with a space
or tab character. MAKE uses the existence or not of space or tab characters to distinguish dependency rules
from commands. The commands, one on each line, are the DOS commands required to update the target.
These commands can include DOS internal commands (such as dir). If a command is long, it can be broken
into a number of lines, by ending all but the last line with a backslash character. The commands are passed
to DOS by MAKE, so are subject to the line length restriction for DOS (maximum 127 characters).

VMC-78

Overview of MAKE

Caution:

During execution of MAKE, about 100 KB is required for MAKE itself and work areas. It is therefore
possible to run out of memory when by starting make.

Command modifiers

Command modifiers provide more detailed control of command execution. The command modifiers
precede the command, and more than one can be attached to a single command.

_command

Do not echo this command to the display when executing it. This does not affect output to the display by
the command itself. See the related functions, the /S option switch, and .SILENT directive.

Note: The /S option suppresses command echoing for the whole makefile.
The .SILENT directive switches the mode on and off through the text of the makefile.

-command

Ignore the command result code. MAKE normally terminates if the result code from a command is other
than zero, but if the - modifier is used, MAKE continues regardless of the result code. See the related
functions, the /I option switch, and IGNORE directive.

Note: The /I option causes result codes to be ignored for the whole makefile.
The .IGNORE directive switches the mode on and off through the text of the makefile.

Examples of command modifiers

sample.eva : sample.obj subr.obj sample.opt sample.cgr

@echo Now creating sample.eva _Echo progress

I86k/p sample+subr;

sample.obj : sample.asm

-m86k sample; _lgnore assembly errors
subr.obj : subr.asm

-m86k subr; _lgnore assembly errors

Phantom targets

By deliberately specifying as a target a file which does not exist, it is possible to force MAKE to execute
particular commands. This can be referred to as "phantom target." Obviously, when using a particular name
for a phantom target, it is necessary to check that this file does not actually exist in the current directory.

VMC-79

Visual Memory Unit (VMU) Programing Manual

Example using a phantom target

all : copy samplel.eva sample2.eva

samplel.eva : samplel.obj samplel.opt samplel.cgr
m86k/p samplel;

sample2.eva : sample2.obj sample2.opt sample2.cgr
m86k/p sample2;

copy : copy sampl?.eva c:\old_prog\

In the above makefile, if the "all" target is specified to MAKE, or no target specified, the phantom target all
causes bother the sampel.eva and sample2.eva targets to be built, and also, before this, the phantom target
"copy" causes samplel.exa and sample2.eva to be copied to the directory c:\old_prog.

Macros

A macro allows one character string appearing in the makefile to be replaced by a different character string. Its
function is very similar to a "#define" preprocessor statement in C. There are two types of macro: user-defined
macros, and built-in macros.

User macro definition

To define a new macro, use the following syntax.

macroname=string

Here, macroname can be any combination of alphanumeric characters and underscores, up to a maximum
of 255 characters. The characters in the macro name are not case dependent, so for example MacroName
and MACRONAME are regarded as the same macro. Another macro can be referenced within macroname,
as long as it has already been defined in the makefile.

The right hand string specifies a character string of any length. It must be contained within a single logical
line, but can be continued over line breaks by using a backslash character immediately before the line break.
It is also possible to specify an empty string of zero length. In this case, when the macro is referenced, since
it is replaced by an empty string, this can be used to delete a character string. If the same macro is defined
more than once, the latest definition is the one which is used.

Internal macros and external macros

There are two types of user definition macro: "internal macros", which are defined and referenced in the
makefile, and "external macros," which are supported by the MS-DOS shell function using environment
variables. The format of the two is the same. By default the internal macros take precedence over external
macros, but if the /E option is specified, external macros take precedence.

Referencing user macros

To reference a macro, enter a dollar sign followed by the macro name in parentheses. If the macro name is
a single character, the parentheses can be omitted.

$(macroname) or $c

If an undefined macro is referenced, it is replaced by an empty string.

Referencing built-in macros

MAKE provides the following built-in macros for file names.

VMC-80

Overview of MAKE

@ Full name of current target file (including path, base, and extension)
$* Name of current target file, excluding extension
$ List of dependent files newer than target

Example of macro setting and reference

ASM = m86k # LC86000 series assembler
LINK = 186k/p # LC86000 series linker
all : sample.eva _uses phantom target
sample.obj : $*.asm _references base name of target

$ (ASM) $*; _references assembler command
sample.eva : $*.0bj $*.opt $*.cor _references target base name

$ (LINK) $*; _references linker command

Directives

The following directives can appear in the makefile. Each directive is written on a line with no space (or tab)
characters at the start; it must not be within the body of a generation rule.

IGNORE: {+|-}

This switches on and off the mode for ignoring the result codes from programs. When followed by a plus
sign, this directive switches to the mode in which the result codes are ignored; when followed by a minus
sign, it switches to the mode in which the result codes affect MAKE execution. By default, if a result code
is other than zero, MAKE terminates. To ignore the result code from a single command only, use the minus
sign modifier. To ignore result codes for the whole makefile, use the /I option.

SILENT: {+|-}

This switches on and off the mode for echoing programs run from the makefile. When followed by a plus
sign, this directive switches to the mode in wﬁich commands are not echoed; when followed by a minus
sign, it switches to the mode in which commands are echoed. By default, commands are echoed. Suppress
the echo from a single command only, use the at sign modifier. To ignore suppress echoing for the whole
makefile, use the /S option.

.DEFAULT:

When a generation rule in the makefile consists of a dependency rule with no following commands, MAKE
uses the implicit rules to generate commands. If there are no creation rules, a default set of commands can
be supplied with the .DEFAULT directive on a line followed by the commands.

.DEFAULT

commands

.TARGET: suffixes

The final target to be built can be specified to MAKE on the command line, and if this is omitted, the target
of the first generation rule in the makefile is built, but the . TARGET directive specifies an extension for the
default final target, so that the extension of a file to be built can be specified for the final target. A suffix is
a period followed by up to three characters. More than one suffix can be specified by separating them
with spaces.

VMC-81

Visual Memory Unit (VMU) Programing Manual

Implicit Rules

The implicit rules define how the general way to make a file of one extension from a file of another extension. MAKE
follows these implicit rules to derive the commands needed to update a target, from the target dependency rules.
Using implicit rules generally makes writing the makefile simpler. The implicit rules can be included in the
makefile, or written in the makerule file MAKERULE.DEFE.

For each of the source files in a generation rule, MAKE checks whether there is generation rule with that file as
target, and if not it uses an implicit rule. The conditions for using an implicit rule are thus as follows:

1) There must be no dependency rule for the file in question.

2) There must be a generation rule for making the file.

3) The file or files required for making the file must exist.

If these conditions are met, MAKE adds generation rules as follows.

1) If a generation rule does not exist, it is added.
2) basename.sss is added as the source file (sss: source file extension)

3) The commands from the (implicit) generation rule are used as the commands for creating the target.
Makerule file

The makerule file MAKERULE.DEF contains the rules that MAKE uses to create implicit rules, in the
following format.

.Ssstt:
commands

The first line specifies two file extensions. The first, "sss," is the extension of the source file, and the second, "ttt," is
the extension of the target file. The extensions are not case-dependent. The first period, before "sss," must come at
the very beginning of a line. The following lines are the commands, written as in the makefile, for creating the target.
For example, to create an object file "basename.obj" from an assembly language source "basename.asm,” the
rule is ".asm.obj."

VMC-82

Overview of MAKE

Example makerule file

#
o Jokk
e Impilicit rules for EVA86000 utility make. ok
Definition for M86K ok
o ook
#
ASM = m86k
ASM.OBJ:
$ (ASM) $*;
.TARGET: .EVA .HEX __default final target
.DEFAULT:
@echo
@echo ??7? Undefined build commands ???
@echo
end of makerule.def
Example makefile using a makerule file
ASM = m86k # LC86000 series assembler
LINK =186k/p # LC86000 series linker

all : sample.eva

sample.obj : $*.asm

__assembler command omitted
sample.eva : $*.0bj $*.opt $*.cgr

$ (LINK) $*;

VMC-83

Visual Memory Unit (VMU) Programing Manual

VMC-84

Sega@'Dreamcast

Assembler Syntax

Each line of the source file is a character string of up to 511 characters (including the terminating CR and LF). Except
for symbols defined in the source program (labels, macros, and so on), uppercase and lowercase letters are not
distinguished. For example, "Nop" and "nop" are both recognized as the mnemonic for the NOP instruction. By
specifying the -I assembler option, it is possible to remove the case distinctions for labels and other symbols as well.

Statements

Statements consist of the instruction mnemonics and operands which define the object code to be created by the
assembly process, and comments. One line of source code corresponds to one instruction mnemonic. A statement
is not allowed to be continued over more than one line. Each statement comprises the following four fields.

[label:] [operation] [operand)] [;comment]

Field Purpose

label |dentifies the location of this statement, so that it can be referenced from another statement. It must
always be followed by the colon.

operation Specifies the function of the statement.
operand Specifies the operand (or operands) on which the function operates.
comment This is for explanatory purposes, and does not directly affect the result of assembly.

Caution: The square brackets [] identify Items which can be omitted.

VMC-85

Assembler Syntax

Label and Symbol Names

Label and symbol names consist of character strings of any (nonzero) length, but only the first 32 characters are used
to distinguish names. The following characters can be used:

AtoZ,atoz,01t09,$, ?, _(underscore), @, . (period)

Label and symbol names must begin with a letter, underscore, period or '@." If the -i assembler option is specified,
uppercase and lowercase letter are regarded as the same. Note that a label must be followed by a colon.

Comments

Comments are delimited by a semicolon, and extend to the end of the line.

Operators

The following table lists the operators which can be used in M86K assembly language, and their order of
precedence. For operators such as NOT whose names consist of letters, case is not distinguished, and thus "NOT"
and "not" are both the same operator.

Operator Meaning Precedence order
NOT One's complement logical not 1

HIGH High order byte

LOW Low order byte

* Multiplication 2

/ Division

MOD Modulo (remainder)

+ Addition 3

Subtraction

SHR Shift right 4
SHL Shift left

LAND Logical AND 5
LOR Logical (inclusive) OR

LXOR Logical exclusive OR

EQ Equals 6
NE Not equals

LT Less than

LE Less than or equals

GT Greater than

GE Greater than or equals

VMC-86

Assembler Syntax

Numeric Constants

MB86K allows numeric constants to be written in binary, octal, decimal, or hexadecimal. Constants can be written
with an explicit indication of the radix, or base, as for example in "123H," or with the default radix defined by the
RADIX pseudoinstruction. Thus a constant "123," for example, with no explicit radix is interpreted according to the
specification of the RADIX pseudoinstruction. By default, if there is no RADIX pseudoinstruction, such numbers
are taken as decimal.

However they are written, constants are handled internally by the assembler as 32-bit values. When the final result
of a numeric expression is evaluated and stored as immediate data as the operand of an instruction, only the
number of bits required for the operand are stored, and any more significant bits are discarded.

Table 2.35 Notation of constants with an explicit radix

Radix Format Examples
2 ‘%" followed by one or more digits 0, 1 %01111011 %1111111
%0000010000000000
One or more digits 0, 1 followed by 'B' * 01111011B 1111111B
0000010000000000B
One or more digits 0, 1 followed by '.B' * 01111011.B1111111.B
0000010000000000.B
8 One or more digits 0 to 7 followed by '.0 '273.0 377.0 2000.0
10 One or more digits 0 to 9 followed by '.D 123.D 255.0 1024.D
16 '$' followed by one or more digits0t0 9, atof, or Ato F $7B $FF $0400
One or more digits 0t0 9, a to f, or A to F, followed by 'H' (must start with 0 to 9) 7BH QFFH 0400H
One or more digits 0t0 9, ato f, or A to F, followed by .H' (must start with 0 to 9) 7BH OFFH 0400.H

Note: The radix letters B, O, D, and H can be uppercase or lowercase. This is not affected by the
assembler -i option.

Caution: These formats are affected by the RADIX setting. See the table below.

Table 2.36 Interpretation of numeric constants without explicit radix notation

Format Example Values for each RADIX setting (in decimal)
2 8 10 16

One ormore 0, 1 0101 510 6510 10110 25710

One ormore O to 7 123 Error 8310 12310 29110

One ormoreOto 9 789 Error Error 789110 192910

One or more 0, 1 followed by 'B "101B 510 510 510 412310

One or more digits 0t0 9, a to f, or A to F, starting with 0 to 9 OFF Error Error Error 25510

vMmcC-87

Visual Memory Unit (VMU) Programing Manual

Character Constants

A character enclosed in single quotes (') is treated as a character constant. A character constant is a type of numeric
constant, with the value of the ASCII codes of the specified characters. In addition to all printable ASCII characters,
the following codes can be used to enter other characters. If more than one character is enclosed in the quotes, this
is not a character constant but a character string constant see Section , “Character String Constants,”.

Table 2.37 Codes for use in character constants and character string constants

Notation Hexadecimal value Character name
\n 0A Linefeed

\r 0D Carriage return
\t 09 Horizontal tab
\b 08 Backspace

\f 0C Form feed

\ '22 Double quote

\ 27 Single quote

\ 5C Backslash

\ooo Octal value ooo
\xhh Hexadecimal value hh

Example1: ADD_'A
Example 2. DB'A,\012,'C'
Example 3: DB 'ABC'

Caution: In example 3, 'ABC' is a character string constant, and is therefore an error as the operand for DB.

VMC-88

Assembler Syntax

Character String Constants

One or more characters enclosed in double quotation marks ("), or two or more characters enclosed in single
quotation marks (') are treated as a character string constant. A character string constant can be used as the operand
of a DC or .PRINTX pseudoinstruction. Within a character string, any printable ASCII characters can be used, and
also the codes listed in Section , ”Character Constants,”.

Example

DC 'This is a sample string with special codes \007\r\n"

Special Symbols

In an operand, an asterisk represents the address of the current location.

Example 1

The following represents the address 6 bytes before the current address.
BR *6

Example 2

The following represents the address 12 bytes after the current address.

BR *+12

VMC-89

Visual Memory Unit (VMU) Programing Manual

VMC-90

Sega®@'Dreamcast

Assembler

Pseudoinstructions

A pseudoinstruction differs from an ordinary instruction (such as ADD or MOV in the LC86K instruction set); it
gives directives or definitions to the assemble, and a pseudoinstruction of itself does not generate a machine
instruction. (This does not apply to JMPO and other optimization pseudoinstructions, or to the CHANGE
pseudoinstruction.) Pseudoinstructions are often used in combination with ordinary instructions.

Group

Pseudoinstruction

Function

Linking control

ORG

WORLD

CSEG

DSEG

END

PUBLIC

EXTERN
OTHER_SIDE_SYMBOL

Specify origin

Select the ROM to hold code

Declare the beginning of a code segment
Declare the beginning of a data segment
End program

Declare public symbol

Declare external symbol

Declare CHANGE instruction jump label

Symbol definitions EQU Assign a fixed value
SET Assign temporary value
Data definitions DB Define byte data
DW Define word data
DC Define character string data
DS Define byte area
Macro control MACRO Define macro
REPT Repeat macro
IRP [teration macro
IRPC Character string macro
ENDM End macro definition
EXITM End macro expansion
LOCAL Define local label

VMC-91

Assembler Pseudoinstructions

Conditional assembly IFDEF Assemble if defined
IFNDEF Assemble if undefined
IFB Assemble if operand empty
IFNB Assemble if operand nonempty
IFE Assemble if zero
IFNE Assemble if nonzero
IFIDN Assemble if identical
IFDIF Assemble if different
ELSE Else case of conditional assembly
ENDIF End conditional assembly
PRINTX Display message during assembly
LIST Resume listing
XLIST Suppress listing
.MACRO List macro expansions
XMACRO End macro expansion listing
AF List skipped statements in conditional assembly
XIF End listing of skipped statements

Assemble if operand empty

Miscellaneous INCLUDE Include file
TITLE Set listing title
PAGE New page
CHIP Specify chip for assembly
COMMENT Add comment to object file
WIDTH Specify columns in listing file
BANK Specify RAM bank
CHANGE Jump between flash memory and ROM
RADIX Specify default radix

VMC-92

Assembler Pseudoinstructions

Optimization JMPO Optimized JMP instruction
BRO Optimized BR instruction
CALLO Optimized CALL instruction
BZ0 BZ instruction guaranteeing no address error
BNZ instruction guaranteeing no address error
BNZO BP instruction guaranteeing no address error
BPC instruction guaranteeing no address error
BPO BN instruction guaranteeing no address error
DBNZ instruction guaranteeing no address error
BPCO BE instruction guaranteeing no address error
BNE instruction guaranteeing no address error
BNO Optimized BR instruction
Optimized CALL instruction
DBNZO BZ instruction guaranteeing no address error
BNZ instruction guaranteeing no address error
BEO BP instruction guaranteeing no address error
BPC instruction guaranteeing no address error
BNEO BN instruction guaranteeing no address error
DBNZ instruction guaranteeing no address error
ORG
Specify origin
Syntax

ORG expression

Description

The ORG pseudoinstruction specifies the start address in program memory (flash memory) as expression.
Expression must be a numeric constant, or an expression which can be evaluated at assembly time.

VMC-93

Visual Memory Unit (VMU) Programing Manual

Example
4)

page: 1 <org. ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS

0001 ;a sanple programfor ORG
0002 chip | c866032
0003 extern waitls
0004 dseg
0005 D 0000 m nl: ds 1
0006 D 0001 m no: ds 1
0007 cseg
0008 ;_______________Brg Oh
0009 C 0000 6201' |labell: inc m n0
0010 C 0002 0201' I d m n0
0011 C 0004 A13C sub #60
0012 C 0006 900311 bzo | abel 2
0012 C 0009 F600
0013 C 000B 210200 j npf | abel 3
0014 g_______________ﬁrg 100h
0015 C 0100 6200' label2: inc mnl
0016 C 0102 220100 nmov #00, m nO
0017 C 0105 210200’ j mpf | abel 3
0018 g_______________ﬁrg 200h
0019 C 0200 100000' | abel 3: CALLr waitls
0020 C 0203 210000’ j mpf | abel 1

_ 0021 end)
WORLD

Select the ROM to hold code
Syntax

WORLD selection
Description

This specifies the ROM which will hold the assembled code. This pseudoinstruction is only valid when the
target chip is the LC86800 series. There are three values which can be specified for selection.

INTERNAL Store in the on-chip ROM.
EXTERNAL Store in flash memory bank 0.
EXTERNAL_DATA Store in flash memory bank 1.

VMC-94

Assembler Pseudoinstructions

Caution: For Visual Memory, always specify EXTERNAL. Other specifications may lead to data corruption
or misoperation.

If there is more than one WORLD pseudoinstruction in a single file, an error results. For chips other than the chips
other than the LC86800 series, if a value other than INTERNAL is selected for the WORLD pseudoinstruction, an
error results.

CSEG
Declare the beginning of a code segment

Syntax
CSEG mode
Description

This indicates to the assembler the beginning of a segment holding program code. When mode is not
specified or is INBLOCK, the segment is aligned within 4K boundaries. If the mode is FREE, this indicates
that the segment can be located regardless of 4K boundaries.

VMC-95

Visual Memory Unit (VMU) Programing Manual

Example
4 I
page: 1 <cseg. ASW
ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple program for CSEG
0002 chip | 864024
0003 extern waitls
0004 dseg
0005 D 0000 m nl: ds 1
—
0006 D 0001 m no0: ds 1
0007 (cseg i nbl ock
0008 C 0000 6201' |4gbell: inc m n0
s
0009 C 0002 0201 I d m n0 -
0010 C 0004 A13C sub #60
0011 C 0006 900311 bzo | abel 2
0011 C 0009 0000
0012 C 000B 210000" | j mpf | abel 3 y
0013 (cseg free)
0014 ¢ 0000 6200' | pbel2: inc m nl
—
0015 ¢ 0002 220100 mov #00, mi n0 -
0016 ¢ 0005 210000" | j mpf | abel 3
0017 (cseg)
0018 C 0000 100000' | pbel 3: CALLr waitls -—
0019 C 0003 210000 j mpf | abel 1
0020 N =rd / _— Independent segments
—— Local address is reset
to zero at the beginning of each segment.
N\ J
DSEG

Declare the beginning of a data segment
Syntax

DSEG

Description

This indicates to the assembler the beginning of a segment holding data.

Caution: Data segments are copied into RAM. It is not possible to open a data segment in flash memory.

VMC-96

Assembler Pseudoinstructions

Example

page: 1 <dseg. AS\>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanple program for CSEG
0002 chip | c864024
0003 extern waitls
0004 cseg i nbl ock
0005 C 0000 6201' |fbel 1: inc m n0)
0006 C 0002 0201 I d m n0
0007 C 0004 A13C sub #60 -—
0008 C 0006 900311 bzo | abel 2
0008 C 0009 0000
0009 C 000B 210000" {_ j mpf | abel 3)
0010 (" cseg free)
0011 c 0000 6200' |pbel2: inc m nl ~—]— Code segments
0012 ¢ 0002 220100 mv #00, m n0
0013 ¢ 0005 210000" |\ j mpf | abel 3)
0014 (CSeg)
0015 C 0000 100000' | pbel 3: CALLr waitls —
0016 C 0003 210000 L j mpf | abel 1)
0017
0018 (dseg)
0019 D 0000 n nl: ds 1
0020 D 0001 mMno: ds 1 = Datasegment
0021 . end J

-

END

End program
Syntax
END

Description

This indicates the end of the source program. When the assembler encounters this instruction, it ends the

pass currently being executed, so any text beyond this point, even if valid statements, is ignored.

vMmcC-97

Visual Memory Unit (VMU) Programing Manual

Example

4)

; a sanple programfor END
chip | ¢866032

cseg

mov #20h, 01h
mv #10h, 00h
I d 00h

add 0fh

All text after END is ignored

page: 1 <end. ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanple program for END
0002 chip | c866032
0003 cseg
0004 C 0000 220120 nmov #20h, 01h
0005 C 0003 220010 nov #10h, 00h
0006 C 0006 0200 I d 00h
0007 C 0008 820F add 0f h
_ 0008 end)
PUBLIC

Declare public symbol
Syntax

PUBLIC symbol {, symbol}
Description

The PUBLIC pseudoinstruction declares that a symbol defined in the program can be referenced from other
source files.

VMC-98

Assembler Pseudoinstructions

Example
page: 1 <extern. ASM>
ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple program for EXTERN
0002 chip | c866032
0003 extern |labell, |abel2 -—
0004
0005 cseg i nbl ock
0006 C 0000 200000 CALLf | abel 1 E—
0007
0008 C 0003 200000' start: CALLf | abel 2 -—]
0009 C 0006 0303 I d c
0010 C 0008 90F9 bnz start
0011
0012 C 000A A300 sub a
0013
0014 end
_
To reference a symbol defined in another file, it must be declared EXTERN.
To allow a symbol in this file to be refernced from another file,
it must be declared PUBLIC
/ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 a sanpl e program for PUBLIC
0002 chip | c866032
0003 public |labell, |abel2 -—————
0004
0005 cseg i nbl ock
0006 C 0000 220000' | abel 1: nov #00, datal
0007 C 0003 23033C nov #60, ¢
0008 C 0006 A0 ret
0009
0010 C 0007 6200" label2: inc datal
0011 C 0009 0200 I d datal
0012 C 000B 410A05 bne #10, |abel 3
0013 C 000E 220000’ nov #00, datal
0014 C 0011 6201 inc dat a2
0015
0016 C 0013 7303 | abel 3: dec c
0017 C 0015 A0 ret
0018
0019 dseg
0020 D 0000 datal: ds 1
0021 D 0001 data2: ds 1
0022
0023 end
_

Caution:

To reference a symbol defined in another source file, it must be declared EXTERN.
To allow a symbol in this file to be referenced from another file, it must be declared PUBLIC.

VMC-99

Visual Memory Unit (VMU) Programing Manual

page:1 <public ASM>

ERR SEQ. SLOC. OBJ. SOURCE STATEMENTS

0001 ; sample program for PUBLIC

0002 chip Ic866032
0003 public labell, label2
0004

0005 cseg inblock
0006 C 0000 220000 labell: mov #00, datal

0007 C 0003 23033C mov #60, ¢

0008 C 0006 AO ret

0009

0010 C 0007 6200 label2: inc datal

0011 C 0009 0200 Id datal

0012 C 000B 410A05 bne #10, label3
0013 C 000E 220000 mov #00, datal
0014 C 0011 6201 inc data2

0015

0016 C 0013 7303 label3: dec c

0017 C 0015 A0 ret

0018

0019 dseg
0020 D 0000 datal: ds 1

0021 D 0001 data2: ds 1

0022

0023 end

Note: The combination of PUBLIC and EXTERN declarations allows a symbol to be referenced even
when it is defined in another file.

EXTERN
Declare external symbol

Syntax
EXTERN [segment:] symbol {, [segment:] symbol}
Description

The EXTERN pseudoinstruction is used when a symbol or symbols are defined in other source program
files. The optional segment parameter is either CSEG or DSEG, indicating the segment type. If this is not
specified, a code segment, CSEG, is the default.

Reference: For examples see the previous item "PUBLIC - Declare public symbol."

OTHER_SIDE_SYMBOL
Declare CHANGE instruction jump label

VMC-100

Assembler Pseudoinstructions

Syntax
OTHER_SIDE_SYMBOLIabel {, label}
Description

This declares an address label which can be specified as the operand of a CHANGE instruction, which in
the LC86800 series is used for switching between ROM and flash memory. The label declared is a type of

external symbol, but one difference is that in a source file of code to be stored in ROM, a label is declared

in flash memory (or in ROM in a source file of code to be stored in flash memory). This pseudoinstruction
is only valid for the LC86800 series, and in other cases an error results.

Reference: For examples, see under "CHANGE - Jump between flash memory and ROM in this chapter.

EQU
Assign a fixed value

Syntax
Symbolname EQU expression
Description

The EQU pseudoinstruction assigns the value expression to symbolname. A symbol defined with the EQU
pseudoinstruction cannot be redefined. Used appropriately, the EQU pseudoinstruction can aid the visual
identification of constant data, and improve maintenance efficiency.

VMC-101

Visual Memory Unit (VMU) Programing Manual

Example

When the defined value can be computed
it appears here (hexadecimal).

No colon between the defined symbol and the "EQU"

-

/

page: 1 <equ. ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
888; ;@ Sa”pLEiETOQT?ggggB3ECU Any expression can be written.
0003 *
0004 00000064 | oop_max equ 100
0005 00000001 node_a equ 1
0006 00000002 node_b equ 2
0007 00000003 node_c equ 3
0008 A
0009 cseg i nbl ock
0010 C 0000 220000 mv #00, |oop_ctr
0011
0012 C 0003 230201 | abel 1: nov #nmode_a, b
0013 C 0006 0818 CALL subl
0014 C 0008 230202 mv #nmode_b, b
0015 C 000B 0818' CALL subl
0016 C 000D 230303 nmov #node ¢, ¢
0017 C 0010 6200 inc | oop_ctr
0018 C 0012 0200' I d | oop_ctr
0019 C 0014 4164EC bne #1 oop_max, |abel 1
0020 C 0017 A0 ret
0021
0022 C 0018 0302 subl: Id b
0023 C 001A 310107 be #mode_a, suj 10
0024 C 001D 310208 be #mode_b, suj 11
0025 C 0020 310309 be #mode_c, suj 12
0026 C 0023 A0 suj 0: ret
0027
0028 C 0024 1201' sujl10: st data_a
0029 C 0026 01FB br suj 0
0030 C 0028 1202' sujll: st data_b
0031 C 002A 01F7 br suj 0
0032 C 002C 1203' suj12: st data_c
0033 C 002E 01F3 br suj 0
0034
0035 dseg
0036 D 0000 |l oop_ctr: ds 1
0037 D 0001 data_a: ds 1
0038 D 0002 data_h: ds 1
0039 D 0003 data_c: ds 1
0040
0041 end

SET
Assign temporary value

Syntax

Symbolname SET expression

VMC-102

Assembler Pseudoinstructions

Description

The SET pseudoinstruction assigns the value expression to symbolname. A symbol defined with the SET
pseudoinstruction can be redefined by a subsequent SET. However, a symbol set with this
pseudoinstruction cannot be the subject of a PUBLIC declaration, nor can it be redefined with EQU.

Example
4

page: 1 <set.ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanple program for SEY
0002 chip | ¢866032 When the defined val ue can be
0003 cseg i nbl ock conput ed{;fexj,z,gi;a;;/jé/e
0004 |
0005 I set 0 Ao col on bet neen the defr ned
0006 symvol and the "SET”
0007 C 0000 220000’ nmv #dd, zz+dd
0008
0009 C 0003 6300 inc a
0010 C 0005 6302 inc
0011
0012 00000001 dd set dd+1 -—
0013
0014 C 0007 220101 mv #dd, zz+dd
0015
o s e e L,
0017 C 000C 7302 dec current/y berng set.
0018
0019 dseg
0020 D 0000 zz: ds 2
0021

_ 0022 end

DB
Define byte data

Syntax

Labelname DB

expression {, expression}

VMC-103

Visual Memory Unit (VMU) Programing Manual

Description

The DB pseudoinstruction stores the 8-bit data value or values represented by expression in program
memory (ROM). Any number of operands may be specified, separated by commas. When two or more
operands are specified, they are evaluated in order left to right, and stored in successive addresses. If there
are two commas with nothing between them, this is interpreted as a zero value.

Example
4)
page: 1 <dbh. AS\W
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ;a sanple programfor DB
0002 chip | c864032
0003 00001234 area equ 1234h
0004 cseg
0005 C 0000 414243 db 'AL,'BL,'C L0
0005 C 0003 00
\% 0006 C 0004 34 —— db area
1* \Warning, value is out of range
0007 C 0005 12 —db hi gh(area)
0008 C 0006 34 _db | ow(ar ea)
0009 end
0x41
0x42
0x43
0x00
0x34
0x12
0x34
- J

In the above example, because the "db area" statement references the symbol "area," which is a 16-bit value,
at assembly time a warning level message, "Value is out of range," is generated. The bottom eight bits of the
value are used in the object code.

DW

Define word data

Syntax

labelname DW expression {, expression}

VMC-104

Assembler Pseudoinstructions

Description

The DW pseudoinstruction stores the 16-bit data value or values represented by expression in program
memory (ROM). The more significant byte is stored first, and the less significant byte at the address one
higher. Any number of operands may be specified, separated by commas. When two or more operands are
specified, they are stored in successive addresses. If there are two commas with nothing between them, this
is interpreted as a zero value.

Example
4)
page: 1 <dw. ASM>
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS

0001 ;a sanpl e program for DW

0002 chip | c864032

0003 00001234 area equ 1234h

0004 cseg

0005 C 0000 004100 ——dw "AL,'B,0

0005 C 0003 420000

0006 C 0006 1234 dw area

0007 C 0008 0012 dw hi gh(ar ea)

0008 C 000A 0034 —dw | ow(ar ea)

0009 end
0x00 |)
0x41
0x00
0x42
0x00
0x00

0x12
0x34
0x00
-
0x12
0x00
0x34
. J

Ifthe DW pseudoinstruction is used to define 8-bit values, the upper 8 bits of the 16-bit result are always 0

DC
Define character string data

Syntax

labelname DC “string"

VMC-105

Visual Memory Unit (VMU) Programing Manual

Description

This stores the ASCII codes of string (a character string constant) in sequence in program memory (ROM).

Reference: For details of character string constants, see Section 20.7, “Character String Constants.”

Example
4 N
cseg i nbl ock
org 1234h 73
mess0: dc "sanpl e message #00\n" ~——— 61
messl: dc "sanpl e message #01\0" 73 6d
table: dw ness0 1 61 70
dw messl 12 6d 6c
34 70 65
T 6c 20
47 65 6d
20 65
6d 73
These val ues assume the segne. o =
allocated from address 0.

73 61
73 67
61 65
67 20
65 23
20 30
23 30
30 00

30

Oa

\- J
DS

Define byte area
Syntax

labelname DS absolute_expression

VMC-106

Assembler Pseudoinstructions

Description

The DS pseudoinstruction allocates any area of data memory (RAM) of the number of bytes specified by
ssion . The absolute_expression must have a value completely determined at
assembly time. This pseudoinstruction can only be used after a DSEG pseudoinstruction.

absolute_expre

Caution: A DS pseudoinstruction can only be used to allocate RAM (a data segment). It cannot be used for flash

memory. Use DB or DW statements instead.

Example
4)
page: 1 <ds. ASW>
ERR SEQ S LCC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple programfor DS
0002 chip | c864032
0003 dseg
0004 — D 0000 area0: ds 1
0005 | —D 0001 areal: ds 2
0006 cseg i nbl ock
0007 C 0000 0200' start: Id areal
0008 C 0002 1201' st areal
0009 C 0004 1202' st areal+l
0010 end
dseg
area0
—areal
- J

The example above defines a 1-byte area named area0 that is immediately followed by a 2-byte area named areal.

MACRO
Define macro

Syntax

name MACRO parameter {, parameter}

Description

The MACRO pseudoinstruction defines a macro. The statements from the MACRO pseudoinstruction to

the following ENDM pseudoinstruction form the body of the macro. The parameter name is the name by
which the macro can be called, which is replaced by the body of the macro, and is therefore mandatory. The
formal parameter list specified by parameter is optional, depending on the macro being defined.

VMC-107

Visual Memory Unit (VMU) Programing Manual

Caution: ~ When calling one macro from within another, or when using a pseudoinstruction such as IFB which
requires angle brackets (< >), a sufficient depth of angle brackets to correspond to the nesting level is
required. See the section "EXITM — End macro expansion” in this chapter.

Example
4 N
_push nacro
push acc
push c -«+—— Push acc, ¢, and b onto the stack.
push b
endm
\- J
4 N
_pop macr o
pop b
pop c -<«————— Popb, ¢, and acc off the stack.
pop acc
endm
\- J
4 N
_shl macro count
i fne count
rept count
rolc
endm
el se
.printx "l ogical shift count is zero !!1\007"
endi f
endm
\- J
Generates code to left shift by the number of positions shown by the parameter.
However, if the parameter is zero, generates no code.
4 N
cseg
start: _push
_shl 0 -—————— Format of source program.
_shl 2
_shl 1
\- J

VMC-108

Assembler Pseudoinstructions

0027

0027+1
0027+2
0027+3
0028

0028+1
0028+2
0028+3
0028+4
0028+5
0028+6
0028+7
0029

0029+1
0029+2
0029+4
0029+1
0029+2
0029+5
0029+6
0029+7
0030

0030+1
0030+2
0030+4
0030+1
0030+5
0030+6
0030+7
0031

0031+1
0031+2

start:

C 0000 6100
C 0002 6103
C 0004 6102

C 0006 FO
C 0007 FO

C 0008 FO

C 0009 7102
C 000B 7103

_push
push acc
push c
push b
_shl 0
ifne 0
rept
rolc
endm
el se
.printx
endi f
_shl 2
i fne 2
rept
endm
rolc
rolc
el se
.printx
endi f
_shl 1
ifne 1
rept
endm
rolc
el se
.printx
endi f
_bop
pop b
pop c

0

"l ogi ca
2

"l ogi ca
1

"l ogi ca

shift count is ze

shift count is ze

shift count is ze

REPT
Repeat macro

Syntax
REPT count

Description

The REPT pseudoinstruction repeats the statements up to the ENDM instruction, generating the number
of copies specified by count. This value can be any integer from 1 to 65535.

VMC-109

Visual Memory Unit (VMU) Programing Manual

Example

In the following example, the area not occupied by the program is filled with NOP codes (for a

256-byte boundary).
~N
page: 1 <rept. ASMW>
ERR SEQ S LOC. OBJ. SCURCE STATEMENTS
0001 ; a sanple program for REPT
0002 chip | ¢864024
0003 cseg i nbl ock
0004 C 0000 230000 start: nov #0, acc
0005 C 0003 1200 st 00h
0006 C 0005 6300 inc acc
0007 C 0007 1201 st 01h
0008 C 0009 6300 inc acc Body of macro definition
0009 C 000B 1202 st 02h is not shown.
0010 C 000D A0 | ast: ret
0011 rept 255-(last-start) .
0013 endm
0013+1 C 000E 00 nop ~
0013+2 C 000F 00 nop
0013+3 C 0010 00 nop Expanded statements
—
0013+240 C OOFD 00 nop
0013+241 C OOFE 00 nop
0013+242 C OOFF 00 nop J
0014 end
. J
IRP

Iteration macro

Syntax

IRP parameter, argument {, argument}...
Description

The IRP pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each argument specified. In each copy, parameter is replaced by the corresponding argument.

VMC-110

Assembler Pseudoinstructions

Example

4)

_push nmacro
irp reg_nane, acc, b, psw, ¢
push reg_nane
endm
endm

_pop macr o

irp reg_nane, c, psw, b, acc
push reg_nane
endm
endm
- J
4 N
0016
0017 _push
0017+1 irp reg_nane, acc, b, psw, ¢
0017+3 endm
0017+1 C 0000 6100 push acc
0017+2 C 0002 6102 push b
0017+3 C 0004 6101 push psw
0017+4 C 0006 6103 push c
0018 _pop
0018+1 irp reg_nane, c, psw, b, acc
0018+3 endm
0018+1 C 0008 6103 push c
0018+2 C 000A 6101 push psw
0018+3 C 000C 6102 push b
0018+4 C 000OE 6100 push acc
- J

IRPC
Character string macro

Syntax

IRPC parameter, string

VMC-111

Visual Memory Unit (VMU) Programing Manual

Description

The IRPC pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each character in string. As distinct from a character string constant, string is not enclosed in quotation
marks. Codes beginning with a backslash cannot be used. In each copy, parameter is replaced by the
corresponding character in string.

Example

4)

; a sanple programfor |RPC
chip | 866032

dseg ‘— Formal parameter

irpc X, 01234567 -=—— Argument string

buf &: ds 2
endm
end
\- J
The formal parameter is replaced by successive characters from the argument string.

The ampersand delimits the formal parameter when it appears within an identifier.

~N
page: 1 <irpc. ASW
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanple programfor |RPC
0002 chip | c866032
0003 dseg
0004 irpc X, 01234567
0006 endm
0006+1 D 0000 buf 0: ds 2
0006+2 D 0002 buf 1: ds 2
0006+3 D 0004 buf 2: ds 2
0006+4 D 0006 buf 3: ds 2
0006+5 D 0008 buf 4: ds 2
0006+6 D 000A buf 5: ds 2
0006+7 D 000C buf 6: ds 2
0006+8 D 000E buf 7: ds 2
- J
ENDM

End macro definition
Syntax

ENDM

VMC-112

Assembler Pseudoinstructions

Description

This marks the end of a macro definition.

Example
Start of macro definition
Start of macro definition
4 I
_push nmacro
'rp reg_nare, <<acc, b, psw, c>> These must be correctly nested.
push reg_nane
endm
endm
N\ J

End of macro definition

End of macro definition

EXITM
End macro expansion

Syntax
EXITM
Description

The EXITM pseudoinstruction ends expansion of a macro. In combination with conditional assembly
pseudoinstructions, this can be used to create different forms of expansion of a macro depending on the
arguments supplied.

VMC-113

Visual Memory Unit (VMU) Programing Manual

Example
The angle brackets must be double,
because one layer is removed in each macro expansion
page: 1 <exitm ASM>)
ERR SEQ S LCC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple programfor EXITM
0002 chip LC866032
0003 rpush nmacro al, a2, a3, a4
0004 ifb <<al>>
0005 .printx "not enough argunent"
0006 exitm
0007 endi f
0008 i fnb <<az2>>
0009 push al
0010 push a2
0011 push a3
0012 push a4
0013 endi f
0014 endm
0015 cseg i nbl ock
0016 rpush acc, b, psw, c
0016+1 ifb <acc>
0016+2 .printx "not enough argument"”
0016+3 exitm
0016+4 endi f
0016+5 ifnb
0016+6 C 0000 6100 push acc
0016+7 C 0002 6102 push b
0016+8 C 0004 6101 push psw
0016+9 C 0006 6103 push c
0016+10 endi f
0017 rpush
0017+1 ifb <>
0017+2 .printx "not enough argunent"
0017+3 exitm
0018 end
N\ T J
L Whenthe first argument is applied, L Since there is no second argument,
this section is assembled. this section is assembled, and the expansion
terminates at EXITM.
LOCAL

Define local label
Syntax

LOCAL name {, name}
Description

The LOCAL pseudoinstruction declares a label which can be used internally to the body of the macro.
During macro expansion, the name declared in the LOCAL pseudoinstruction is replaced by the assembler
with a unique identifier to avoid name conflicts.

VMC-114

Assembler Pseudoinstructions

Example

; sample program for LOCAL

b_ne

skip:
cseg

org
over:

under:

chip
macro
local
be
bro

endm

b_ne
200h
b _ne
nop
nop
end

Ic864008
val,dst
skip
val,skip
dst

#0, over

#0, under

In the above example, the BRO pseudoinstruction is used to define the B_NEmacro which generates different
instructions depending on the destination of a jump; this is then used in the example. The following is the result

of assembly.

N
page: 1 <l ocal . ASM>
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sanple program for LOCAL
0002 chip | 864008
0003 b_ne macro val, dst
0004 | ocal ski p
0005 be val , ski p
0006 bro dst
0007 ski p:
0008 endm
0009
0010 cseg
0011 b_ne #0, over
0011+1 | ocal _L0000000L_
0011+2 C 0000 310003 be #0, _LO000000L _
0011+3 C 0003 11FBO1 bro over
0011+4 _LO000000L_:
0012
0013 org 200h
0014 over: b_ne #0, under
0014+1 | ocal _L0000001L_
0014+2 C 0200 310002 be #0, _LO000001L_
0014+3 C 0203 0101 bro under
0014+4 _L0000001L_:
0015 C 0205 00 nop
0016 C 0206 00 under: nop The identifier declared as LOCAL is
0017 end replaced with different names.

- J

The fornat of the name generated /s L######L (where ###%#% /s a serral nunber starting |

VMC-115

Visual Memory Unit (VMU) Programing Manual

IFDEF
Assemble if defined

Syntax
IFDEF symbol
Description

If symbol is defined, the statements after the IFDEF pseudoinstruction until the next ELSE or ENDIF
are assembled.

Example

_ I
page: 1 <ifdef.ASM>
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sanple programfor |FDEF

0002 chip | ¢864024

0003 00000001 abc equ 1

0004 dseg

0005 D 0000 count: ds 1

0006

0007 cseg i nbl ock

0008 C 0000 230010 nov #10h, acc

0009 i fdef abc

0010 C 0003 8302 add b

0011 C 0005 1200° st count

0012 el se

0013 inc acc

0014 endi f

0015 C 0007 A303 sub c

0016 i fdef efg

0017 add count -—

0018 endi f

0019 end
Symbol efg is undefined
so this section is not assembled.
Symbol abc is defined,
so this section is assembled.

_ J

IFNDEF
Assemble if undefined

Syntax

IFNDEF symbol

VMC-116

Assembler Pseudoinstructions

Description

If symbol is undefined, the statements after the IFNDEF pseudoinstruction until the next ELSE or ENDIF

are assembled.

Example
page: 1 <ifdef.ASM>
ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS

0001 ; a sanple programfor |FDEF

0002 chip | c864024

0003 00000001 abc equ 1

0004 dseg

0005 D 0000 count: ds 1

0006

0007 cseg i nbl ock

0008 C 0000 230010 nov #10h, acc

0009 i fdef abc

0010 C 0003 8302 add b

0011 C 0005 1200 st count

0012 el se

0013 inc acc

0014 endi f

0015 C 0007 A303 sub c

0016 i fdef efg

0017 add count -——

0018 endi f

0019 end
Symbol efg is undefined
so this section is not assembled.
Symbol abc is defined,
so this section is assembled.

.
IFB

Assemble if operand empty

Syntax

IFB <argument>

Description

If argument is empty, the statements after the IFB pseudoinstruction until the next ELSE or ENDIF are
assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.

VMC-117

Visual Memory Unit (VMU) Programing Manual

Example
/page: 1 <ifb. ASM> N\
ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple programfor |FB
0002 chip | c864016
0003 tifb macro arg
0004 ifb <<ar g>> ~—— The angle brackets must
0005 inc a be ouble, because one
0006 el se layer is removed in each
0007 inc b macro expansion
0008 endi f
0009 endm
0010
0011 tifb XXX
0011+1 ifb <XXX>
0011+2 inc a
0011+3 el se
0011+4 C 0000 6302 inc b
0011+5 endi f
0012 tifb
0012+1 ifb <>
0012+2 C 0002 6300 inc a
0012+3 el se
0012+4 inc b
0012+5 endi f This is assembled because the
0013 end argument to ifb is empty.
This is assembled because the
argument to IFB is nonempty.
. J
IFNB

Assemble if operand nonempty
Syntax

IFNB <argument>
Description

If argument is nonempty, the statements after the IFNB pseudoinstruction until the next ELSE or ENDIF are
assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.

VMC-118

Assembler Pseudoinstructions

Example

/page: 1 <ifnb. ASM>

ERR SEQ S LCC. (OBJ. SOURCE STATEMENTS
0001 ; a sanple programfor |FNB
0002 chip | c864016
0003 tifb macro arg
0004 ifnb <<ar g>> ~—— The angle brackets must
0005 inc a be double, because one
0006 el se layer is removed in each
0007 inc b macro expansion
0008 endi f
0009 endm
0010
0011 tifb XXX
0011+1 ifnb <XXX>
0011+2 C 0000 6300 inc a
0011+3 el se
0011+4 inc b
0011+5 endi f
0012 tifb
0012+1 ifnb <>
0012+2 inc a
0012+3 el se
0012+4 C 0002 6302 inc b
0012+5 endi f This is assembled because
0013 end the argument to IFB is empty.
This is assembled because
the argument to IFB is nonempty.
N\

IFE
Assemble if zero

Syntax
IFE expression

Description

If the value of expression is zero, the statements after the IFE pseudoinstruction until the next ELSE or

ENDIF are assembled.

VMC-119

Visual Memory Unit (VMU) Programing Manual

Example
/page: 1 <ife. ASW> N\
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sanple programfor |FE

0002 chip | c866032

0003 cseg

0004 00000003 aa set 3

0005 ife aa- 2

0006 inc 70h

0007 el se

0008 C 0000 7270 dec 70h

0009 endi f

0010 00000002 aa set aa-1

0011 ife aa- 2

0012 C 0002 6270 inc 70h

0013 el se

0014 dec 70h

0015 endi f

0016 end The expression value is zero,
so this section is assembled.
The expression value is zero,
so this section is assembled.

_ J
IFNE

Assemble if nonzero
Syntax

IFNE expression
Description

If the value of expression is nonzero, the statements after the IFNE pseudoinstruction until the next ELSE
or ENDIF are assembled.

VMC-120

Assembler Pseudoinstructions

Example
/page: 1 <ifne. ASW N\
ERR SEQ S LOC. 0BJ. SOURCE STATENMENTS

0001 ; a sanple programfor |FNE

0002 chip | c866032

0003 cseg

0004 00000003 aa set 3

0005 i fne aa-2

0006 C 0000 6270 inc 70h

0007 el se

0008 dec 70h

0009 endi f

0010 00000002 aa set aa-1

0011 i fne aa-2

0012 inc 70h

0013 el se

0014 C 0002 7270 dec 70h

0015 endi f

0016 end The expression value is zero,
so this section is assembled.
The expression value is zero,
so this section is assembled.

. J
IFIDN

Assemble if identical
Syntax

IFIDN <string1>, <string2>
Description

If the two strings string1 and string? are identical, the statements after the IFIDN pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.

VMC-121

Visual Memory Unit (VMU) Programing Manual

Example
/page: 1 <ifidn. AS\W N\
ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple programfor |FIDN
0002 chip | 866032
0003 cseg
0004 tifidn macro argl, arg2
0005 ifidn <<argl>>, <<arg2>>
0006 inc a
0007 el se I— The angle brackets
0008 dec a must he double
0009 endi f because one layer is
0010 endm removed in each
0011 macro expansion.
0012 tifidn same, same
0012+1 ifidn <sane>, <same>
0012+2 C 0000 6300 inc a
0012+3 el se
0012+4 dec a
0012+5 endi f
0013 tifidn sane, not_sane
0013+1 ifidn <same>, <not_sane>
0013+2 inc a
0013+3 el se
0013+4 C 0002 7300 dec a
881?5 223' f The s.trings.are'different,
s0 this section is assembled.
The strings are the same,
so this section is assembled.
N\ J
IFDIF

Assemble if different
Syntax

IFDIF <string1>, <string2>
Description

If the two strings string] and string? are different, the statements after the IFDIF pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.

VMC-122

Assembler Pseudoinstructions

Example
/page: 1 <ifdif.ASM>
ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple programfor |FDF
0002 chip | 866032
0003 cseg
0004 tifidn macro argl, arg2
0005 ifdif <<ar gl>>, <<ar g2>>
0006 inc a
0007 el se I— The angle brackets
0008 dec a must e double,
0009 endi f because one layer is
0010 endm removed in each
0011 macro expansion.
0012 tifidn same, same
0012+1 ifdif <sanme>, <same>
0012+2 inc a
0012+3 el se
0012+4 C 0000 7300 dec a
0012+5 endi f
0013 tifidn sane, not_sane
0013+1 ifdif <same>, <not _sane>
0013+2 C 0002 6300 inc a
0013+3 el se
0013+4 dec a
881?5 z;gl f the sFrings z.are 'different
s0 this section is assembled.
The strings are the same
so this section is assembled.
\
ELSE

Else case of conditional assembly

Syntax
ELSE

Description

The statements after the ELSE pseudoinstruction until the next ENDIF are assembled when the test
condition of the preceding IF pseudoinstruction fails to hold.

Reference: See under "IFDEF - Assemble if defined" in this section.

VMC-123

Visual Memory Unit (VMU) Programing Manual

ENDIF
End conditional assembly

Syntax
ENDIF
Description

Marks the end of a conditional assembly.

Reference: See under "IFDEF - Assemble if defined" in this section.

.PRINTX
Display message during assembly

Syntax
.PRINTX"string"
Description

The .PRINTX pseudoinstruction displays the character string constant string during assembly.

Reference: For details of character string constants, see Section 20.7, “Character String Constants.”

VMC-124

Assembler Pseudoinstructions

Example
Source program Screen display
4 .
; a sanple programfor .PRINTX SANYO (R) LCB6K series Macro As
chip | 866000 Copyright (c) SANYO Electric Co
switch equ 1
.printx "Start" Pass 1
L Start
cseg i nbl ock .. CSEG
.printx "..CSEG' —Condi ti on#1
I d count .. DSEG
add b ——=End
st dat al Source file: pprintx
Chi p nane: LC866000
i fdef switch ROM si ze: 64K byt es
.printx "Condition#l" RAM si ze: 384 bytes
inc datal XRAM si ze: 128 bytes
el se Pass 2
.printx "Condition#2"
dec datal Start
endi f .. CSEG
Condi ti on#1
dseg .. DSEG
.printx “..DSEG' ————————— End
count: ds 1 _
datal: ds 1
.printx "End"
end
Because of the IFDEF pseudoinstruction, this section is not assembled,
so the corresponding output does not appear.
.LIST

Resume listing
Syntax

.LIST
Description

The .LIST pseudoinstruction resumes listing output, when it has been suppressed with the .XLIST
pseudoinstruction.

VMC-125

Visual Memory Unit (VMU) Programing Manual

Example
; a sanple programfor LIST
chip | ¢866200
cseg i nbl ock
nmov #00, count
Id count
add #10h
st b
From the XLIST line onwards, output to the listing file is surpressed.
— . xli st However, line numbers are still counted, so there is no loss of synch.
abc equ 10h
dseg
count: ds 4
Jlist
cseg i nbl ock From the .LIST line onwards, output to
I d b the listings file is resumed.
sub #abc
st count
end

ERR SEQ
0001
0002
0003
0004
0005
0006
0007
L— 0008
0014
0015
0016
0017
0018
0019

-

page: 1 <plist.ASM>

S LOC. 0BJ.

C 0000 220000
C 0003 0200
C 0005 8110
C 0007 1302

C 0000 0302
C 0002 A110
C 0004 1200

SOURCE STATEMENTS
a sanpl e programfor LIST

chip
cseg
mv
I d
add
st

Jlist
cseg
Id
sub
st
end

| ¢866200

i nbl ock
#00, count
count

#10h

b

i nbl ock
b

#abc
count

XLIST
Suppress listing

Syntax
XLIST

Description

The .XLIST pseudoinstruction suppresses output to the listing file.

Reference: See under ".LIST - Resume listing," in this section.

VMC-126

Assembler Pseudoinstructions

.MACRO

List macro expansions
Syntax
.MACRO

Description

The .MACRO pseudoinstruction causes the expanded body of macro calls to be output to the listing file.

Example

; a sanple programfor . MACRO
chip | ¢866200
t.mac macro
inc a
inc b
endm
cseg i nbl ock
t. mac
. Xmacr o

The XMACRO pseudoinstruction ends the

output of expanded macro calls to the listing

This means that the generated statements
and code both disappear.

t.mac

. macr o
t. mc
end

page: 1 <pmacro. ASM>

ERR SEQ S LCC. OBJ.

0001
0002

0004
0005
0006
0007
0008
0009
0009+1 C 0000 6300
0009+2 C 0002 6302
0010
0011
0012
0013
0013+1 C 0008 6300
0013+2 C 000A 6302
0014

0003 t.

The XMACRO pseudoinstruction
resumes causes the listing of
expanded macro calls

SOURCE STATEMENTS

a sanpl e program for . MACRO

mac

chip | 866200
macr o

inc a

inc b

endm

cseg i nbl ock
t. mac

inc a

inc b

. XMacr o

t. mc
. Macr o
t. mc
inc a

inc b
end

VMC-127

Visual Memory Unit (VMU) Programing Manual

.XMACRO
End macro expansion listing

Syntax
.XMACRO
Description

The XMACRO pseudoinstruction ends the output of expanded macro calls to the listing.

Reference: For an example, see under the previous item, "MACRO - List macro expansions."

IF
List skipped statements in conditional assembly

Syntax
IF
Description

The .IF pseudoinstruction causes source program statements skipped in a conditional assembly to be
output to the listing file.

VMC-128

Assembler Pseudoinstructions

Example

toif

page:
ERR

; a sanple programfor .IF

chip | ¢866200
macro argl
ifb <<argl>>

inc a
el se . .

i ne b The XIF pseudoinstruction stops source program
endi f statements skipped in a conditional assembly from
endm being output to the listing file. the part of a conditional
cseg i nbl ock assembly section which is assembled appears in the
t.if listing regardless of this pseudoinstruction.
Cxif
t.if abc
Jf
t.if def The .IF pseudoinstruction causes even the source
end program statements skipped in a conditional

assembly to be output to the listing file.

1 <pif.ASM>
SEQ. S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple programfor .IF
0002 chip | ¢866200
0003
0004 t.if macro argl
0005 ifb <<argl>>
0006 inc a
0007 el se
0008 inc b
0009 endi f
0010 endm
0011 cseg i nbl ock
0012 t.if
0012+1 ifb <>
0012+2 C 0000 6300 inc a
0012+3 el se
0012+4 inc b
0012+5 endi f
0013 CXi f
0014 t.if abc
0014+1 ifb <abc>
0014+3 el se
0014+4 C 0002 6302 inc b
0014+5 endi f
0015 S f
0016 toif def
0016+1 ifb <def >
0016+2 inc a
0016+3 el se
0016+4 C 0004 6302 inc b
0016+5 endi f
0017 end

VMC-129

Visual Memory Unit (VMU) Programing Manual

XIF
End listing of skipped statements

Syntax
XIF
Description

The .XIF pseudoinstruction stops source program statements skipped in a conditional assembly from being
output to the listing file.

Reference: For an example, see under the previous item, ".IF - List skipped statements in conditional assembly."

INCLUDE
Include file

Syntax
INCLUDE filename
Description

The INCLUDE pseudoinstruction causes the source file specified by filename to be read into the current
point in the source program and assembled. The specification of filename must include the extension. The
INCLUDE pseudoinstruction can be nested to a maximum depth of nine. Note that if an END
pseudoinstruction occurs in the included file, this terminates the assembly.

VMC-130

Assembler Pseudoinstructions

Example

| NCLUDE. ASM

; a sanple program for | NCLUDE ~
| NCLUDE | NCLUDE1. ASM
end

| NCLUDEL. ASM

| NCLUDE | NCLUDE2. ASM

I NCLUDE2. ASM

chip 1 866200
cseg
nov #0, acc

MB6K | NCLUDE C CI NCLUDE G

— e

page: 1 <incl ude. ASM>

ERR SEQ S LCC. OBJ. SOURCE STATEMENTS
0001 ; a sanple program for | NCLUDE
0002 | NCLUDE | NCLUDEL. ASM
1/ 0001 | NCLUDE | NCLUDE2. ASM
2/ 0001 chip | ¢866200
2/ 0002 cseg
2/ 0003 C 0000 230000 mv #0, acc

0003
T— Indicates the nesting depth of includes.

TITLE
Set listing title

Syntax
TITLE string
Description

The TITLE pseudoinstruction specifies string as the title for the listing file. Unlike a character string
constant, string is not enclosed in quotation marks. It is also not possible to include codes with the
backslash (\) symbol.

VMC-131

Visual Memory Unit (VMU) Programing Manual

Example
This string appears on all pages of the listing.
/;age: 1 <title. ASM> sanple programis title for the listing A
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanple programfor TITLE
0002 TITLE sanple programis title for the listing
0003 chip | c864024
0004 cseg
0005 C 0000 00 nop
0006 end
- J
PAGE
New page
Syntax
PAGE

Description

The PAGE pseudoinstruction forces a new page in the listing file. The page break appears immediately after
this pseudoinstruction.

Example

VMC-132

Assembler Pseudoinstructions

Source file
(; a sanpl e program for PAGE \
chip | ¢866032
page
cseg
page
nop
page
end
G J
Listing file
/;age: 1 <page. ASW>
ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 a sanpl e program for PAGE
0002 chip |1 ¢866032
page: 2 <page.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS
0003 page
\ 0004 cseg
/page: 3 <page. ASM>
ERR SEQ S LCC. OBJ. SOURCE STATEMENTS
0005 page
_ 0006 C 0000 00 nop
page: 4 <page.ASM> \
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS
0007 page
\ 0008 end
G J

VMC-133

Visual Memory Unit (VMU) Programing Manual

CHIP
Specify chip for assembly

Syntax
CHIP chipname
Description

The CHIP pseudoinstruction informs the assembler of the chip for which assembly is to be carried out.
According to the value of chipname, the assembly changes the reserved words, and carries out a memory
size check. This pseudoinstruction must appear at the beginning of the source file, before any other
instructions or pseudoinstructions. If this pseudoinstruction is not found, the environment variable
CHIPNAME is referenced. If the chip name specified by this pseudoinstruction is different from the chip
specified by the CHIPNAME environment variable, a warning level error is issued.

Note: For developing Visual Memory applications, the chip name must be set to LC868700.

COMMENT
Add comment to object file

Syntax
COMMENT comment_string
Description

The COMMENT pseudoinstruction adds a comment directly into the assembled object code. Unlike a
character string constant, comment_string is not enclosed in quotation marks. It is also not possible to
include codes with the backslash (\) symbol. The comment is stored from byte 680 of the object file. A
maximum of 255 characters can be used for the comment.

VMC-134

Assembler Pseudoinstructions

Example

Source file

; a sanple program for COMVENT
chip | c866024
coment This is a coment string enmbedded into OBJ file
cseg
nop
end

Dump of object file (part only)
P : P y —— Character count (1 byte)

/00000260 00 00 00 00 00 00 00 00-00 Op 00 00 00 00 00 00 A
00000270 00 00 00 00 00 60 00 00-80 :E 00 00 80 00 00 0O B

00000280 C6 92 40 2B 4D 38 36 4B-20 20 20 20 63 6F 6D 6D **+MB6K comm
00000290 65 6E 74 2E 41 53 4D 20-63 6D 6D 65 6E 74 20 ent. ASM comment

000002A0 4C 43 38 36 36 30 32 34- 3 68 69 73 20 69 73 LC8660240This is
000002B0 20 61 20 63 6F 6D 6D 65-6E 74 20 73 74 72 69 6E a conmment strin
000002C0 67 20 65 6D 62 65 64 64-65 64 20 69 6E 74 6F 20 g enmbedded into

000002D0 4F 42 4A 20 66 69 6C 65-00 00 01 01 00 01 00 05 OBJ file........
000002E0 00 01 00 00 00 00 OO 00-00 00 EO OO0 OO0 00 OO C4 *
000002F0 00 00 00 00 C4 00 00 00-00 24 00 00 01 00 04 01*....$......
00000300 00 00 00 24 .8

- J

WIDTH
Specify columns in listing file

Syntax
WIDTH number
Description

The WIDTH pseudoinstruction specifies the number of character columns in the listing file, that is, the
number of characters in each line. The parameter number may be any value from 72 to 132 inclusive, but
the recommended minimum is the number of columns of the source file plus 28. Although this
pseudoinstruction can appear any number of times in a single source file, normally it is specified once only
at the beginning of the file. If this pseudoinstruction is not found, the default listing file has 132 columns.

VMC-135

Visual Memory Unit (VMU) Programing Manual

Example
WIDTH is evaluated on pass 1 and pass 2, but
the listing output occurs in pass 2 only, so the
last value found in pass 1is used here, causing
the lines to be folded at 78 characters _|
4 1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234$67890
page: 1 <wi dt h. ASM> : :
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS : 5
0001 ; a sanple programfor WDTH
0002 chip | ¢866200 ; ;
0003 cseg ; thisis along line to indicat :
0003 e WDTH s ef fect ; :
0004 WDTH 72 ; :
0005 C 0000 00 nop ; thisis also along line
0005 to indicate WDTH s effect . :
0006 WDTH 78 ' '
0007 end
N\ J
Carriage return lines and linefeed is inserted at character position
72, folding the lines here.
BANK

Specify RAM bank
Syntax
BANK expression

Description

The BANK pseudoinstruction supplies the bank number for symbols defined by DS pseudoinstructions for
RAM after a DSEG pseudoinstruction.

VMC-136

Assembler Pseudoinstructions

Example
/page: 1 <bank. ASM> N\
ERR SEQ S LCC. (OBJ. SOURCE STATEMENTS

0001 ; a sanple program for BANK

0002 chip | c866032

0003 cseg i nbl ock

0004

0005 C 0000 220000 nov #0, dat al

0006

0007 C 0003 6200 inc dat al

0008 C 0005 0200 I d datal

0009 C 0007 1201 st dat a2

0010

0011 C 0009 6200 inc dat aa

0012 C 000B 0200 Id dat aa

0013 C 000D 1202 st dat ac

0014

0015 dseg

0016 bank 0

0017 D 0000 datal: ds 1

0018 D 0001 data2: ds 1

0019 D 0002 data3: ds 1

0020

0021 bank 1

0022 D 0000 dataa: ds 1

0023 D 0001 datab: ds 1

0024 D 0002 datac: ds 1

0025 These symbols are

0026 end assigned to bank 1.
These symbols are
assigned to bank 0

N\ J
CHANGE

Jump between flash memory and ROM
Syntax

CHANGE symbol

Description

For the LC86800 series, this is a special jump instruction for switching between code in flash memory and
code in ROM (system BIOS). The operand symbol must have been declared with the pseudoinstruction
OTHER_SIDE_SYMBONote that this pseudoinstruction is special to the LC86800 series, and in other cases
an error results.

Note: For Visual Memory, use this instruction to call an operating system function.

VMC-137

Visual Memory Unit (VMU) Programing Manual

Reference: For details of operating system function calls, refer to the "System BIOS" section of the Visual Memory
Hardware Manual.

Example

/page: 1 <change. ASM>)
ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple program for CHANGE
0002 chip | ¢868032
0003 ot her _si de_synbol far_away
0004
0005 cseg
0006 C 0000 BgOD21' change far_away
0006 C 0003 0000
- J
RADIX
Specify default radix
Syntax

RADIX expression

Description

The RADIX pseudoinstruction specifies the radix, or base, of a numeric constant with no explicit radix
indication. The value of expression must be a constant value from the set 2, 8, 10, and 16. This specification
takes effect from this statement until a subsequent RADIX pseudoinstruction. If this pseudoinstruction is
not present, the default radix is 10.

Example

Xxx SET 10
RADIX 16

XXX SET 10
RADIX 2

XXX SET 10

JMPO

Optimized JMP instruction

Syntax

JMPO expression

interpreted by default as 10 decimal.
interpreted as 16 decimal, because of the radix value 16.

interpreted as 2 decimal, because of the radix value 2.

VMC-138

Assembler Pseudoinstructions

Description

The JMPO pseudoinstruction compares expression with the current location, and if this is a jump within
the same block (only the bottom 12 bits of the addresses are different) generates a JMP instruction.
Otherwise, that is, if the address is in a different block, or if the address cannot be determined because for

example it is an external symbol, then this generates a JMPF instruction.

Example

JMP instruction when within the same memory block

-

page
ERR

SEQ
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

1 <j npo. AS\W>
S LOC. 0BJ.

C 0000 2803
C 0002 00

C 0003 00

C 0004 211000

C 1000 00

SQURCE STATEMENTS

; a sanple programfor JMPO
chip | 866032
cseg

j mpo near -
nop
near: nop

j npo far -

org 1000h
far: nop
end

BRO

Optimized BR instruction

Syntax

BRO expression

Description

JMPF instruction when in a different memory block

BRO pseudoinstruction compares expression with the current location, and if the branch address is within
the range -128 to +127 generates a BR instruction; when outside the range -128 to +127 generates a BRF
instruction.

VMC-139

Visual Memory Unit (VMU) Programing Manual

Example
Generates a BR instruction because destination is within the range -128 to +127.
/page: 1 <bro. ASM>)
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanple program for BRO
0002 chip | 866032
0003 cseg
0004 C 0000 0101 bro near -——
0005 C 0002 00 nop
0006 C 0003 00 near: nop
0007 C 0004 11FA00 bro far B
0008
0009 org 100h
0010 C 0100 00 far: nop
0011 end
N\ J
Generates a BRF instruction because destination is outside the range -128 to +127.
CALLO

Optimized CALL instruction
Syntax

CALLO expression
Description

The CALLO pseudoinstruction compares expression with the current location, and if this is a call within the
same block (only the bottom 12 bits of the addresses are different) generates a CALL instruction. Otherwise,
that is, if the address is in a different block, or if the address cannot be determined because for example it is
an external symbol, then this generates a CALLF instruction.

VMC-140

Assembler Pseudoinstructions

Example
CALL instruction when within the same memory block.
/page: 1 <CALLo. ASM> \
ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple program for CALLO
0002 chip | ¢866032
0003 cseg
0004 C 0000 0805° CALLo near -
0005 C 0002 201000' CALLo far -—
0006
0007 C 0005 00 near: nop
0008 C 0006 A0 ret
0009
0010 org 1000h
0011 C 1000 00 far: no
. P J
CALLF instruction when in a different memory block.
BZO

BZ instruction guaranteeing no address error
Syntax

BZO expression

Description

The BZO macro generates code equivalent to the BZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BZO macro uses a BNZ instruction, which is the logical inverse of the BZ instruction, and a BRO
instruction. Enter the branch destination for expression.

Code generation macro

; ** Branch near relative address if accumulator is zero **

bzo macro r8
local _next_
bnz _hext_
bro r8
next:
endm

VMC-141

Visual Memory Unit (VMU) Programing Manual

BNzO
BNZ instruction guaranteeing no address error

Syntax
BNZO expression
Description

The BNZO macro generates code equivalent to the BNZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNZO macro uses a BZ instruction, which is the logical inverse of the BNZ instruction, and a BRO
instruction. Enter the branch destination for expression.

Code generation macro

; ** Branch near relative address if accumulator is not zero ***

bnzo macro r8
local _next_
bz _next_
bro r8
next:
endm
BPO

BP instruction guaranteeing no address error
Syntax

BPO expression

Description

The BPO macro generates code equivalent to the BP instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BPO macro uses a BP instruction, and BR and BRO instructions. Enter the branch destination

for expression.

VMC-142

Assembler Pseudoinstructions

Code generation macro

; ** Branch near relative address if direct bit is one **

bpo macro do,b3,r8
local _next_
local _true_
bp do,b3,_true
br _next_
true: bro r8
next:
endm
BPCO

BPC instruction guaranteeing no address error
Syntax

BPCO expression

Description

The BPCO macro generates code equivalent to the BPC instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BPCO macro uses a BPC instruction, and BR and BRO instructions. Enter the branch destination for
expression.

Code generation macro

; ** Branch near relative address if direct bit is one,

; and clear ***
bpco macro do,b3,r8
local _next_
local _true_
bpc do,b3,_true
br _next_
true: bro 8
next:
endm

VMC-143

Visual Memory Unit (VMU) Programing Manual

BNO
BN instruction guaranteeing no address error

Syntax
BNO expression

Description

The BNO macro generates code equivalent to the BN instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNO macro uses a BN instruction, and BR and BRO instructions. Enter the branch destination for

expression.

Code generation macro

; ** Branch near relative address if direct bit is zero ***

bno macro do,b3,r8
local _next_
local _true_
bn do,b3,_true
br _next_
true: bro r8
next:
endm
DBNZzZO

DBNZ instruction guaranteeing no address error
Syntax
DBNZO expression

Description

The DBNZO macro generates code equivalent to the DBNZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The DBNZO macro uses a DBNZ instruction, and BR and BRO instructions. The function of expression is
the same as in the DBNZ instruction.

VMC-144

Assembler Pseudoinstructions

Code generation macro

; ** Decrement direct byte and branch near relative address
: if direct byte is not zero **

dbnzo macro do,r8
local _hext_
local _true_
dbnz do, true
br _next_

true: bro r8

next:
endm

BEO

BE instruction guaranteeing no address error
Syntax

BEO expression

Description

The BEO macro generates code equivalent to the BE instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BEO macro uses a BNE instruction and BRO instruction. The function of expression is the same as in
the BE instruction.

Code generation macro

; ¥* Compare immediate data or accumulator and branch
: near relative address if equal **

beo macro arg0,argl,arg2
local _hext_
local _txen_
ifb <<arg2>>
bne arg0,_next_
bro argl
next:
else
bne arg0,argl, txen_
bro arg2
_txen :
endif
endm

VMC-145

Visual Memory Unit (VMU) Programing Manual

BNEO
BNE instruction guaranteeing no address error

Syntax
BNEO expression
Description

The BNEO macro generates code equivalent to the BNE instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNEO macro uses a BE instruction and BRO instruction. The function of expression is the same as in
the BNE instruction.

Code generation macro

; ¥* Compare immediate data or accumulator and branch
; near relative address if equal ***

bneo macro arg0,argl,arg2
local _next_
local _txen_
ifb <<arg2>>
be arg0,_next_
bro argl
next:
else
be arg0,argl, txen_
bro arg2
txen:
endif
endm

VMC-146

Sega@'Dreamcast

LC86K Instruction Summary

This chapter describes general features of flag handling and addressing, before the complete listing of the

instruction set.

Instruction Summary

Arithmetic Instructions

The arithmetic instructions operate principally on the accumulator, and carry out the four basic operations,
incrementing, and decrementing. The carry, auxiliary carry, and overflow flags are set according to the results of

arithmetic operations, as follows.

Table 2.38 CY (carry flag)

Arithmetic operation Operation result cY
Add instructions When there is a carry from bit 7 (MSB) 1
When there is no carry from bit 7 (MSB) 0
Subtraction and comparison When a borrow from bit 7 (MSB) is required 1
instructions
When no borrow from bit 7 (MSB) is required 0
Multiplication and division instructions 0

VMC-147

LC86K Instruction Summary

Table 2.39 AC (auxiliarycarry flag)

Table 2.40 OV (overflow flag)

Arithmetic operation Operation result AC
Add instructions When there is a carry from bit 3 1
When there is no carry from bit 3 0
Subtraction instructions When a borrow from bit 3 is required 1
When no borrow from bit 3 is required 0
Arithmetic operation Operation result ov
Add and subtract instructions When there is a carry from bit 7 but not from bit 6 1
When there is a carry from bit 6 but not from bit 7 1
When an overflow error occurs in a signed variable 1
addition instruction
All other cases 0
Multiplication instructions When the product is 256 or more 1
When the product is 255 or less 0
Division instructions When the divisor is zero 1
When the divisor is nonzero 0

Logical Instructions

Logical instructions carry out logical rotates.

Data Transfer Instructions

The RORC and ROLC instructions also affect the carry flag.

The data transfer instructions read, write, back up, and exchange data to and from RAM and special function

registers (SFR).

Jump Instruction

A jump instruction is an unconditional transfer to a new instruction.

VMC-148

LC86K Instruction Summary

Conditional Branch Instructions

Conditional branch instructions determine the value of a specified condition as true or false, and transfer to the
specified destination if true. If false, there is no transfer, and control passes to the next instruction.

The BE and BNE instructions branch on the basis of a comparison of two 8-bit data values, and the carry flag is set
or cleared according to the result, as follows.

Operands Carry flag (CY)
#i8, 18 d9, r8 @R, #i8, 18
Magnitude relation #i8 > (ACC) (d9) > (ACC) #8 > ((R)) 1
#i8 = (ACC) (d9) = (ACC) #i8 = ((Rj)) 0
(d9) < (ACC) (d9) < (ACC) #i8 < ((R))) 0

Subroutine Instruction

The subroutine instruction performs an unconditional branch to another instruction. An address is stored on the
stack In order that, after the branch, a return instruction (RET or RETI) can return to the instruction following the
CALL instruction. The stack is in RAM, and is pointed to by the stack pointer (SP). Enough RAM must be reserved
for the stack to allow for the nesting level of subroutine calls.

Note: The Visual Memory stack is held in bank 0 of RAM. When an application is started, the system
BIOS sets it to 7FH. When a value is pushed onto the stack, the stack pointer is incremented before
storing the data, so the actual values are stored from address 80H. The stack consumes addresses
upwards from 7FH to OFFH.

The internal clock function also needs 20 bytes on the stack.

Bit Manipulation Instructions

The bit manipulation instructions operate on individual bits of specified RAM or special function registers (SFR).
Other Instructions

The NOP instruction has no effect other than to consume one clock cycle.

Macro Instruction

This is a dedicated standard macro instruction. It switches between the execution of the system BIOS in ROM and
the application program in flash memory.

Addressing

There are a number of different methods of addressing for flash memory, RAM, and special function
registers (SFRs).

VMC-149

Visual Memory Unit (VMU) Programing Manual

Program Memory Addressing

The program ROM address of the destination of a jump, branch, or subroutine instruction is shown by the
instruction code. In this case the address is shown by one of the following addressing methods.

r8 (8-bit relative addressing)

The transfer is to an address in the range -128 to +127 from the start address of the currently executed
instruction. This is shown by a signed 8-bit value.

[80H to 7FH: -128 to +127]

r16 (16-bit relative addressing)

This allows a transfer anywhere within the 64K-byte flash memory address space. It is shown by an
unsigned 16-bit value.

[0000H to FFFFH; +0 to +65535]

a12 (12-bit absolute addressing)

The top four bits PC15 to PC12 (the current page) of the address of the instruction after the current
instruction (PC15 to PC00) are kept the same, and the remaining 12 bits (PC11 to PC00) are replaced by the
address data (000H to FFFH). This allows a jump anywhere within the current page (PC15 to PC12).

Caution:

Care is required, because if a JMP instruction or CALL instruction occurs at the final address within a
page, the current page changes.

a16 (16-bit absolute addressing)

This allows a transfer anywhere within the 64K-byte flash memory address space.

The 16-bit value is used unchanged as the address.
[0000H to FFFFH: 0 to 65535]

Table jumps

If the destination address of a jump is on the stack, a RET instruction forces the address into the program
counter (PC), thus achieving a jump.

In Example 1, the first line sets the stack pointer (SP) to 09H. Executing a RET instruction now causes a jump
to the address whose upper byte is the value of byte 08H in RAM, and whose lower byte is the value of byte
07H in RAM; the jump address is set accordingly in lines 2 and 3.

Since the jump destination is PC = 0C13H, in line 2 the lower byte is set to 13H, and in line 3 the upper byte
is set to 0CH. In the fourth line, when the RET instruction is executed, the stack pointer is set to 07H, and a
jump to 0C13H occurs. However, in Example 1, since the stack pointer value must be known explicitly,
normally a PUSH instruction is used as in Example 2.

VMC-150

LC86K Instruction Summary

Example 1

MOV #09H,SP
MOV #13H,07H
MOV #0CH,08H
RET

Example 2

MOV #13H,ACC
PUSH ACC

MOV #0CH,ACC
PUSH ACC

RET

Example 3 carries out a 128-way branch to 00H to 7FH on the basis of the values of RAM address 70H.

In lines 1 and 2, the lower byte of the branch destination address is set, and in line 4 the upper byte of the
address. The RET instruction in line 6 branches to the jump table in lines 7 and 8, thence to the branch
destination.

This is referred to as a "table jump" and can be used to branch to a number of different
addresses according to conditions.

Example 3

AO: LD 070H

ROL

ADD #LOW(AL)

PUSH ACC

MOV #HIGH(AL),ACC

PUSH ACC

RET

ORG 0COOH
Al: IMP B0OO jump table

EMP B7F

BOO: XXXXXX

VMC-151

Visual Memory Unit (VMU) Programing Manual

RAM and Special Function Register (SFR) Addressing

d9 (direct addressing)

Addresses RAM or SER directly with nine bits d8 to d0.
Addresses 000H to OFFH . . . specify RAM.
Addresses 100H to 1FFH . . . specify an SFR.

b3 (bit addressing)

In the bit manipulation instructions (SET1, CLR1, NOT1), and the BP, BPC, and BN instructions, 3-bit
bit-address data is used in combination with d9 (direct addressing), to specify individual bits within RAM
or an SFR.

M5B LSB

7| 2| 7 Z| 2| Z 2| 7

7 6 5 4 3 2 7 g

Bit-adaress value (111) (110) (101) (100) (011) (010) (001) (000)
@Rj (indirect addressing)

For indirect addressing the destination RAM or SFR address is stored in a particular location in RAM, and
the access made through specification of this address in RAM.

Reference: For more details of indirect addressing refer to the Visual Memory Hardware Manual.

The particular addresses in RAM are referred to as indirect address registers, and are indicated as @R0, @R1,
@R2, and @R3. The indirect address registers are accessed using a 2-bit indirect addressing value (j1, j0),
allowing a specification from @R0 to @R3.

Abank of four indirect address registers is assigned to the first 16 bytes (addresses 00H to 0FH) of each
RAM bank. The RAM bank is selected with RAMBKO (bit 1 of PSW). The indirect address register bank is
selected with IRBK1 and 0 (bits 4 and 3 of PSW).

When an indirect addressing instruction is executed, for the indirect address register and the RAM address
specified by the indirect address register, the RAM address used is in the RAM bank specified by IRBK1 and
0 and RAMBKQO. On a reset, IRBKO, and 1 are both zero, and RAMBKO is also set to zero, so the absolute
addresses of @R0, @R1, @R2, and @R3 are respectively 00H, 01H, 02H, and 03H in RAM bank 0.

Indirect address registers . . . @R3 @R2 @R1 @R0

Indirect addressing values (j1, jO) . . . (11) (10) (01) (00)

Indirect addressing register map

VMC-152

LC86K Instruction Summary

Indirect address register | Function Bank 0 (IRBK1=0) Bank 1 (IRBK1=0) Bank 2 (IRBK1=1) Bank 3 (IRBK1=1)
(IRBKO = 0) (IRBKO = 1) (IRBKO = 0) (IRBKO = 1)

@R0 RAM access RAM 00H RAM 04H RAM 08H RAM OCH

@R1 RAM access RAM 01H RAM 05H RAM 09H RAM ODH

@R2 SFR access RAM 02H RAM 06H RAM 0AH RAM OEH

@R3 SFR access RAM 03H RAM 07H RAM 0BH RAM OFH

Examples of indirect addressing

The following are examples of calculation using indirect address registers.

In Example 1, in the second line immediate data 68H is stored in RAM (address 00H). Using RAM (address
00H) as an indirect address register, RAM (address 68H) is accessed. For example, in line 3, the indirect
address register (@R0) is specified to store immediate data 10H in RAM (address 68H).

In line 5, by specifying the indirect address register (@RO0), the contents of RAM (address 68H) is added to
the accumulator.

Example 1

MOV #055H,ACC
MOV #068H,00H
MOV #010H,@R0
ADD #015H

ADD @RO

When RAMBK = 0 (RAM bank 0) When RAMBK = 1 (RAM bank 1)

0 0
7 AJ\ AJ\\\ @Ro
@R0

oK

RAM address RAM address
referenced by referenced by
@R0O @R0O

RAM bank 0 RAM bank 1 RAM bank 0 RAM bank 1

The next example uses indirect addressing to access an SFR.

In Example 2, the first two lines clear bits 4 and 3 of the PSW, selecting RAM addresses 00H to 03H for the
indirect address registers. In the fourth line immediate data 02H is stored in RAM address 02H. Then using
RAM (address 02H) as an indirect address register accesses RAM (address 02H). For example, in line 5,
immediate data 12H is stored by specifying the indirect address register (@R2) in an SFR (address 02H: B
register). In line 6, the indirectly addressed B register is incremented.

VMC-153

Visual Memory Unit (VMU) Programing Manual

Example 2

CLR1 PSW 4

CLR1 PSW,3

MOV #0ACH,ACC
MOV #002H,02H
MOV #012H,@R2
INC @R2

The next example uses bank-switching with the PSW, to indirectly address an SFR.

In Example 3, the first two lines set the PSW bank to 2, so that RAM addresses 08H to 0BH are used as
indirect address registers. In line 4, immediate data 02H is stored in RAM address 0BH. Using RAM
(address 0BH) as an indirect address register accesses RAM (address 02H). For example, in line 5 immediate
data 12H is stored in the SFR (address 02H: B register) by specifying the indirect address register (@R2). In
line 6 the indirectly addressed B register is incremented.

Example 3

SET1 PSW4

CLR1 PSW,3

MOV #0ACH,ACC
MOV #002H,0BH
MOV #012H,@R2
INC @R2

VMC-154

Sega@'Dreamcast

Instruction Set Reference

The comprehensive LC86K instruction set includes some 70 instructions. Identified by some 45 operation codes
these can be grouped into the following eight categories.

Arithmetic instructions ADD, ADDC, SUB, SUBC, INC, DEC, MUL, DIV
Logical instructions AND, OR, XOR, ROL,ROLC,ROR, RORC

Data transfer instructions LD, ST, MOV, LDC, PUSH, POP, XCH

Jump instructions JMP. JMPF, BR, BRF

Conditional branch instructions BZ, BNZ, BP, BPC, BN, DBNZ, BE, BNE
Subroutine instructions CALL, CALLF, CALLR, RET, RETI

Bit manipulation instructions CLR1, SET1, NOT1

Miscellaneous instruction NOP

Macro instruction CHANGE

VMC-155

Instruction Set Reference

Arithmetic Instructions

ADD _i8
ADD immediate data to accumulator

Instruction code 1000000 1i7i6i5i4i3i2i1i0 (81H)
Byte count 2

Cycles 1

Function (ACC) ~ (ACC) + #i8
Flags affected CY,AC, 0V

Interrupts enabled Yes

Description

Adds the contents of the accumulator and immediate data (i7 to i0), and stores the result in the accumulator.

Example

ACC Cy AC ov
MOV #055H,ACC 55H - - -
ADD #013H 68H 0 0 0
ADD #00AH 72H 0 1 0
ADD #OOFH 81H 0 1 1
ADD #080H O01H 1 0 1

VMC-156

Instruction Set Reference

ADD d9
ADD direct byte to accumulator

Instruction code 100000 1d8 d7d6d5d4d3d2d1dO (82H to 83H)
Byte count 2

Cycles 1

Function (ACC) _ (ACC) + (d9)

Flags affected CY,AC, oV

Interrupts enabled Yes

Description

Adds the contents of the accumulator and the contents of the RAM address or SFR specified by d8 to dO,
and stores the result in the accumulator.

Example 1

ACC RAM CY AC ov

23H

MOV #055H,ACC 55H - - - -
MOV #068H,023H 55H 68H - - -
ADD #00CH 61H 68H 0 1 0
ADD 023H C9H 68H 0 0 1
Example 2

ACC B CY AC ov
MOV #070H,ACC 70H - - - -
MOV #095H,B 70H 95H - - -
ADD #002H 72H 95H 0 0 O
ADD B O7H 95H 1 0 O

VMC-157

Visual Memory Unit (VMU) Programing Manual

ADD @Rj
ADD indirect byte to accumulator

Instruction code 10000 1j1j0 (84H to 87H)

Byte count 1

Cycles 1

Function (ACC) ~ (ACO)+((R)))j=0,1,2,3
Flags affected CY,AC,QV

Interrupts enabled Yes

Description

Adds the contents of the accumulator and the contents of the RAM address or SFR specified by the indirect
address register specified by j1 to jO, and stores the result in the accumulator.

Example 1

ACC RAM RAM CY AC oV

O0H 68H

MOV #055H,ACC 55H - - - -
MOV #068H,000H 55H 68H - - -
MOV #010H,@RO 55H 68H 10H - - -
ADD #015H 6AH 68H 10H 0 0 O
ADD @RO 7AH 68H 10H 0 0 O
Example 2

ACC RAM TRL CY AC ov

02H

MOV #OAAH,ACC AAH - - - - -
MOV #004H,002H AAH 04H - - - -
MOV #055H,@R2 AAH 04H 55H - - -
ADD #001H ABH 04H 55H 0 0 O
ADD @R2 O0H 04H 55H 1 1 0

VMC-158

Instruction Set Reference

ADDC _ii8
ADD immediate data and carry flag to accumulator

Instruction code 1001000 1i7i6i5i4i3i2i1i0 (91H)

Byte count 2

Cycles 1

Function (ACC) ~ (ACC) + (CY) + #i8
Flags affected CY,AC, oV

Interrupts enabled Yes

Description

Adds the contents of the accumulator and carry flag to the immediate data (i7 to i0), and stores the result
in the accumulator.

Example
ACC CY AC ov

MOV #055H,ACC 55H - - -
ADD #013H 68H 0 0 0
ADDC #00AH 72H 0 1 0
ADDC #00FH 81H 0 1 1
ADDC #080H 01H 1 0 1
ADDC #001H 03H 0 0 0

VMC-159

Visual Memory Unit (VMU) Programing Manual

ADDC d9
ADD direct byte and carry flag to accumulator

Instruction code 100100 1d8 d7d6d5d4d3d2d1d0 (92H to 93H)
Byte count 2

Cycles 1

Function (ACC) ~ (ACC) + (CY) + (d9)

Flags affected CY,AC,QV

Interrupts enabled Yes

Description

Adds the contents of the accumulator and carry flag to the contents of the RAM address or SFR specified
by d8 to d0, and stores the result in the accumulator.

Example 1

ACC RAM CY AC OV

23H

MOV #055H,ACC 55H - - - -
MOV #068H,023H 55H 68H - - -
ADD #00CH 61H 68H 0 1 O
ADDC 023H C9H 68H 0O 0 1
SET1 PSW,7 CoH 68H 1 0 1
ADDC 023H 32H 68H 1 1 0
Example 2

ACC B Cy AC oV
MOV #070H,ACC 70H - - - -
MOV #095H,B 70H 95H - - -
ADD #002H 72H 95H 0O 0 O
ADDC B O7H 95H 1 0 O
ADDC B 9DH 95H 0O 0 O

VMC-160

Instruction Set Reference

ADDC @Rj
ADD indirect byte and carry flag to accumulator

Instruction code 1001 01j1j0 (94H to 97H)

Byte count 1

Cycles 1

Function (ACC) ~ (ACO)+(CY)+((Ri)j=0,1,2,3
Flags affected CY,AC, oV

Interrupts enabled Yes

Description

Adds the contents of the accumulator and carry flag to the contents of the RAM address or SFR specified
by the indirect address register specified by j1 to jO, and stores the result in the accumulator.

Example 1
ACC RAM RAM Cy AC oV
O0H 68H
MOV #055H,ACC 55H - - - - -
MOV #068H,000H 55H 68H - - - -
MOV #010H,@RO 55H 68H 10H - - -
ADD #015H 6AH 68H 10H 0 0 O
ADDC @RO 7AH 68H 10H 0 0 O
SET1 PSW,7 7AH 68H 10H 1 0 O
ADDC @RO 8BH 68H 10H 0 0 1
Example 2
ACC RAM TRL CY AC oV
02H
MOV #0AAH,ACC AAH - - - - -
MOV #004H,002H AAH 04H - - - -
MOV #055H,@R2 AAH 04H 55H - - -
ADD #001H ABH 04H 55H 0 0 O
ADDC @R2 OOH 04H 55H 1 1 0
ADDC @R2 56H 04H 55H 0 0 O

VMC-161

Visual Memory Unit (VMU) Programing Manual

SUB _i8

Subtract immediate data from accumulator

Instruction code 1010000 1i7i6i5i4i3i2i1i0 (A1H)
Byte count 2

Cycles 1

Function (ACC) ~ (ACC) - #i8
Flags affected CY,AC, OV

Interrupts enabled Yes

Description

Subtracts immediate data (i7 to i0) from the contents of the accumulator, and stores the
result in the accumulator.

Example
ACC CY AC ov

MOV #055H,ACC 55H - - -
SuUB #013H 42H 0O 0 O
SuUB #003H 3FH 0O 1 O
SUB #03FH OOH 0O 0 O
SUB #002H FEH 1 1 0
SUB d9

Subtract direct byte from accumulator

Instruction code 101000 1d8 d7d6d5d4d3d2d1d0 (A2H to A3H)

Byte count 2

Cycles 1

Function (ACC) ~ (ACC) - (d9)
Flags affected CY,AC,QV

Interrupts enabled Yes

Description

Subtracts the contents of the RAM address or SFR specified by d8 to dO from the contents
of the accumulator, and stores the result in the accumulator.

Example 1

ACC RAM Cy AC oV

23H

MOV #055H,ACC 55H - - - -
MOV #068H,023H 55H 68H - - -
SsuB #00CH 49H 68H 0 1 0
suB 023H E1H 68H 1 0 O
Example 2

ACC RAM CY AC OV
MOV #080H,ACC 80H - - - -
MOV #095H,B 80H 95H - - -
SuUB #002H 7EH 95H 0 1 1
SuUB B E9H 95H 1 0 1

VMC-162

Instruction Set Reference

SUB @R;j
Subtract indirect byte from accumulator

Instruction code 10100 1j1j0 (A4H to A7H)

Byte count 1

Cycles 1

Function (ACC) < (ACO)-((R)j=0,1,2,3
Flags affected CY,AC, oV

Interrupts enabled Yes

Description

Subtracts the contents of the RAM address or SFR specified by the indirect address register specified by j1
to jO from the contents of the accumulator, and stores the result in the accumulator.

Example 1
ACC RAM RAM CY AC OV
00H 68H
MOV #055H,ACC 55H - - - - -
MOV #068H,00H 55H 68H - - - -
MOV #010H,@RO 55H 68H 10H - - -
SUB #016H 3FH 68H 10H 0 1 O
sSuB @RO 2FH 68H 10H 0 O O
Example 2
ACC RAM TRL CY AC OV
02H
MOV #0AAH,ACC AAH - - - - -
MOV #004H,002H AAH 04H - - - -
MOV #0AAH,@R2 AAH 04H AAH - - -
suB #001H AQH 04H AAH 0O 0 O
suB @R2 FFH 04H AAH 1 1 O

VMC-163

Visual Memory Unit (VMU) Programing Manual

SUBC _ii8

Subtract immediate data and carry flag from accumulator

Instruction code 1011000 1i7i6i5i4i3i2ili0 (B1H)

Byte count 2

Cycles 1

Function (ACC) " (ACC) - (CY) - #i8
Flags affected CY,AC, 0V

Interrupts enabled Yes

Description

Subtracts immediate data (i7 to i0) and carry flag from the contents of the accumulator, and stores the result
in the accumulator.

Example
ACC CY AC oV

MOV #055H,ACC 55H - - -
SuUB #013H 42H 0O 0 O
SUBC #003H 3FH 0O 1 O
SUBC #03FH OOH 0O 0 O
SUBC #002H FEH 1 1 0
SUBC #03EH BFH 0O 1 O

VMC-164

Instruction Set Reference

SUBC d9

Subtract direct byte and carry flag from accumulator

Instruction code

Byte count

Cycles

Function

Flags affected
Interrupts enabled

Description

(ACC)
CY, AC, OV

< (ACC)- (CY) - (d9)

101100 1d8 d7d6d5d4d3d2d1d0 (B2H to B3H)

Subtracts the contents of the RAM address or SFR specified by d8 to d0 and carry flag from the contents of

the accumulator, and stores the result in the accumulator.

Example 1

MOV
MOV
SUB
SUBC
SUBC

Example 2

MOV
MOV
SuUB
SUBC
SUBC

#055H,ACC
#068H,023H
#00CH

023H

023H

#080H,ACC
#095H,B
#002H

B

B

ACCRAMCY AC OV

23H
55H - - -

55H68H- - -

ACC
80H

80H
7EH
ESH
53H

49H68H0 1 O
EIH68H1 O O
78H68HO 1 1

B CY AC ov

95H - - -

95H 0 1 1
95H 1 0 1
95H 0 0 1

VMC-165

Visual Memory Unit (VMU) Programing Manual

SUBC @Rj
Subtract indirect byte and carry flag from accumulator

Instruction code 10110 1j1j0 (B4H to B7H)

Byte count 1

Cycles 1

Function (ACC) < (ACO)-(CY)-((Ri))j=0,1,2,3
Flags affected CY,AC,QV

Interrupts enabled Yes

Description

Subtracts the contents of the RAM address or SFR specified by the indirect address register specified by j1
to j0 and carry flag from the contents of the accumulator, and stores the result in the accumulator.

Example 1
ACC RAM RAM CY AC OV
OOH 68H
MOV #055H,ACC 55H - - - - -
MOV #068H,00H 55H 68H - - - -
MOV #040H,@RO 55H 68H 40H - - -
SUB #016H 3FH 68H 40H O 1 O
SUBC @RO FFH 68H 40H 1 0 O
SUBC @RO BEH 68H 40H O O O
Example 2
ACC RAM TRL CY AC OV
02H
MOV #0AAH,ACC AAH - - - - -
MOV #004H,002H AAH 04H - - - -
MOV #0AAH,@R2 AAH 04H AAH - - -
SUB #001H A9H 04H AAH 0 O O
SUBC @R2 FFH 04H AAH 1 1 O
SUBC @R2 54H 0O4H AAH 0 0 O

VMC-166

Instruction Set Reference

INC d9
Increment direct byte

Instruction code 011000 1d8 d7d6d5d4d3d2d1d0 (62H to 63H)
Byte count 2

Cycles 1

Function (d9) « (d9)+1

Flags affected

Interrupts enabled Yes

Description

Increments the contents of the RAM address or SFR specified by d8 to dO0.

Example 1

ACC
MOV #OFDH,ACC FDH
INC ACC FEH
INC ACC FFH
INC ACC O0H
INC ACC 01H
Example 2

RAM

7FH
MOV #OFDH,07FH FDH
INC O7FH FEH
INC 07FH FFH
INC 07FH OOH
INC 07FH 01H

Caution: e The flags, CY, AC, and OV are not changed.
* When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external
signal applied to the port is not selected. Even when applied to port P7, there is no change in status.

VMC-167

Visual Memory Unit (VMU) Programing Manual

INC @Rj
Increment indirect byte

Instruction code 01100 1j1j0 (64H to 67H)

Byte count 1

Cycles 1

Function (Rj) < ((R)+1j=0,1,2,3
Flags affected

Interrupts enabled Yes

Description

Incrementsthe contentsofthe RAMaddressor SFRspecifiedbytheindirectaddressregister
specified by j1 to jO.

Example 1

ACC RAM
O3H
MOV #000H,003H - O0H
MOV #OFDH,@R3 FDH O0H
INC @R3 FEH OOH
INC @R3 FFH OOH
INC @R3 OOH O0H
Example 2

RAM RAM

7FH 01H
MOV #07FH,001H - 7FH
MOV #0FDH,@R1 FDH 7FH
INC @R1 FEH 7FH
INC @R1 FFH 7FH
INC @R1 OOH 7FH

Caution:

e The flags, CY, AC, and OV are not changed.
* When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external
signal applied to the port is not selected. Even when applied to port P7, there is no change in status.

VMC-168

Instruction Set Reference

DEC d9
Decrement direct byte

Instruction code 011100 1d8d7d6d5d4d3d2d1d0 (72H to 73H)
Byte count 2

Cycles 1

Function (d9) < (d9)-1

Flags affected

Interrupts enabled Yes

Description

Decrements the contents of the RAM address or SFR specified by d8 to d0.

Example 1

ACC
MOV #002H,ACC 02H
DEC ACC 01H
DEC ACC 00H
DEC ACC FFH
DEC ACC FEH
Example 2

RAM

7FH
MOV #002H,07FH 02H
DEC O7FH O1H
DEC O7FH OO0H
DEC O7FH FFH
DEC 07FH FEH

Caution: e The flags, CY, AC, and OV are not changed.
* When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external
signal applied to the port is not selected. Even when applied to port P7, there is no change in status.

VMC-169

Visual Memory Unit (VMU) Programing Manual

DEC @Rj
Decrement indirect byte

Instruction code 01110 1j1j0 (74H to 77H)

Byte count 1

Cycles 1

Function (R) < (R)-1j=0,1,2,3
Flags affected

Interrupts enabled Yes

Description

Decrements the contents of the RAM address or SER specified by the indirect address register specified by

j1 toj0.
Example 1
ACC RAM
02H
MOV #000H,002H - O0H
MOV #002H,@R2 02H O0H
DEC @R2 O1H OOH
DEC @R2 O0H O0H
DEC @R2 FFH OOH
Example 2
RAM RAM
7FH 00H
MOV #07FH,000H - TFH
MOV #002H,@R0 02H 7FH
DEC @RO O1H 7FH
DEC @RO O0H 7FH
DEC @RO FFH 7FH

Caution: e The flags, CY, AC, and OV are not changed.
e When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external
signal applied to the port is not selected. Even when applied to port P7, there is no change in status.

VMC-170

Instruction Set Reference

MUL

Multiply accumulator and C register by B register

Instruction code 00110000 (30H)

Byte count 1

Cycles 7

Function (B)(ACC)(C) ~ (ACC)(C) x(B)
Flags affected CY,ov

Interrupts enabled Yes on the 7th cycle

Description

Multiplies the unsigned 16-bit value represented by the accumulator and C register by the unsigned 8-bit
value of the B register. Of the 24-bit calculation result, the bottom 8 bits are stored in C, the middle 8 bits in
the accumulator, and the top 8 bits in B.

As a result of the calculation, if the contents of B are zero, the overflow flag is cleared, and if the contents
of B are nonzero the overflow flag is set. The carry flag is always cleared.

Example 1

ACC C B CY AC ov
MOV #0C4H,PSW - - - 1 1 1
MOV #011H,ACC 11H - - 1 1 1
MOV #023H,C 11H 23H - 1 1 1
MoV #052H,B 11H 23H 52H 1 1 1
MUL 7DH 36H O5H 0 1 1
Example 2

ACC C B CY AC oVv
MOV #0C4H,PSW - - - 1 1 1
MOV #007H,ACC 07H - - 1 1 1
MOV #005H,C o7H 05H - 1 1 1
MOV #010H,B 07H O5H 10H 1 1 1
MUL 70H 50H OOH 0 1 O

VMC-171

Visual Memory Unit (VMU) Programing Manual

DIV
Divide accumulator and C register by B register

Instruction code 01000000 (40H)

Byte count 1

Cycles 7

Function (ACC)(C), mod(B) ~ (ACO)C) =+(B)
Flags affected CY, oV

Interrupts enabled Yes on the 7th cycle

Description

Divides the 16-bit value represented by the contents of the accumulator (upper byte) and C register (lower
byte) by the contents of the B register (unsigned 8-bit value). The quotient is stored in the accumulator
(upper byte) and C (lower byte), and the remainder is stored in B.

Caution: If this instruction is executed with the contents of the B register zero, the accumulator is set to FFH, and
the overflow flag is set. If the B register is nonzero, then the overflow flag is cleared, and the carry flag
is also always cleared.

Example 1

ACC C B CY AC oV
MOV #0C4H,PSW - - - 1 1 1
MOV #078H,ACC T9H - - 1 1 1
MOV #005H,C 79H O5H - 1 1 1
MOV #007H,B 79H O5H O7H 1 1 1
DIV 11H 49H 06H 0 1 O
Example 2

ACC C B CY AC ov
MOV #0COH,PSW - - - 1 1 0
MOV #007H,ACC O7H - - 1 1 0
MOV #010H,C o7H 10H - 1 1 0
MOV #000H,B O7H 10H OOH 1 1 0
DIV FFH 10H OOH 0O 1 1 error

VMC-172

Instruction Set Reference

Logical Instructions

AND _i8

AND immediate data to accumulator

Instruction code 1110000 1i7i6i5i4i3i2i1i0 (E1H)

Byte count 2
Cycles 1

Function (ACC)

Flags affected
Interrupts enabled Yes

Description

« (ACC)

Logical ANDs the contents of the accumulator and immediate data (i7 to i0), and stores the result in the

accumulator.

Example 1

MOV
AND
AND
AND
AND

Example 2

MOV
AND
AND
AND
AND
AND
AND
AND
AND

#OFFH,ACC
#OFAH
#O0AFH
#00FH
#0FOH

ACC

FFH
FAH

O0AH
OOH

ACC

#OFFH,ACC FFH

#OFEH
#0FDH
#0FBH
#OF7H
#0EFH
#0DFH
#0BFH
#07FH

FEH
FCH
FeH
FOH

EOH
COH
80H
OOH

VMC-173

Visual Memory Unit (VMU) Programing Manual

AND d9
AND direct byte to accumulator

Instruction code 111000 1d8 d7d6d5d4d3d2d1d0 (E2H to E3H)
Byte count 2

Cycles 1

Function (ACC) ~ (ACC) [O(d9)

Flags affected

Interrupts enabled Yes

Description

Logical ANDs the contents of the accumulator and the contents of the RAM address or SER specified by d8
to dO, and stores the result in the accumulator.

Example 1

ACC RAM

23H

MOV #OFFH,ACC FFH -
MOV #055H,023H FFH 55H
AND 023H 55H 55H
MOV #0AAH,023H 55H AAH
AND 023H 00H AAH
Example 2

ACC B
MOV #OFFH,ACC FFH -
MOV #0OFEH,B FFH FEH
AND B FEH FEH
MOV #0FDH,B FEH FDH
AND B FCH FDH
MOV #OFBH,B FCH FBH
AND B F8H FBH
MOV #0F7H,B F8H F7H
AND B FOH F7H

VMC-174

Instruction Set Reference

AND @R;j
AND indirect byte to accumulator

Instruction code 11100 1j1j0 (E4H to E7H)

Byte count 1

Cycles 1

Function (ACC) < (ACC) 0O(R)j=0,1,2,3
Flags affected

Interrupts enabled Yes

Description

Logical ANDs the contents of the accumulator and the contents of the RAM address or SFR specified by the
indirect address register specified by j1 to jO, and stores the result in the accumulator.

Example 1
ACC RAM RAM
OOH 68H
MOV #0FFH,ACC FFH - -
MOV #068H,000H FFH 68H -
MOV #0FOH,@R0O FFH 68H FOH
AND @RO FOH 68H FOH
MOV #00FH,@R0O FOH 68H OFH
AND @RO OOH 68H OFH
Example 2
ACC RAM
02H TRL
MOV #0FFH,ACC FFH - -
MOV #004H,002H FFH 04H -
MOV #OEFH,@R2 FFH 04H EFH
AND @R2 EFH 04H EFH
MOV #0DFH,@R2 EFH 04H DFH
AND @R2 CFH 04H DFH

VMC-175

Visual Memory Unit (VMU) Programing Manual

OR _i8
OR immediate data to accumulator

Instruction code 1101000 1i7i6i5i4i3i2i1i0 (D1H)

Byte count 2

Cycles 1

Function (ACC) ~ (ACC) wt#i8
Flags affected

Interrupts enabled Yes

Description

Logical ORs the contents of the accumulator and immediate data (i7 to i0), and stores the result in the

accumulator.
Example 1

ACC
MOV #000H,ACC O0H
OR #003H O3H
OR #00CH OFH
OR #030H 3FH
OR #0COH FFH
Example 2

ACC
MOV #000H,ACC O0H
OR #001H 01H
OR #002H O3H
OR #004H Oo7H
OR #008H OFH
OR #010H 1FH
OR #020H 3FH
OR #040H 7FH
OR #080H FFH

VMC-176

Instruction Set Reference

OR d9
OR direct byte to accumulator

Instruction code 110100 1d8 d7d6d5d4d3d2d1d0 (D2H to D3H)
Byte count 2

Cycles 1

Function (ACC) ~ (ACC) w(d9)

Flags affected

Interrupts enabled Yes

Description

Logical ORs the contents of the accumulator and the contents of the RAM address or SFR specified by d8
to dO, and stores the result in the accumulator.

Example 1

ACC RAM

23H

MOV #000H,ACC OO0H -
MOV #055H,023H OO0H 55H
OR 023H 55H 55H
MOV #0AAH,023H 55H AAH
OR 023H FFH AAH
Example 2

ACC B
MOV #000H,ACC OO0H -
MOV #001H,B OOH 01H
OR B O1H 01H
MOV #002H,B O1H 02H
OR B O3H 02H
MOV #004H,B O3H 04H
OR B O7H 04H
MOV #008H,B O7H 08H
OR B OFH 08H

VMC-177

Visual Memory Unit (VMU) Programing Manual

OR @Rj
OR indirect byte to accumulator

Instruction code 11010 1j1j0 (D4H to D7H)

Byte count 1

Cycles 1

Function (ACC) ~(ACC) w(Rj)j=0,1,2,3
Flags affected

Interrupts enabled Yes

Description

Logical ORs the contents of the accumulator and the contents of the RAM address or SFR specified by the
indirect address register specified by j1 to jO, and stores the result in the accumulator.

Example 1
ACC RAM RAM
OOH 68H
MOV #000H,ACC OO0H - -
MOV #068H,000H 00H 68H -
MOV #0FOH,@R0 00H 684 FOH
OR @RO FOH 684 FOH
MOV #000FH,@R0 FOH 684 OFH
OR @RO FFH 68H OFH
Example 2
ACC RAM TRL
02H
MOV #0AAH,ACC AAH - -
MOV #004H,002H AAH 04H -
MOV #005H,@R2 AAH 04H O5H
OR @R2 AFH 04H O5H
MOV #050H,@R2 AFH 04H 50H
OR @R2 FFH 04H 50H

VMC-178

Instruction Set Reference

XOR _i8
XOR immediate data to accumulator

Instruction code 11010 1j1j0 (D4H to D7H)

Byte count 1

Cycles 1

Function (ACC) ~ (ACC) w((R)j=0,1,2,3
Flags affected

Interrupts enabled Yes

Description

Logical XORs the contents of the accumulator and immediate data (i7 to i0), and stores the result in the
accumulator.

Example 1

ACC
MOV #000H,ACC O0H
XOR #O0FH OFH
XOR #0FOH FFH
XOR #00FH FOH
XOR #OFOH 00H
Example 2

ACC
MOV #000H,ACC O0H
XOR #001H 01H
XOR #002H 03H
XOR #004H O7H
XOR #008H OFH
XOR #008H o7H
XOR #004H O3H
XOR #002H 01H
XOR #001H 00H

VMC-179

Visual Memory Unit (VMU) Programing Manual

XOR d9
XOR direct byte to accumulator

Instruction code 111100 1d8 d7d6d5d4d3d2d1d0 (F2H to F3H)
Byte count 2

Cycles 1

Function (ACC) ~ (ACC) 0O(d9)

Flags affected

Interrupts enabled Yes

Description

Logical XORs the contents of the accumulator and the contents of the RAM address or SFR specified by d8
to d0, and stores the result in the accumulator.

Example 1

ACC RAM

23H

MOV #000H,ACC 00H -
MOV #055H,023H OOH 55H
XOR 023H 55H 55H
MOV #0FFH,023H 55H FFH
XOR 023H AAH FFH
Example 2

ACC B
MOV #OFFH,ACC FFH -
MOV #010H,B FFH 10H
XOR B EFH 10H
MOV #020H,B EFH 20H
XOR B CFH 20H
MOV #040H,B CFH 40H
XOR B 8FH 40H
MOV #080H,B 8FH 80H
XOR B OFH 80H

VMC-180

Instruction Set Reference

XOR @Rj
XOR indirect byte to accumulator

Instruction code 111101j2j0 (F4H to F7H)

Byte count 1

Cycles 1

Function (ACC) < (ACC) 0O(Rj»j=0,1,2,3
Flags affected

Interrupts enabled Yes

Description

Logical XORs the contents of the accumulator and the contents of the RAM address or SER specified by the
indirect address register specified by j1 to jO, and stores the result in the accumulator.

Example

MOV
MOV
MOV
XOR
MOV
XOR

Example 2

MOV
MOV
MOV
XOR
XOR
XOR
XOR

#000H,ACC
#068H,001H
#OFOH,@R1
@R1
#OFFH,@R1
@R1

#OAAH,ACC
#004H,003H
#OFFH,@R3
@R3
@R3
@R3
@R3

ACC

OOH
OOH
00H
FOH
FOH
OFH

RAM
01H

68H
68H
68H
68H
68H

03H

04H
04H
04H
04H
04H
04H

RAM
68H

FOH
FOH
FFH
FFH

TRL

FFH
FFH
FFH
FFH
FFH

VMC-181

Visual Memory Unit (VMU) Programing Manual

ROL
Rotate accumulator left

Instruction code 11100000 (EOH)

Byte count 1

Cycles 1

Function A7 A6 -A5-A4-A3-A2-A1-A0- (A7)
Flags affected

Interrupts enabled Yes

Description

Rotates the 8-bit value of the accumulator left by one bit position. This transfers bit 7 of the accumulator

to bit 0.
Example 1
ACC

MOV #01H,ACC 01H 0000 0001B
ROL 02H 0000 0010B
ROL 04H 0000 0100B
ROL 08H 0000 1000B
ROL 10H 0001 0000B
ROL 20H 0010 0000B
ROL 40H 0100 0000B
ROL 80H 1000 0000B
ROL 01H 0000 0001B
MOV #55H,ACC 55H 0101 0101B
ROL AAH 1010 1010B
ROL 55H 0101 0101B
ROL AAH 1010 1010B
ROL 55H 0101 0101B

VMC-182

Instruction Set Reference

ROLC

Rotate accumulator left through the carry flag

Instruction code 11110000 (FOH)

Byte count 1

Cycles 1

Function <A7A6-A5-A4-A3-A2-Al ~A0-CY- (A7)
Flags affected CcY

Interrupts enabled Yes

Description

Rotates the 8-bit value of the accumulator left by one bit position through the carry flag. This transfers bit
7 of the accumulator to the carry flag, and the contents of the carry flag to bit 0.

Example 1
ACC CY

MOV #01H,ACC 01H 0000 0001B -
SET1 PSW,7 01H 0000 001B 1
ROLC 03H 0000 0011B 0
ROLC 06H 0000 0110B 0
ROLC OCH 0000 1100B 0
ROLC 11H 0001 1000B 0
ROLC 30H 0011 0000B 0
ROLC 60H 0110 0000B 0
ROLC COH 1100 0000B 0
ROLC 80H 1000 0000B 1
ROLC 01H 0000 0001B 1
MOV #55H,ACC 55H 0101 0101B 1
ROLC ABH 1010 1011B 0
ROLC 56H 0101 0110B 1
ROLC ADH 1010 1101B 0

VMC-183

Visual Memory Unit (VMU) Programing Manual

ROR

Rotate accumulator right

Instruction code 11000000 (COH)

Byte count 1

Cycles 1

Function (A0) —A7-5A6-A5-A4 A3 A2 A1 A0

Flags affected
Interrupts enabled Yes

Description

Rotates the 8-bit value of the accumulator right by one bit position. This transfers bit 0 of the accumulator

to bit 7.
Example 1
ACC

MOV #01H,ACC O1H 0000 0001B
ROR 80H 1000 0000B
ROR 40H 0100 0000B
ROR 20H 0010 0000B
ROR 10H 0001 0000B
ROR 08H 0000 1000B
ROR 04H 0000 0100B
ROR 02H 0000 0010B
ROR 01H 0000 0001B
MOV #51H,ACC 51H 0101 0001B
ROR A8H 1010 1000B
ROR 54H 0101 0100B
ROR 2AH 0010 1010B
ROR 15H 0001 0101B

VMC-184

Instruction Set Reference

RORC

Rotate accumulator right through the carry flag

Instruction code 11010000 (DOH)

Byte count 1

Cycles 1

Function (A0) -CY-A7-A6-A5- A4, A3 A2 A1 A0
Flags affected CcY

Interrupts enabled Yes

Description

Rotates the 8-bit value of the accumulator right by one bit position through the carry flag. This transfers bit
0 of the accumulator to the carry flag, and the contents of the carry flag to bit 7.

Example 1
ACC CY

MOV #01H,ACC 01H 0000 0001B -
SET1 PSW,7 01H 0000 0001B 1
RORC 80H 1000 0000B 1
RORC COH 1100 0000B 0
RORC 60H 0110 0000B 0
RORC 30H 0011 0000B 0
RORC 18H 0001 1000B 0
RORC OCH 0000 1100B 0
RORC 06H 0000 0110B 0
RORC 03H 0000 0011B 0
RORC 01H 0000 0001B 1
MOV #55H,ACC 55H 0101 0101B 1
RORC AAH 1010 1010B 1
RORC D5H 1101 0101B 0
RORC 6AH 0110 1010B 1

VMC-185

Visual Memory Unit (VMU) Programing Manual

Data Transfer Instructions

LD d9
Load direct byte to accumulator

Instruction code 000000 1d8 d8d7d6d5d4d3d2d1d0 (02H to O3H)
Byte count 2

Cycles 1

Function (ACC) ~ (d9)

Flags affected

Interrupts enabled Yes

Description

Transfers the contents of the RAM address or SFR specified by d8 to d0 to the accumulator.

Example 1

ACC RAM RAM

70H 71H

MOV #OFF,ACC FFH - -
MOV #055H,070H FFH 55H -
MOV #OAAH,071H FFH 55H AAH
LD 070H 55H 55H AAH
LD 071H AAH 55H AAH
Example 2

ACC B SP
MOV #OFF,ACC FFH - -
MOV #0FOH,B FFH FOH -
MOV #00FH,SP FFH FOH OFH
LD B FOH FOH OFH
LD SP OFH FOH OFH
LD B FOH FOH OFH

VMC-186

Instruction Set Reference

LD @Rj
Load indirect byte to accumulator

Instruction code 00000 1j1j0 (04H to O7H)

Byte count 1

Cycles 1

Function (ACC) ~(R)j=0,1,23
Flags affected

Interrupts enabled Yes

Description

Transfers the contents of the RAM address or SFR specified by the indirect address register specified by jl
to jO to the accumulator.

Example 1

ACC RAM RAM RAM RAM

O0H 01H 70H 7FH

MOV #OFFH,ACC FFH - - - -
MOV #070H,000H FFH 70H - - -
MOV #07FH,001H FFH 70H 7FH - -
MOV #0FOH,@RO0 FFH 70H 7FH FOH -
MOV #00FH,@R1 FFH 70H 7FH FOH OFH
LD @RO FOH 70H 7FH FOH OFH
LD @R1 OFH 70H 7FH FOH OFH
Example 2

ACC RAM RAM B C

02H O3H 102H 103H

MOV #OFF,ACC FFH - - - -
MOV #004H,002H FFH 04H - - -
MOV #005H,003H FFH 04H 05H - -
MOV #OAAH,@R2 FFH 04H 05H AAH -
MOV #055H,@R3 FFH 04H O5H AAH 55H
LD @R2 AAH 04H O5H AAH 55H
LD @R3 55H 04H O5H AAH 55H

VMC-187

Visual Memory Unit (VMU) Programing Manual

ST d9
Store direct byte from accumulator

Instruction code 000100 1d8 d7d6d5d4d3d2d1d0 (12H to 13H)
Byte count 2

Cycles 1

Function (d9) ~ (ACC)

Flags affected

Interrupts enabled Yes

Description

Transfers the contents of the accumulator to the RAM address or special function register (SFR) specified

by d8 to dO.
Example 1

ACC RAM RAM

70H 71H

MOV #OFFH,ACC FFH - -
MOV #055H,070H FFH 55H -
MOV #OAAH,071H FFH 55H AAH
ST 070H FFH FFH AAH
MOV #000H,ACC 00H FFH AAH
ST 071H 00H FFH OOH
Example 2

ACC B SP
MOV #012H,ACC 12H - -
MOV #0FOH,B 12H FOH -
MOV #00FH,SP 12H FOH OFH
ST B 12H 12H OFH
MOV #034H,ACC 34H 12H OFH
ST SP 34H 12H 34H
ST B 34H 34H 34H

VMC-188

Instruction Set Reference

ST @Rj
Store indirect byte from accumulator

Instruction code 00010110 (14H to 17H)

Byte count 1

Cycles 1

Function (R -~ (ACO)j=0,1,2,3
Flags affected

Interrupts enabled Yes

Description

Transfers the contents of the accumulator to the RAM address or special function register (SFR) specified
by the indirect address register specified by jl to jO.

Example 1
ACC RAM RAM RAM RAM

O0H 01H 70H 7FH
MOV #OFFH,ACC FFH - - - -
MOV #070H,000H FFH 70H - - -
MOV #07FH,001H FFH 70H 7FH - -
MOV #0FOH,@RO0 FFH 70H 7FH FOH -
MOV #00FH,@R1 FFH 70H 7FH FOH OFH
ST @RO FFH 70H 7FH FFH OFH
ST @R1 FFH 70H 7FH FFH FFH
Example 2

ACC RAM RAM TRL TRH

02H O3H 104H 105H
MOV #000H,ACC 00H - - - -
MOV #004H,002H O0H 04H - - -
MOV #005H,003H O0H 04H 05H - -
MOV #OAAH,@R2 O0H 04H 05H AAH -
MOV #055H,@R3 OOH 04H O5H AAH 55H
ST @R2 O0H 04H 05H OOH 55H
ST @R3 OOH 04H 05H O0H OOH

VMC-189

Visual Memory Unit (VMU) Programing Manual

MOV _i8, d9
Move immediate data to direct byte

Instruction code 001000 1d8 d7d6d5d4d3d2d1d0 i7i6i5i4i3i2i1i0 (22H to 23H)

Byte count 3

Cycles 2

Function (d9) ~ #i8
Flags affected

Interrupts enabled Yes on the 2nd cycle
Description

Transfers immediate data (i7 to i0) to the RAM address or special function register (SFR) specified by d8

to dO.
Example 1
RAM RAM RAM RAM
O0H 01H 02H 03H
MOV #0OFFH,000H FFH - - -
MOV #0OFEH,001H FFH FEH - -
MOV #0FDH,002H FFH FEH FDH -
MOV #0FCH,003H FFH FEH FDH FCH
MOV #0FBH,003H FFH FEH FDH FBH
MOV #OFAH,002H FFH FEH FAH FBH
MOV #0F9H,001H FFH FoH FAH FBH
MOV #0OF8H,000H F8H FoOH FAH FBH
Example 2
ACC B TRL
MOV #0FFH,100H FFH - -
MOV #OFEH,102H FFH FEH -
MOV #OFDH,104H FFH FEH FDH
MOV #OFAH,104H FFH FEH FAH
MOV #0F9H,102H FFH FOH FAH
MOV #0F8H,100H F8H FOH FAH

VMC-190

Instruction Set Reference

MOV _i8, @Rj

Move immediate data to indirect byte

Instruction code 00100 1j1j0 i7i6i5i4i3i2i1i0 (24H to 27H)
Byte count 2

Cycles 1

Function (R ~ #8j=0,1,2,3
Flags affected

Interrupts enabled Yes

Description

Transfers immediate data (i7 to i0) to the RAM address or special function register (SFR) specified by the
indirect address register specified by j1 to j0.

Example 1
RAM RAM RAM RAM
O0H 01H 7EH 7FH
MOV #07FH,000H 7FH - - -
MOV #07EH,001H 7FH 7EH - -
MOV #0FDH,@RO 7FH 7EH - FDH
MOV #0FCH,@R1 7FH 7EH FCH FDH
MOV #0FBH,@RO 7FH 7TEH FCH FBH
MOV #OFAH,@R1 7FH 7EH FAH FBH
MOV #OF9H,@R0 7FH 7EH FAH FoH
MOV #OF8H,@R1 7FH 7EH F8H FoOH
Example 2
RAM RAM ACC B
02H O3H 100H 102H
MOV #000H,002H O0H - - -
MOV #002H,003H O0H 02H - -
MOV #OFDH,@R2 O0H 02H FDH -
MOV #0FCH,@R3 OOH 02H FDH FCH
MOV #0FBH,@R2 OOH 02H FBH FCH
MOV #0FAH,@R3 OOH 02H FBH FAH

VMC-191

Visual Memory Unit (VMU) Programing Manual

LDC
Load code byte relative to TRR to accumulator

Instruction code 11000001 (C1H)

Byte count 1

Cycles 2

Function (ACC) ~ (BNK)((TRR) + (ACC)) [ROM]
Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Loads into the accumulator the contents of the program memory (ROM) address specified by adding the

contents of the accumulator to the contents of the table reference register (TRR). The ROM address accessed
is different for a program running in ROM and a program running in flash memory. For a program running
in ROM, ROM is accessed, and for a program running in flash memory, bank 0 of flash memory is accessed.

The LDC instruction cannotaccess bank 1 of flash memory. To access bank 1 of flash memory,
use the system BIOS function provided by Visual Memory.

Reference: For details of operating system function calls, refer to the "System BIOS" section of the Visual Memory
Hardware Manual.

Example

ACC TRR TRR TRR

TRH TRL +ACC

MOV #001H,TRH - O1H - -
MOV #023H,TRL - O1H 23H -
MOV #000H,ACC OO0H O1H 23H 0123H
LDC 30H O1H 23H 0153H
MOV #001H,ACC O1H O1H 23H 0124H
LDC FFH O1H 23H 0222H
MOV #002H,ACC 02H O1H 23H 0125H
LDC 57H O1H 23H 017AH
MOV #003H,ACC O3H O1H 23H 0126H
LDC EAH O1H 23H 020DH

PC ROM

0123H 30H

0124H FFH

0125H 57H

0126H EAH

VMC-192

Instruction Set Reference

PUSH d9
Push direct byte to stack

Instruction code 011000 0d8 d7d6d5d4d3d2d1d0 (60H to 61H)

Byte count 2

Cycles 2

Function (SP) ~ (SP)+1, ((SP)) ~ (d9)
Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the stack pointer (SP), then transfers the contents of the RAM address or SFR specified by d8 to
dO to the address indicated by the stack pointer.

Note: Even when the application is accessing RAM bank 1, the stack is in RAM bank 0.

Example

ACC B RAM SP RAM RAM RAM

00H 20H 21H 22H

MOV #0AAH,ACC AAH - - - - - -
MOV #055H,B AAH 55H - - - - -
MOV #012H,000H AAH 55H 12H - - - -
MOV #01FH,SP AAH 55H 12H 1FH - - -
PUSH ACC AAH 55H 12H 20H AAH - -
PUSH B AAH 55H 12H 21H AAH 55H -
PUSH 000H AAH 55H 12H 22H AAH 55H 12H
POP B AAH 12H 12H 21H AAH 55H 12H
POP ACC 55H 12H 12H 20H AAH 55H 12H
POP OO0OH 55H 12H AAH 1FH AAH 55H 12H

VMC-193

Visual Memory Unit (VMU) Programing Manual

POP d9
Pop direct byte from stack

Instruction code 011100 0d8 d7d6d5d4d3d2d1d0 (70H to 71H)
Byte count 2

Cycles 2

Function (d9) < ((SP)), (SP) ~ (SP)-1
Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Transfers the contents of the RAM address indicated by the stack pointer to the RAM address or special
function register (SFR) specified by d8 to d0, then decrements the stack pointer.

Note: Even when the application is accessing RAM bank 1, the stack is in RAM bank 0.

Example

ACC B TRL SP RAM RAM RAM

20H 21H 22H

MOV #0AAH,ACC AAH - - - - - -
MOV #055H,B AAH 55H - - - - -
MOV #012H,TRL AAH 55H 12H - - - -
MOV #01FH,SP AAH 556H 12H 1FH - - -
PUSH ACC AAH 55H 12H 20H AAH - -
PUSH B AAH 55H 12H 21H AAH 55H -
PUSH TRL AAH 55H 12H 22H AAH 55H 12H
POP B AAH 12H 12H 21H AAH 55H 12H
POP ACC 55H 12H 12H 20H AAH 55H 12H
POP TRL 55H 12H AAH 1FH AAH 55H 12H

VMC-194

Instruction Set Reference

XCH d9
Exchange direct byte with accumulator

Instruction code 110000 1d8 d7d6d5d4d3d2d1dO (C2H to C3H)
Byte count 2

Cycles 1

Function (ACC) « — (d9)

Flags affected

Interrupts enabled Yes

Description

Exchanges the contents of the accumulator and the contents of the RAM address or SER specified by d8
to dO.

Example 1

ACC RAM

23H

MOV #0FFH,ACC FFH -
MOV #055H,023H FFH 55H
XCH 023H 55H FFH
XCH 023H FFH 55H
XCH 023H 55H FFH
XCH 023H FFH 55H
Example 2

ACC B
MOV #0FFH,ACC FFH -
MOV #0FEH,B FFH FEH
XCH B FEH FFH
XCH B FFH FEH
XCH B FEH FFH
XCH B FFH FEH

VMC-195

Visual Memory Unit (VMU) Programing Manual

XCH @Rj
Exchange indirect byte with accumulator

Instruction code 11000 1j1j0 (C4H to C7H)

Byte count 1

Cycles 1

Function (ACC) ~-(R)j=0,1,2,3
Flags affected

Interrupts enabled Yes

Description

Exchanges the contents of the accumulator and the contents of the RAM address or SER specified by the
indirect address register specified by jl1 to j0.

Example 1
ACC RAM RAM
O1H 68H
MOV #0FFH,ACC FFH - -
MOV #068H,001H FFH 68H -
MOV #0FOH,@R1 FFH 68H FOH
XCH @R1 FOH 68H FFH
XCH @R1 FFH 68H FOH
XCH @R1 FOH 68H FFH
XCH @R1 FFH 68H FOH
Example 2
ACC RAM TRL
O3H
MOV #0AAH,ACC AAH - -
MOV #004H,003H AAH 04H -
MOV #055H,@R3 AAH 04H 55H
XCH @R3 55H 04H AAH
XCH @R3 AAH 04H 55H
XCH @R3 55H 04H AAH

VMC-196

Instruction Set Reference

Jump Instructions

JMP a12
Jump near absolute address

Instruction code 00 1all 1al0a9a8 a7ababada3a2ala0 (28H to 2FH, 38H to 3FH)
Byte count 2

Cycles 2

Function (PC) ~ (PC)+2, (PC11to 00) ~al2

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) twice, then transfers the value of all to a0 to PC bits 11 to 00.

Example 1

The value of label LA is OFOEH.

PC Instruction code
NOP OFFBH O0H
NOP OFFCH O0H
JMP LA OFFDH 3FOEH
LA: INC ACC OFOEH 6300H
ROR OF10H COH
Example 2
The value of label LA is 1TFOEH.
PC Instruction code
NOP OFFCH O0H
NOP OFFDH O0H
JMP LA OFFEH 3FOEH
LA: INC ACC 1FOEH 6300H
ROR 1F10H COH

VMC-197

Visual Memory Unit (VMU) Programing Manual

JMPF a16
Jump far absolute address

Instruction code 00100001 al5al4al3al?allalOa9a8 a7a6abada3azalal (21H)

Byte count 3

Cycles 2

Function (PC) ~ al6
Flags affected

Interrupts enabled Yes on the 2nd cycle
Description

Transfers the value of a15 to a0 to the program counter (PC).

Example 1

The value of label LA is OFOEH.

PC Instruction code
NOP OFFAH O0H
NOP OFFBH O0H
JMPF LA OFFCH 210FOEH
LA: INC ACC OFOEH 6300H
ROR OF10H COH
Example 2
The value of label LA is 0OFOEH.
PC Instruction code
NOP OFFCH O0H
NOP OFFDH O0H
JMPF LA OFFEH 210FOEH
LA: INC ACC OFOEH 6300H
ROR OF10H COH

VMC-198

Instruction Set Reference

BR r8
Branch near relative address

Instruction code 0000000 1r7r6r5r4r3r2rlr0 (01H)

Byte count 2

Cycles 2

Function (PC) ~ (PC)+2, (PC) ~ (PC)+r8
Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) twice, then adds the value of 17 to r0 to the PC, leaving the result
in PC.

Example 1

The value of label LA is OF5FH.

PC Instruction code
NOP OF1CH O0H
NOP OF1DH O0H
BR LA OF1EH 013FH
LA: INC ACC OF5FH 6300H
ROR OF61H COH
Example 2
The value of label LA is 1TFOEH.
PC Instruction code
NOP 1FOCH O0OH
NOP 1FODH OOH
LA: INC ACC 1FOEH 6300H
ROR 1F10H COH
NOP 1F11H O0H
NOP 1F12H OOH
BR LA 1F13H 01F9H

VMC-199

Visual Memory Unit (VMU) Programing Manual

BRF r16
Branch far relative address

Instruction code 00010001 r7r6r5r4r3r2rlr0 r15r14r13r12r11r10ror8 (11H)

Byte count 3

Cycles 4

Function (PC) ~ (PC) +3, (PC) ~ (PC)—-1+r16
Flags affected

Interrupts enabled Yes on the 4th cycle

Description

Increments the program counter (PC) three times, then decrements PC and further adds the value of r15 to
r0 to PC, leaving the result in PC.

Example 1

The value of label LA is 105FH.

PC Instruction code

NOP OF1CH O0H

NOP OF1DH O0H

BRF LA OF1EH 113F01H
LA: INC ACC 105FH 6300H

ROR 1061H COH
Example 2

The value of label LA is 1TFOEH.

PC Instruction code
NOP 1FFCH O0H
NOP 1FFDH O0H
LA: INC ACC 1FOEH 6300H
ROR 1F10H COH
NOP 1F11H OOH
NOP 1F12H O0H
BRF LA 1F13H 11F8FFH

VMC-200

Instruction Set Reference

Conditional Branch Instructions

BZ r8
Branch near relative address if accumulator is zero

Instruction code 10000000 r7r6r5r4r3r2rlr0 (80H)

Byte count 2

Cycles 2

Function (PC) ~ (PC) + 2, if (ACC) =0 then (PC) ~ (PC)+1r8
Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) twice, then if the accumulator is zero, adds the value of 17 to r0 to PC,
leaving the result in PC.

If the accumulator is nonzero, continues to the next instruction.

Example 1

When the BZ instruction is executed, the accumulator is zero, so control branches to label LA.

PC Instruction code ACC
MOV #000H,ACC OF1BH 230000H OOH
BZ LA OF1EH 803FH OOH
LA: INC ACC OF5FH 6300H 01H
ROR OF61H COH 80H

Example 2

When the BZ instruction is executed, the accumulator is nonzero, so control passes to the next instruction.

PC Instruction code ACC
MOV #001H,ACC OF1BH 230001H O1H
BZ LA OF1EH 803FH 01H
DEC ACC OF20H 7300H OOH
ROR 0F22H COH 00H

LA: INC ACC

VMC-201

Visual Memory Unit (VMU) Programing Manual

BNZ r8

Branch near relative address if accumulator is not zero

Instruction code 100210000 r7r6r5r4r3r2rlr0 (90H)

Byte count 2

Cycles 2

Function (PC) ~ (PC) +2,if (ACC) # 0 then (PC) ~ (PC)+1r8
Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) twice, then if the accumulator is nonzero, adds the value of r7 to r0
to PC, leaving the result in PC.

If the accumulator is zero, continues to the next instruction.

Example 1

When the BNZ instruction is executed, the accumulator is nonzero, so control branches to label LA.

PC Instruction code ACC
MOV #001H,ACC OF1BH 230001H 01H
BNz LA OF1EH 903FH O01H
LA: INC ACC OF5FH 6300H 02H
ROR OF61H COH O1H

Example 2

When the BNZ instruction is executed, the accumulator is zero, so control passes to the next instruction.

PC Instruction code ACC
MOV #000H,ACC OF1BH 230000H OOH
BNZ LA OF1EH 903FH OOH
DEC ACC OF20H 7300H FFH
ROR OF22H COH FFH

LA: INC ACC

VMC-202

Instruction Set Reference

BP d9, b3, r8
Branch near relative address if direct bit is one ("positive")

Instruction code 01 1d8 1b2b1b0 d7d6d5d4d3d2d1dO r7r6r5r4r3r2rlr0 (68H to 6FH,

78H to 7FH)
Byte count 3
Cycles 2
Function (PC) « (PC) + 3, if (d9, b3) = 1 then (PC) ~ (PC)+1r8
Flags affected
Interrupts enabled Yes on the 2nd cycle
Description

Increments the program counter (PC) three times, then if the bit selected by the bit address b2 to b0 at the
address in RAM or special function register (SFR) indicated by d8 to d0 is set (1), adds the value of r7 to 10
to PC, leaving the result in PC.

If the bit selected by the bit address b2 to bO at the address in RAM or special function
register (SFR) indicated by d8 to d0 is cleared (0), continues to the next instruction.

Example 1

When the BP instruction is executed, bit 0 of B is 1, so control branches to the label LA.

PC Instruction code B
MOV #001H,B OF1AH 230201H O1H
BP B,0,LA OF1DH 78023FH O1H
LA: INC B OF5FH 6302H 02H
NOP OF61H OOH 02H

Example 2

When the BP instruction is executed, bit 0 of the accumulator is 0, so control passes to the next instruction.

PC Instruction code ACC
MOV #080H,ACC OF1AH 230080H 80H
BP ACC,0,LA OF1DH 78003FH 80H
DEC ACC OF20H 7300H 7FH
ROR OF22H COH BFH

LA: INC ACC

VMC-203

Visual Memory Unit (VMU) Programing Manual

BPC d9, b3, r8

Branch near relative address if direct bit is one ("positive"), and clear

Instruction code 01 0d8 1b2b1b0 d7d6d5d4d3d2d1dO r7r6r5r4r3r2rlr0 (48H to 4FH,

58H to 5FH)

Byte count 3

Cycles 2

Function (PC) ~ (PC) + 3, if (d9, b3) = 1 then (PC) ~ (PC)+18,
(d9,b3)=0

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then if the bit selected by the bit address b2 to b0 at the
address in RAM or special function register (SFR) indicated by d8 to d0 is set (1), first clears the bit, then
adds the value of r7 to r0 to PC, leaving the result in PC.

If the bit selected by the bit address b2 to b0 at the address in RAM or special function register (SFR)
indicated by d8 to dO is cleared (0), continues to the next instruction.

Example 1

When the BPC instruction is executed, bit 0 of B is 1, so it is cleared, then control branches to the label LA.

PC Instruction code B
MOV #003H,B OF1AH 230203H 03H
BPC B,0,LA OF1DH 58023FH 02H
LA: INC B OF5FH 6302H 03H
NOP OF61H OOH 03H

Example 2

When the BPC instruction is executed, bit 0 of the accumulator is 0, so control passes to the next instruction.

PC Instruction code ACC
MOV #080H,ACC OF1AH 230080H 80H
BPC ACC,0,LA OF1DH 58003FH 80H
DEC ACC OF20H 7300H 7FH
ROR OF22H COH BFH

LA: INC ACC

Caution:

When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.

VMC-204

Instruction Set Reference

BN d9, b3, r8
Branch near relative address if direct bit is zero ("negative")

Instruction code 10 0d8 1b2b1b0 d7d6d5d4d3d2d1dO r7r6r5r4r3r2rlrO (88H to 8FH,

98H to 9FH)
Byte count 3
Cycles 2
Function (PC) « (PC) + 3, if (d9, b3) = 0 then (PC) ~ (PC)+1r8
Flags affected
Interrupts enabled Yes on the 2nd cycle
Description

Increments the program counter (PC) three times, then if the bit selected by the bit address b2 to b0 at the
address in RAM or special function register (SFR) indicated by d8 to d0 is cleared (0), adds the value of r7
to 10 to PC, leaving the result in PC.

If the bit selected by the bit address b2 to b0 at the address in RAM or special function register (SFR)
indicated by d8 to d0 is set (1), continues to the next instruction.

Example 1

When the BN instruction is executed, bit 0 of B is zero, so control branches to the label LA.

PC Instruction code B
MOV #OFEH,B OF1AH 2302FEH FEH
BN B,0,LA OF1DH 98023FH FEH
LA: INC B OF5FH 6302H FFH
NOP OF61H OOH FFH

Example 2

When the BN instruction is executed, bit 0 of the accumulator is 1, so control passes to the next instruction.

PC Instruction code ACC
MOV #001H,ACC OF1AH 230001H O1H
BN ACC,0,LA OF1DH 98003FH 01H
DEC ACC OF20H 7300H OOH
ROR OF22H COH OOH

LA: INC ACC

VMC-205

Visual Memory Unit (VMU) Programing Manual

DBNZ d9, r8

Decrement direct byte and branch near relative address if direct byte is nonzero

Instruction code 010100 1d8 d7d6d5d4d3d2d1dO r7r6r5r4r3r2rlrO (52H to 53H)

Byte count 3

Cycles 2

Function (PC) ~ (PC) + 3, (d9) =(d9)-1, if (d9) #z0then
(PC) ~ (PC)+r18

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then decrements the address in RAM or special function
register (SFR) indicated by d8 to d0. Next, if the value of the RAM address or SFR after decrementing is
nonzero, adds the value of r7 to r0 to PC, leaving the result in PC.

If the value of the RAM address or SFR after decrementing is zero, continues to the next instruction.

Example 1

When the DBNZ instruction is executed, B is decremented, and since B is then nonzero, control branches to
the label LA.

PC Instruction code B
MOV #002H,B OF1AH 230202H 02H
DBNZ B,LA OF1DH 53023FH 01H
LA: INC B OF5FH 6302H 02H
NOP OF61H OOH 02H

Example 2

When the DBNZ instruction is executed, the accumulator is decremented, and since the
accumulator is then zero, control passes to the next instruction.

PC Instruction code ACC
MOV #001H,ACC OF1AH 230001H O1H
DBNZ ACC,LA OF1DH 53003FH O00H
DEC ACC OF20H 7300H FFH
ROR OF22H COH FFH

LA: INC ACC

Caution:

When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.

VMC-206

Instruction Set Reference

DBNZ @R;j, r8
Decrement indirect byte and branch near relative address if indirect byte is not zero

Instruction code 01010 2j1j0 r7r6r5r4r3r2rlr0 (54H to 57H)

Byte count 2

Cycles 2

Function (PC) < PO)+2,(R)) =((R}) - 1,if (R 10 then
(PC) ~ (PC)+r18j=0,1,2,3

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) twice, then decrements the address in RAM or special function
register (SFR) indicated by the indirect address register specified by j1 to jO. Next, if the value of the RAM
address or SFR after decrementing is nonzero, adds the value of r7 to r0 to PC, leaving the result in PC.

If the value of the RAM address or SFR after decrementing is zero, continues to the next instruction.

Example 1

When the DBNZ instruction is executed, B is decremented, and since B is then nonzero, control branches

to the label LA.
PC Instruction B RAM
code
O3H
MOV #002H,B OF18H 230202H 02H -
MOV #002H,003H OF1BH 220302H 02H 02H
DBNZ @R3,LA OF1EH 573FH 01H 02H
LA: INC B OF5FH 6302H 02H 02H
Example 2

When the DBNZ instruction is executed, the accumulator is decremented, and since the accumulator is then
zero, control passes to the next instruction.

PC Instruction ACC RAM
code
03H
MOV #001HACC OF18H 230001H 01H -
MOV #000H,003H OF1BH 220300H 01H O00H
DBNZ @R3,LA OF1EH 573FH O0H O0H
DEC ACC OF20H 7300H FFH OOH

LA: INC ACC

Caution: When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.

VMC-207

Visual Memory Unit (VMU) Programing Manual

BE _i8, r8
Compare immediate data to accumulator and branch near relative address if equal

Instruction code 00110001i7i6i5i4i3i2i1i0 r7r6r5r4r3r2rlr0 (31H)

Byte count 3

Cycles 2

Function (PC) ~ (PC) + 3, if (ACC) = #i8 then (PC) ~ (PC)+r8
Flags affected CcY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares immediate data (i7 to i0) with the contents
of the accumulator, and if the values are equal adds the value of r7 to r0 to PC, leaving the result in PC.

If the values are different, continues to the next instruction.

If the value in the accumulator is less than the immediate data value, the carry flag is set; if equal or more,
the carry flag is cleared.

ACC<#i8 - CY=1
ACC=#i8 - CY=0

Example 1

When the BE instruction is executed, ACC=02H, so CY is cleared, and control branches to the label LA.

PC Instruction ACC CY
code
MOV #002H,ACC OF1AH 230002H 02H -
BE #002H,LA OF1DH 31023FH 02H 0
LA: INC ACC OF5FH 6300H 03H 0

Example 2

When the BE instruction is executed, ACC< 04H, so CY is set, and control passes to the next instruction.

PC Instruction ACC CY
code
MOV #003H,ACC OF1AH 230003H 03H -
BE #004H,LA OF1DH 31043FH O3H 1
DEC ACC OF20H 7300H 02H 1

LA: INC ACC

VMC-208

Instruction Set Reference

BE d9, r8
Compare direct byte to accumulator and branch near relative address if equal

Instruction code 001100 1d8 d7d6d5d4d3d2d1dO r7r6r5r4r3r2rlr0 (32H to 33H)

Byte count 3

Cycles 2

Function (PC) ~ (PC) + 3, if (ACC) = (d9) then (PC) ~ (PC)+1r8
Flags affected CcY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares the contents of the RAM address or SFR
specified by d8 to dO with the contents of the accumulator, and if the values are equal adds the value of r7
to 10 to PC, leaving the result in PC.

If the values are different, continues to the next instruction.

If the value in the accumulator is less than the contents of the RAM address or SFR specified by d8 to d0,
the carry flag is set; if equal or more, the carry flag is cleared.

ACC<d9 (RAMorSFR) - CY=1
ACC=d9 (RAM or SFR) - CY =0

Example 1

When the BE instruction is executed, ACC=B, so CY is cleared, and control branches to the label LA.

PC Instrucion ACC B CY
code
MOV #002H,ACC OF17H 230002H 02H - -
MOV #002H,B OF1AH 230202H 02H 02H
BE B,LA OF1DH 33023FH 02H O02H O
LA: INC ACC OF5FH 6300H O3H O02H O

Example 2

When the BE instruction is executed, ACC=02H, so CY is set, and control passes to the next instruction.

PC Instruction ACC B CY
code
MOV #003H,ACC OF17H 230003H 03H - -
MOV #0F2H,B OF1AH 2302F2H O3H F2H
BE B,LA OF1DH 33023FH 03H F2H 1
DEC ACC OF20H 7300H 02H F2H 1

LA: INC ACC

VMC-209

Visual Memory Unit (VMU) Programing Manual

BE @R;j, _i8, r8
Compare immediate data to indirect byte and branch near relative address if equal

Instruction code 001 10 1j1jOi7i6i5i4i3i2i1i0 r7rér5rar3r2rlr0 (34H to 37H)

Byte count 3

Cycles 2

Function (PC) ~(PC) + 3, if (Rj)) =#i8 then (PC) ~(PC)+18j=0,
1,23

Flags affected CcY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares the contents of the RAM address or SFR
specified by the indirect address register specified by j1 to j0 with immediate data (i7 to i0), and if the values
are equal adds the value of r7 to r0 to PC, leaving the result in PC.

If the values are different, continues to the next instruction.

If the value in the RAM address or SFR specified by the indirect address register specified by j1 to jO is less
than the immediate data (i7 to i0), the carry flag is set; if equal or more, the carry flag is cleared.

@Rj < #i8 - CY =1
@Rj > #i8 » CY =0

Example 1

When the BE instruction is executed, B=05H, so CY is cleared, and control branches to the label LA.

PC Instruction B RAM CY
code
O3H
MOV #005H,B OF17H 230205H O5H - -
MOV #002H,003H OF1AH 220302H O5H 02H -
BE @R3,#5H,LA OF1DH 37053FH O5H 02H 0
LA: INC B OF5FH 6302H 06H 02H 0

Example 2

When the BE instruction is executed, ACC_09H, so CY is set, and control passes to the next instruction.

PC Instruction ACC RAM CcY
code
02H
MOV #003H,ACC OF17H 230003H 03H - -
MOV #000H,002H OF1AH 220200H 03H O0H -
BE @R2#9H,LA OF1DH 36093FH O03H O0H 1
DEC ACC OF20H 7300H 02H OOH 1

LA: INC ACC

VMC-210

Instruction Set Reference

BNE _i8, r8
Compare immediate data to accumulator and branch near relative address if not equal

Instruction code 0100000 1i7i6i5i4i3i2iLi0 r7r6r5r4r3r2rlr0 (41H)

Byte count 3

Cycles 2

Function (PC) ~ (PC) + 3, if (ACC) T1#i8 then (PC) ~ (PC)+1r8
Flags affected CcY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares immediate data (i7 to i0) with the contents
of the accumulator, and if the values are unequal adds the value of 17 to r0 to PC, leaving the result in PC.

If the values are equal, continues to the next instruction. If the value in the accumulator is less than the
immediate data value, the carry flag is set; if equal or more, the carry flag is cleared.

ACC<#i8 - CY=1
ACC=#i8 - CY=0

Example 1

When the BNE instruction is executed, ACC_00H, so CY is cleared, and control branches to the label LA.

PC Instruction ACC CYy
code
MOV #002H,ACC OF1AH 230002H 02H -
BNE #000H,LA OF1DH 41003FH 02H 0
LA: INC ACC OF5FH 6300H 03H 0

Example 2

When the BNE instruction is executed, ACC=03H, so CY is cleared, and control passes to the
next instruction.

PC Instruction ACC CYy
code
MOV #003H,ACC OF1AH 230003H 03H -
BNE #003H,LA OF1DH 41033FH 03H 0
DEC ACC OF20H 7300H 02H 0

LA: INC ACC

VMC-211

Visual Memory Unit (VMU) Programing Manual

BNE d9, r8
Compare direct byte to accumulator and branch near relative address if not equal

Instruction code 010000 1d8 d7d6d5d4d3d2d1dO r7r6r5r4r3r2rlr0 (42H to 43H)

Byte count 3

Cycles 2

Function (PC) ~ (PC) +3,if (ACC) 11(d9) then (PC) ~ (PC)+r8
Flags affected CcY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares the contents of the RAM address or SFR
specified by d8 to d0 with the contents of the accumulator, and if the values are unequal adds the value of
17 to r0 to PC, leaving the result in PC.

If the values are equal, continues to the next instruction.

If the value in the accumulator is less than the contents of the RAM address or SER specified by d8 to d0,
the carry flag is set; if equal or more, the carry flag is cleared.

ACC <d9(RAM or SFR) - CY =1
ACC =d9(RAM or SFR) - CY =0

Example 1

When the BNE instruction is executed, ACC_B, so CY is set, and control branches to the label LA.

PC Instruction ACC B CYy
code
MOV #002H,ACC OF17H 230002H 02H - -
MON #003H,B OF1AH 230203H 02H O3H
BNE B,LA OF1DH 43023FH 02H O3H 1
LA: INC ACC OF5FH 6300H O03H O03H 1

Example 2

When the BNE instruction is executed, ACC=B, so CY is cleared, and control passes to the next instruction.

PC Instruction ACC B CY
code
MOV #0F2H,ACC OF17H 2300F2H F2H - -
MOV #0F2H,B OF1AH 2302F2H F2H F2H
BNE B,LA OF1DH 43023FH F2H F2H 0
DEC ACC OF20H 7300H F1H F2H 0

LA: INC ACC

VMC-212

Instruction Set Reference

BNE @R;j, _i8, r8
Compare immediate data to indirect byte and branch near relative address if not equal

Instruction code 01000 1j1j0 i7i6i5i4i3i2i1i0 r7r6r5r4r3r2rlr0 (44H to 47H)

Byte count 3

Cycles 2

Function (PC) ~ (PC)+3,if ((R) mi#8 then (PC) " (PC) +r8j=0,
1,2,3

Flags affected CcY

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then compares the contents of the RAM address or SFR
specified by the indirect address register specified by j1 to j0 with immediate data (i7 to i0), and if the values
are unequal adds the value of r7 to r0 to PC, leaving the result in PC.

If the values are different, continues to the next instruction.

If the value in the RAM address or SFR specified by the indirect address register specified by j1 to j0 is less
than the immediate data (i7 to i0), the carry flag is set; if equal or more, the carry flag is cleared.

@Rj < #i8 - CY =1
@Rj > #i8 » CY =0

Example 1

When the BNE instruction is executed, B_08H, so CY is set, and control branches to the label LA.

PC Instruction ACC B CYy
code
MOV #002H,ACC OF17H 230002H 02H - -
MON #003H,B OF1AH 230203H 02H 03H
BNE B,LA OF1DH 43023FH 02H 03H 1
LA: INC ACC OF5FH 6300H 03H 03H 1

Example 2

When the BNE instruction is executed, ACC=03H, so CY is cleared, and control passes to the
next instruction.

PC Instruction ACC RAM CY
code
02H
MOV #003H,ACC OF17H 230003H O3H - -
MOV #000H,002H OF1AH 220200H 03H O0H -
BNE @R2#3H,LA OF1DH 46033FH 03H O0H 0
DEC ACC OF20H 7300H 02H OOH 0

LA: INC ACC

VMC-213

Visual Memory Unit (VMU) Programing Manual

Subroutine Instructions

CALL a12
Near absolute subroutine call

Instruction code 000all 1al0a9a8 a7ababada3a2alal (08H to OFH, 18H to 1FH)

Byte count 2
Cycles 2
Function (PC) ~ (PC)+2,(SP) ~ (SP)+1, ((SP)) ~ (PC7100),
(SP) «~ (SP)+1,((SP)) ~ (PC15t0 8), (PC11t0 0) < al2
Flags affected
Interrupts enabled Yes on the 2nd cycle
Description

Increments the program counter (PC) twice, then increments the stack pointer (SP), stores the lower byte of
PC at the RAM address indicated by SP; increments the stack pointer (SP) again, and stores the upper byte
of PC at the RAM address indicated by SP; finally, transfers the value of all to a0 to bits 11 to 00 of PC.

Example 1

The value of label LA is OFOEH.

PC Instruction SP RAM RAM
code
20H 21H
MOV #01FH,SP OFFAH 23061FH 1IFH - -
CALL LA OFFDH 1FOEH 21H FFH OFH
LA: INC ACC OFOEH 6300H 21H FFH OFH
RET OF10H AOH 1IFH FFHOFH
NOP OFFFH 00H 1FH FFHOFH
Example 2
The value of label LA is 1TFOEH.
PC Instruction SP RAM RAM
code
20H 21H
MOV #01FH,SP OFFBH 23061FH 1FH - -
CALL LA OFFEH 1FOEH 21H OOH 10H
LA: INC ACC 1FOEH 6300H 21H O0H 10H
RET 1F10H AOH 1FH O0H 10H
INC ACC 1000H 6300H 1FH 00H 10H

VMC-214

Instruction Set Reference

CALLF a16
Far absolute subroutine call

Instruction code 00100000al5al4al3al?2allalOa9a8 a7a6abada3a2alal (20H)

Byte count 3

Cycles 2

Function (PC) ~ (PC) +3, (SP) ~ (SP)+1, ((SP)) ~ (PC7100),
(SP) « (SP)+1,((SP)) ~ (PC151t0 8), (PC) ~ alé

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Increments the program counter (PC) three times, then increments the stack pointer (SP), stores the lower
byte of PC at the RAM address indicated by SP; increments the stack pointer (SP) again, and stores the
upper byte of PC at the RAM address indicated by SP; finally, transfers the value of al5 to a0 to bits 15 to
00 of PC.

Example 1

The value of label LA is OFOEH.

PC Instruction SP RAM RAM
code
20H 21H
MOV #01FH,SP OFF9H 23061FH 1FH - -
CALLF LA OFFCH 200FOEH 21H FFH OFH
LA: INC ACC OFOEH 6300H 21H FFH OFH
RET OF10H AOH 1FH FFH OFH
NOP OFFFH O00H 1FH FFH OFH
Example 2
The value of label LA is OFOEH.
PC Instruction SP RAM RAM
code
20H 21H
MOV #01FH,SP OFFAH 23061FH 1FH - -
CALLF LA OFFDH 200FOEH 21H O0H 10H
LA: INC ACC OFOEH 6300H 21H O0H 10H
RET OF10H AOH 1FH OOH 10H
INC ACC 1000H 6300H 1FH O0OH 10H

VMC-215

Visual Memory Unit (VMU) Programing Manual

CALLR r16
Far relative subroutine call

Instruction code 00010000 r7r6r5r4r3r2r1r0 r15r14r13r12r11r10ror8 (10H)

Byte count 3

Cycles 4

Function (PC) ~ (PC) +3, (SP) ~ (SP)+1, ((SP)) ~ (PC7100),
(SP) «~ (SP)+1,((SP)) ~ (PC15t0 8), (PC) ~ (PO)
-1+r16

Flags affected

Interrupts enabled Yes on the 4th cycle

Description

Increments the program counter (PC) three times, then increments the stack pointer (SP), stores the lower
byte of PC at the RAM address indicated by SP; increments the stack pointer (SP) again, and stores the
upper byte of PC at the RAM address indicated by SP; finally, decrements PCCA, then adds the value of r15
to 10 to PC, leaving the result in PC.

Example 1

The value of label LA is 1100H.

PC Instruction SP RAM RAM
code
20H 21H
MOV #01FH,SP OFF9H 23061FH 1FH - -
CALLR LA OFFCH 100201H 21H FFH OFH
LA: INC ACC 1100H 6300H 21H FFH OFH
RET 1102H AOH 1FH FFH OFH
NOP OFFFH OOH 1FH FFH OFH
Example 2
The value of label LA is 1100H.
PC Instruction SP RAM RAM
code
20H 21H
MOV #01FH,SP OFFCH 23061FH 1FH - -
CALLR LA OFFDH 100101H 21H O0H 10H
LA: INC ACC 1100H 6300H 21H O0H 10H
RET 1102H AOH 1FH OOH 10H
INC ACC 1000H 6300H 1FH O00H 10H

VMC-216

Instruction Set Reference

RET
Return from subroutine

Instruction code 10100000 (ACH)

Byte count 1

Cycles 2

Function (PC151t0 8) < ((SP)), (SP) ~ (SP)-1, (PC7t00) -
((SP)), (SP) - (SP)-1

Flags affected

Interrupts enabled Yes on the 2nd cycle

Description

Transfers the contents of RAM indicated by the stack pointer (SP) to the upper byte of the program counter
(PC), then decrements SP, then transfers the contents of RAM indicated by the stack pointer (SP) to the
lower byte of the program counter (PC), then decrements SP again.

Example 1

The value of label LA is OFOEH.

PC Instruction SP RAM RAM
code
20H 21H
MOV #01FH,SP OFF9H 23061FH 1FH - -
CALLF LA OFFCH 200FOEH 21H FFH OFH
LA: INC ACC OFOEH 6300H 21H FFH OFH
RET OF10H AOH 1FH FFH OFH
NOP OFFFH OOH 1FH FFH OFH
Example 2
The value of label LA is OFOEH.
PC Instruction ~ SP RAM RAM
code
20H 21H
MOV #01FH,SP OFFAH 23061FH 1FH - -
CALLF LA OFFDH 200FOEH 21H O0H 10H
LA: INC ACC OFOEH 6300H 21H O0H 10H
RET OF10H AOH 1FH OOH 10H
INC ACC 1000H 6300H 1FH OOH 10H

VMC-217

Visual Memory Unit (VMU) Programing Manual

RETI
Return for interrupt

Instruction code 10110000 (BOH)

Byte count 1

Cycles 2

Function (PC15108) < ((SP)), (SP) ~ (SP)-1,(PC7t0 Q) -
((SP)). (SP) < (SP)-1

Flags affected

Interrupts enabled No

Description

Transfers the contents of RAM indicated by the stack pointer (SP) to the upper byte of the program counter
(PC), then decrements SP, then transfers the contents of RAM indicated by the stack pointer (SP) to the lower
byte of the program counter (PC), then decrements SP again, and resumes the interrupt handling function
which was inhibited while handling an interrupt.

Example 1
PC Instruction code

NOP OFFAH O00H
NOP OFFBH OOH
MOV #001H,ACC OFFCH 230001H ~ externalinterrupt O occurs
INC ACC 0003H 6300H
RET1 0005H BOH
NOP OFFFH O0H
Example 2

PC Instruction code
NOP OFFCH OOH
MOV #00EH,B OFFDH 23020EH external interrupt 1 occurs
INC ACC 0013H 6300H
RET1 0015H BOH
INC ACC 1000H 6300H

VMC-218

Instruction Set Reference

Bit Manipulation Instructions

CLR1 d9, b3
Clear direct bit

Instruction code 11 0d8 1b2b1b0 d7d6d5d4d3d2d1d0 (C8H to CFH, D8H to DFH)
Byte count 2

Cycles 1

Function (d9, b3) <0

Flags affected

Interrupts enabled Yes

Description

Clears the bit selected by the bit address b2 to b0 at the address in RAM or special function register (SFR)
indicated by d8 to d0.

Example 1
ACC

MOV #001H,ACC 01H 0000 0001B
CLR1 ACC,0 OOH 0000 0000B
Example 2

RAM

7FH
MOV #001H,07FH 01H 0000 0001B
CLR1 07FH,0 O0H 0000 0000B

Caution:

When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.

VMC-219

Visual Memory Unit (VMU) Programing Manual

SET1 d9, b3
Set direct bit

Instruction code 11 1d8 1b2b1b0 d7d6d5d4d3d2d1d0 (E8H to EFH, F8H to FFH)
Byte count 2

Cycles 1

Function (d9, b3) <1

Flags affected

Interrupts enabled Yes

Description

Set the bit selected by the bit address b2 to b0 at the address in RAM or special function register (SFR)
indicated by d8 to d0.

Example 1

ACC
MOV #000H,ACC O0H 0000 0000B
SET1 ACC,7 80H 1000 0000B
Example 2

RAM

7FH
MOV #001H,07FH 01H 0000 0001B
SET1 07FH,6 41H 0100 0001B

Caution:

When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.

VMC-220

Instruction Set Reference

NOT1 d9, b3
Not direct bit

1.0 1d8 1b2b1b0 d7d6d5d4d3d2d1d0 (ASH to AFH, BSH to BFH)
2
1
(d9, b3)

Instruction code
Byte count
Cycles

Function

Flags affected
Interrupts enabled

< (d9, b3)

Yes

Description

Inverts the bit selected by the bit address b2 to b0 at the address in RAM or special function register (SFR)
indicated by d8 to d0.

Example 1

ACC
MOV #000H,ACC 00H 0000 0000B
NOT1 ACC,7 80H 1000 0000B
NOT1 ACC,7 OOH 0000 0000B
Example 2

RAM

7FH
MOV #001H,07FH 01H 0000 0001B
NOT1 07FH,6 41H 0100 0001B
NOT1 07FH,6 O1H 0000 0001B

Caution:

When this instruction is applied to ports P1 and P3, the latch of each port is selected. The external signal
applied to the port is not selected. Even when applied to port P7, there is no change in status.

VMC-221

Visual Memory Unit (VMU) Programing Manual

Miscellaneous Instruction

NOP
No operation

Instruction code 00000000 (00H)
Byte count 1
Cycles 1
Function

Flags affected

Interrupts enabled Yes

Description

Consumes one clock cycle.

VMC-222

Instruction Set Reference

Macro Instruction

CHANGE <label (or address)>
Change program mode

Description

Switches between system BIOS in ROM and user program in flash memory.
1) Executed while running program in ROM:

e Switch from system BIOS to application

* Set the program counter to the address in flash memory specified by the label or address.

Caution:

From the system BIOS, flash memory bank 0 address 0000H is accessed. This address is fixed.

2) Executed while running an application:

e Switch from application to system BIOS (when LDCEXT=0)
* Set the program counter to the program address in ROM specified by the label or address.

Caution:

When the CHANGE instruction is executed with LDCEXT=1 and while an application is running, a
jump to the system BIOS is not carried out. In this case, there is a jump to the address in flash memory
specified by the CHANGE instruction.

3) The program mode switch occurs after the dedicated macro instruction has executed.

4) Interrupts are disabled.

Caution:

Install the GHEAD.ASM file included with the Visual Memory development set assembler, to call the
system BIOS. This calls OS functions without needing to be aware of ROM addresses.

Reference: For details of operating system function calls, refer to the "System BIOS" section of the Visual Memory

Hardware Manual.

VMC-223

Visual Memory Unit (VMU) Programing Manual

VMC-224

Sega®@'Dreamcast

LC86K Instruction
Set Summary

Caution: An asterisk in the "Mnemonic" column for an instruction indicates that in byte or bit addressing the port
latch is selected. For these instructions, an external signal supplied to the port is selected.

VMC-225

LC86K Instruction Set Summary

VMC-226

Sega®@'Dreamcast

Assembler

Pseudoinstructions

A pseudoinstruction differs from an ordinary instruction (such as ADD or MOV in the LC86K instruction set); it
gives directives or definitions to the assemble, and a pseudoinstruction of itself does not generate a machine
instruction. (This does not apply to JMPO and other optimization pseudoinstructions, or to the CHANGE
pseudoinstruction.) Pseudoinstructions are often used in combination with ordinary instructions.

Group

Pseudoinstruction

Function

Linking control

ORG

WORLD

CSEG

DSEG

END

PUBLIC

EXTERN
OTHER_SIDE_SYMBOL

Specify origin

Select the ROM to hold code

Declare the beginning of a code segment
Declare the beginning of a data segment
End program

Declare public symbol

Declare external symbol

Declare CHANGE instruction jump label

Symbol definitions EQU Assign a fixed value
SET Assign temporary value
Data definitions DB Define byte data
DW Define word data
DC Define character string data
DS Define byte area
Macro control MACRO Define macro
REPT Repeat macro
IRP [teration macro
IRPC Character string macro
ENDM End macro definition
EXITM End macro expansion
LOCAL Define local label

VMC-227

Assembler Pseudoinstructions

Conditional assembly IFDEF Assemble if defined
IFNDEF Assemble if undefined
IFB Assemble if operand empty
IFNB Assemble if operand nonempty
IFE Assemble if zero
IFNE Assemble if nonzero
IFIDN Assemble if identical
IFDIF Assemble if different
ELSE Else case of conditional assembly
ENDIF End conditional assembly
PRINTX Display message during assembly
LIST Resume listing
XLIST Suppress listing
.MACRO List macro expansions
XMACRO End macro expansion listing
AF List skipped statements in conditional assembly
XIF End listing of skipped statements

Assemble if operand empty

Miscellaneous INCLUDE Include file
TITLE Set listing title
PAGE New page
CHIP Specify chip for assembly
COMMENT Add comment to object file
WIDTH Specify columns in listing file
BANK Specify RAM bank
CHANGE Jump between flash memory and ROM
RADIX Specify default radix

VMC-228

Assembler Pseudoinstructions

Optimization JMPO Optimized JMP instruction
BRO Optimized BR instruction
CALLO Optimized CALL instruction
BZ0 BZ instruction guaranteeing no address error

BNZ instruction guaranteeing no address error
BNZO BP instruction guaranteeing no address error
BPC instruction guaranteeing no address error
BPO BN instruction guaranteeing no address error
DBNZ instruction guaranteeing no address error
BPCO BE instruction guaranteeing no address error

BNE instruction guaranteeing no address error

BNO Optimized BR instruction
Optimized CALL instruction
DBNZO BZ instruction guaranteeing no address error

BNZ instruction guaranteeing no address error
BEO BP instruction guaranteeing no address error
BPC instruction guaranteeing no address error
BNEO BN instruction guaranteeing no address error

DBNZ instruction guaranteeing no address error

ORG
Specify origin

Syntax
ORG expression
Description

The ORG pseudoinstruction specifies the start address in program memory (flash memory) as expression.
Expression must be a numeric constant, or an expression which can be evaluated at assembly time.

Example

WORLD
Select the ROM to hold code

Syntax
WORLD selection
Description

This specifies the ROM which will hold the assembled code. This pseudoinstruction is only valid when the
target chip is the LC86800 series. There are three values which can be specified for selection.

VMC-229

Visual Memory Unit (VMU) Programing Manual

INTERNAL Store in the on-chip ROM.
EXTERNAL Store in flash memory bank 0.
EXTERNAL_DATA Store in flash memory bank 1.

Caution:

For Visual Memory, always specify EXTERNAL. Other specifications may lead to data corruption
or misoperation.

If there is more than one WORLD pseudoinstruction in a single file, an error results. For chips other than the chips
other than the LC86800 series, if a value other than INTERNAL is selected for the WORLD pseudoinstruction, an
error results.

CSEG
Declare the beginning of a code segment

Syntax
CSEG mode
Description

This indicates to the assembler the beginning of a segment holding program code. When mode is not
specified or is INBLOCK, the segment is aligned within 4K boundaries. If the mode is FREE, this indicates
that the segment can be located regardless of 4K boundaries.

Example

DSEG
Declare the beginning of a data segment

Syntax
DSEG
Description

This indicates to the assembler the beginning of a segment holding data.

Caution:

Data segments are copied into RAM. It is not possible to open a data segment in flash memory.

VMC-230

Assembler Pseudoinstructions

Example

END
End program

Syntax
END
Description

This indicates the end of the source program. When the assembler encounters this instruction, it ends the
pass currently being executed, so any text beyond this point, even if valid statements, is ignored.

Example

PUBLIC
Declare public symbol

Syntax
PUBLIC symbol {, symbol}
Description

The PUBLIC pseudoinstruction declares that a symbol defined in the program can be referenced from other
source files.

Example

Caution:

To reference a symbol defined in another source file, it must be declared EXTERN.
To allow a symbol in this file to be referenced from another file, it must be declared PUBLIC.

VMC-231

Visual Memory Unit (VMU) Programing Manual

page:1 <public ASM>

ERR SEQ. SLOC.OBJ. SOURCE STATEMENTS
0001 ; sample program for PUBLIC

0002 chip Ic866032

0003 public labell, label2

0004

0005 cseg inblock

0006 C 0000 220000 labell: mov #00, datal

0007 C 0003 23033C mov #60, c

0008 C 0006 AO ret

0009

0010 C 0007 6200 label2: inc datal

0011 C 0009 0200 Id datal

0012 C 000B 410A05 bne #10, label3

0013 C 000E 220000 mov #00, datal

0014 C 0011 6201 inc data2

0015

0016 C 0013 7303 label3: dec c

0017 C 0015 A0 ret

0018

0019 dseg

0020 D 0000 datal: ds 1

0021 D 0001 data2: ds 1

0022

0023 end

Note: The combination of PUBLIC and EXTERN declarations allows a symbol to be referenced even
when it is defined in another file.

EXTERN
Declare external symbol

Syntax
EXTERN [segment:] symbol {, [segment:] symbol}
Description

The EXTERN pseudoinstruction is used when a symbol or symbols are defined in other source program
files. The optional segment parameter is either CSEG or DSEG, indicating the segment type. If this is not
specified, a code segment, CSEG, is the default.

Reference: For examples see the previous item "PUBLIC - Declare public symbol."

OTHER_SIDE_SYMBOL
Declare CHANGE instruction jump label

VMC-232

Assembler Pseudoinstructions

Syntax
OTHER_SIDE_SYMBOLIabel {, label}
Description

This declares an address label which can be specified as the operand of a CHANGE instruction, which in
the LC86800 series is used for switching between ROM and flash memory. The label declared is a type of

external symbol, but one difference is that in a source file of code to be stored in ROM, a label is declared

in flash memory (or in ROM in a source file of code to be stored in flash memory). This pseudoinstruction
is only valid for the LC86800 series, and in other cases an error results.

Reference: For examples, see under "CHANGE - Jump between flash memory and ROM in this chapter.

EQU
Assign a fixed value

Syntax
Symbolname EQU expression
Description

The EQU pseudoinstruction assigns the value expression to symbolname. A symbol defined with the EQU
pseudoinstruction cannot be redefined. Used appropriately, the EQU pseudoinstruction can aid the visual
identification of constant data, and improve maintenance efficiency.

Example

SET
Assign temporary value

Syntax
Symbolname SET expression
Description

The SET pseudoinstruction assigns the value expression to symbolname. A symbol defined with the SET
pseudoinstruction can be redefined by a subsequent SET. However, a symbol set with this
pseudoinstruction cannot be the subject of a PUBLIC declaration, nor can it be redefined with EQU.

VMC-233

Visual Memory Unit (VMU) Programing Manual

Example

DB
Define byte data

Syntax
Labelname DB expression {, expression}
Description

The DB pseudoinstruction stores the 8-bit data value or values represented by expression in program
memory (ROM). Any number of operands may be specified, separated by commas. When two or more
operands are specified, they are evaluated in order left to right, and stored in successive addresses. If there
are two commas with nothing between them, this is interpreted as a zero value.

Example

In the above example, because the "db area" statement references the symbol "area," which is a 16-bit value,
at assembly time a warning level message, "Value is out of range," is generated. The bottom eight bits of the
value are used in the object code.

DW
Define word data

Syntax
labelname DW expression {, expression}
Description

The DW pseudoinstruction stores the 16-bit data value or values represented by expression in program
memory (ROM). The more significant byte is stored first, and the less significant byte at the address one
higher. Any number of operands may be specified, separated by commas. When two or more operands are
specified, they are stored in successive addresses. If there are two commas with nothing between them, this
is interpreted as a zero value.

Example

DC
Define character string data

Syntax

labelname DC “string"

VMC-234

Assembler Pseudoinstructions

Description

This stores the ASCII codes of string (a character string constant) in sequence in program memory (ROM).

Reference: For details of character string constants, see Section 20.7, “Character String Constants.”

Example

DS
Define byte area

Syntax
labelname DS absolute_expression
Description

The DS pseudoinstruction allocates any area of data memory (RAM) of the number of bytes specified by
absolute_expression . The absolute_expression must have a value completely determined at
assembly time. This pseudoinstruction can only be used after a DSEG pseudoinstruction.

Caution:

A DS pseudoinstruction can only be used to allocate RAM (a data segment). It cannot be used for flash
memory. Use DB or DW statements instead.

Example

MACRO
Define macro

Syntax
name MACRO parameter {, parameter}
Description

The MACRO pseudoinstruction defines a macro. The statements from the MACRO pseudoinstruction to

the following ENDM pseudoinstruction form the body of the macro. The parameter name is the name by
which the macro can be called, which is replaced by the body of the macro, and is therefore mandatory. The
formal parameter list specified by parameter is optional, depending on the macro being defined.

Caution:

When calling one macro from within another, or when using a pseudoinstruction such as IFB which
requires angle brackets (< >), a sufficient depth of angle brackets to correspond to the nesting level is
required. See the section "EXITM — End macro expansion" in this chapter.

VMC-235

Visual Memory Unit (VMU) Programing Manual

Example

REPT
Repeat macro

Syntax
REPT count
Description

The REPT pseudoinstruction repeats the statements up to the ENDM instruction, generating the number of
copies specified by count. This value can be any integer from 1 to 65535.

Example

In the following example, the area not occupied by the program is filled with NOP codes (for a
256-byte boundary).

IRP
Iteration macro

Syntax
IRP parameter, argument {, argument}...
Description

The IRP pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each argument specified. In each copy, parameter is replaced by the corresponding argument.

Example

IRPC
Character string macro

Syntax
IRPC parameter, string
Description

The IRPC pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each character in string. As distinct from a character string constant, string is not enclosed in quotation
marks. Codes beginning with a backslash cannot be used. In each copy, parameter is replaced by the
corresponding character in string.

VMC-236

Assembler Pseudoinstructions

Example

ENDM
End macro definition

Syntax
ENDM
Description

This marks the end of a macro definition.

Example

EXITM
End macro expansion

Syntax
EXITM
Description

The EXITM pseudoinstruction ends expansion of a macro. In combination with conditional assembly
pseudoinstructions, this can be used to create different forms of expansion of a macro depending on the
arguments supplied.

Example

LOCAL
Define local label

Syntax
LOCAL name {, name}
Description

The LOCAL pseudoinstruction declares a label which can be used internally to the body of the macro.
During macro expansion, the name declared in the LOCAL pseudoinstruction is replaced by the assembler
with a unique identifier to avoid name conflicts.

VMC-237

Visual Memory Unit (VMU) Programing Manual

Example
; sample program for LOCAL

chip 1c864008
b _ne macro val,dst

local skip

be val,skip

bro dst
skip:

endm
cseg

b ne #0,over
org 200h
over: b _ne #0, under

nop
under: nop

end

In the above example, the BRO pseudoinstruction is used to define the B_NE macro which generates different
instructions depending on the destination of a jump; this is then used in the example. The following is the result
of assembly.

IFDEF
Assemble if defined

Syntax
IFDEF symbol
Description

If symbol is defined, the statements after the IFDEF pseudoinstruction until the next ELSE or ENDIF are
assembled.

Example

IFNDEF
Assemble if undefined

Syntax
IFNDEF symbol
Description

If symbol is undefined, the statements after the IFNDEF pseudoinstruction until the next ELSE or ENDIF
are assembled.

VMC-238

Assembler Pseudoinstructions

Example

IFB
Assemble if operand empty

Syntax
IFB <argument>
Description

If argument is empty, the statements after the IFB pseudoinstruction until the next ELSE or ENDIF are
assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.

Example

IFNB
Assemble if operand nonempty

Syntax
IFNB <argument>
Description

If argument is nonempty, the statements after the IFNB pseudoinstruction until the next ELSE or ENDIF
are assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.

Example

IFE
Assemble if zero

Syntax
IFE expression
Description

If the value of expression is zero, the statements after the IFE pseudoinstruction until the next ELSE or
ENDIF are assembled.

VMC-239

Visual Memory Unit (VMU) Programing Manual

Example

IFNE
Assemble if nonzero

Syntax
IFNE expression
Description

If the value of expression is nonzero, the statements after the IFNE pseudoinstruction until the next ELSE
or ENDIF are assembled.

Example

IFIDN
Assemble if identical

Syntax
IFIDN <string1>, <string2>
Description

If the two strings string] and string? are identical, the statements after the IFIDN pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.

Example

IFDIF

Assemble if different
Syntax

IFDIF <string1>, <string2>
Description

If the two strings string] and string? are different, the statements after the IFDIF pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.

VMC-240

Assembler Pseudoinstructions

Example

ELSE
Else case of conditional assembly

Syntax
ELSE
Description

The statements after the ELSE pseudoinstruction until the next ENDIF are assembled when the test
condition of the preceding IF pseudoinstruction fails to hold.

Reference: See under "IFDEF - Assemble if defined" in this section.

ENDIF
End conditional assembly

Syntax
ENDIF
Description

Marks the end of a conditional assembly.

Reference: See under "IFDEF - Assemble if defined" in this section.

.PRINTX
Display message during assembly

Syntax
.PRINTX"string"
Description

The .PRINTX pseudoinstruction displays the character string constant string during assembly.

Reference: For details of character string constants, see Section 20.7, “Character String Constants.”

VMC-241

Visual Memory Unit (VMU) Programing Manual

Example

.LIST
Resume listing

Syntax
.LIST
Description

The .LIST pseudoinstruction resumes listing output, when it has been suppressed with the .XLIST
pseudoinstruction.

Example

XLIST
Suppress listing

Syntax
XLIST
Description

The .XLIST pseudoinstruction suppresses output to the listing file.

Reference: See under ".LIST - Resume listing," in this section.

.MACRO
List macro expansions

Syntax
.MACRO
Description

The .MACRO pseudoinstruction causes the expanded body of macro calls to be output to the listing file.

Example

VMC-242

Assembler Pseudoinstructions

.XMACRO

End macro expansion listing
Syntax

.XMACRO

Description

The XMACRO pseudoinstruction ends the output of expanded macro calls to the listing.

Reference: For an example, see under the previous item, ".MACRO - List macro expansions."

REPT
Repeat macro

Syntax
REPT count
Description

The REPT pseudoinstruction repeats the statements up to the ENDM instruction, generating the number
of copies specified by count. This value can be any integer from 1 to 65535.

Example

In the following example, the area not occupied by the program is filled with NOP codes (for a
256-byte boundary).

IRP

Iteration macro
Syntax

IRP parameter, argument {, argument}...

VMC-243

Visual Memory Unit (VMU) Programing Manual

Description

The IRP pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each argument specified. In each copy, parameter is replaced by the corresponding argument.

Example

IRPC
Character string macro

Syntax
IRPC parameter, string
Description

The IRPC pseudoinstruction repeats the statements up to the ENDM instruction, generating one copy for
each character in string. As distinct from a character string constant, string is not enclosed in quotation
marks. Codes beginning with a backslash cannot be used. In each copy, parameter is replaced by the
corresponding character in string.

Example

ENDM
End macro definition

Syntax
ENDM
Description

This marks the end of a macro definition.

Example
EXITM

End macro expansion

Syntax

EXITM

VMC-244

Assembler Pseudoinstructions

Description

The EXITM pseudoinstruction ends expansion of a macro. In combination with conditional assembly
pseudoinstructions, this can be used to create different forms of expansion of a macro depending on the
arguments supplied.

Example

LOCAL
Define local label

Syntax
LOCAL name {, name}
Description

The LOCAL pseudoinstruction declares a label which can be used internally to the body of the macro.
During macro expansion, the name declared in the LOCAL pseudoinstruction is replaced by the assembler
with a unique identifier to avoid name conflicts.

Example
; sample program for LOCAL
chip 1c864008
b_ne macro val,dst
local skip
be val,skip
bro dst
skip:
endm
cseg
b ne #0,over
org 200h
over: b _ne #0, under
nop
under: nop
end

In the above example, the BRO pseudoinstruction is used to define the B_NE macro which generates
different instructions depending on the destination of a jump; this is then used in the example. The
following is the result of assembly.

VMC-245

Visual Memory Unit (VMU) Programing Manual

IFDEF
Assemble if defined

Syntax
IFDEF symbol
Description

If symbol is defined, the statements after the IFDEF pseudoinstruction until the next ELSE or ENDIF
are assembled.

Example

IFNDEF
Assemble if undefined

Syntax
IFNDEF symbol
Description

If symbol is undefined, the statements after the IFNDEF pseudoinstruction until the next ELSE or ENDIF
are assembled.

Example
IFB

Assemble if operand empty

Syntax
IFB <argument>
Description

If argument is empty, the statements after the IFB pseudoinstruction until the next ELSE or ENDIF are
assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.

VMC-246

Assembler Pseudoinstructions

Example

IFNB
Assemble if operand nonempty

Syntax
IFNB <argument>
Description

If argument is nonempty, the statements after the IFNB pseudoinstruction until the next ELSE or ENDIF
are assembled. "Empty" means that there are no characters at all (even spaces or tabs) between the angle
brackets in which argument must be enclosed.

Example

IFE
Assemble if zero

Syntax
IFE expression
Description

If the value of expression is zero, the statements after the IFE pseudoinstruction until the next ELSE or
ENDIF are assembled.

Example

IFNE
Assemble if nonzero

Syntax
IFNE expression
Description

If the value of expression is nonzero, the statements after the IFNE pseudoinstruction until the next ELSE
or ENDIF are assembled.

VMC-247

Visual Memory Unit (VMU) Programing Manual

Example

IFIDN
Assemble if identical

Syntax
IFIDN <string1>, <string2>
Description

If the two strings string] and string?2 are identical, the statements after the IFIDN pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.

Example

IFDIF
Assemble if different

Syntax
IFDIF <string1>, <string2>
Description

If the two strings string] and string? are different, the statements after the IFDIF pseudoinstruction until
the next ELSE or ENDIF are assembled. The strings must be enclosed in angle brackets, and within them,
comparison is carried out with spaces and tabs considered significant.

Example

ELSE
Else case of conditional assembly

Syntax
ELSE
Description

The statements after the ELSE pseudoinstruction until the next ENDIF are assembled when the test
condition of the preceding IF pseudoinstruction fails to hold.

Reference: See under "IFDEF - Assemble if defined" in this section.

VMC-248

Assembler Pseudoinstructions

ENDIF
End conditional assembly

Syntax
ENDIF
Description

Marks the end of a conditional assembly.

Reference: See under "IFDEF - Assemble if defined" in this section.

.PRINTX
Display message during assembly

Syntax
.PRINTX "string"
Description

The .PRINTX pseudoinstruction displays the character string constant string during assembly.

Reference: For details of character string constants, see Section on, “Character String Constants.”

Example

.LIST
Resume listing

Syntax
.LIST
Description

The .LIST pseudoinstruction resumes listing output, when it has been suppressed with the .XLIST
pseudoinstruction.

VMC-249

Visual Memory Unit (VMU) Programing Manual

Example

XLIST
Suppress listing

Syntax
XLIST
Description

The .XLIST pseudoinstruction suppresses output to the listing file.

Reference: See under ".LIST - Resume listing," in this section.

.MACRO
List macro expansions

Syntax
.MACRO
Description

The .MACRO pseudoinstruction causes the expanded body of macro calls to be output to the listing file.

Example

.XMACRO
End macro expansion listing

Syntax
.XMACRO
Description

The .XMACRO pseudoinstruction ends the output of expanded macro calls to the listing.

Reference: For an example, see under the previous item, "MACRO - List macro expansions."

VMC-250

Assembler Pseudoinstructions

IF
List skipped statements in conditional assembly

Syntax
F
Description

The .IF pseudoinstruction causes source program statements skipped in a conditional assembly to be
output to the listing file.

Example

XIF
End listing of skipped statements

Syntax
XIF
Description

The .XIF pseudoinstruction stops source program statements skipped in a conditional assembly from being
output to the listing file.

Reference: For an example, see under the previous item, ".IF - List skipped statements in conditional assembly."

INCLUDE
Include file

Syntax
INCLUDE filename
Description

The INCLUDE pseudoinstruction causes the source file specified by filename to be read into the current
point in the source program and assembled. The specification of filename must include the extension. The
INCLUDE pseudoinstruction can be nested to a maximum depth of nine. Note that if an END
pseudoinstruction occurs in the included file, this terminates the assembly.

VMC-251

Visual Memory Unit (VMU) Programing Manual

Example

TITLE
Set listing title

Syntax
TITLE string
Description

The TITLE pseudoinstruction specifies string as the title for the listing file. Unlike a character string
constant, string is not enclosed in quotation marks. It is also not possible to include codes with the backslash
(\) symbol.

Example

PAGE
New page

Syntax
PAGE
Description

The PAGE pseudoinstruction forces a new page in the listing file. The page break appears immediately after
this pseudoinstruction.

Example

CHIP
Specify chip for assembly

Syntax

CHIP chipname

VMC-252

Assembler Pseudoinstructions

Description

The CHIP pseudoinstruction informs the assembler of the chip for which assembly is to be carried out.
According to the value of chipname, the assembly changes the reserved words, and carries out a memory
size check. This pseudoinstruction must appear at the beginning of the source file, before any other
instructions or pseudoinstructions. If this pseudoinstruction is not found, the environment variable
CHIPNAME is referenced. If the chip name specified by this pseudoinstruction is different from the chip
specified by the CHIPNAME environment variable, a warning level error is issued.

Note: For developing Visual Memory applications, the chip name must be set to LC868700.

COMMENT
Add comment to object file

Syntax
COMMENT comment_string
Description

The COMMENT pseudoinstruction adds a comment directly into the assembled object code. Unlike a
character string constant, comment_string is not enclosed in quotation marks. It is also not possible to
include codes with the backslash (\) symbol. The comment is stored from byte 680 of the object file. A
maximum of 255 characters can be used for the comment.

Example

WIDTH
Specify columns in listing file

Syntax
WIDTH number
Description

The WIDTH pseudoinstruction specifies the number of character columns in the listing file, that is, the
number of characters in each line. The parameter number may be any value from 72 to 132 inclusive, but
the recommended minimum is the number of columns of the source file plus 28. Although this
pseudoinstruction can appear any number of times in a single source file, normally it is specified once only
at the beginning of the file. If this pseudoinstruction is not found, the default listing file has 132 columns.

VMC-253

Visual Memory Unit (VMU) Programing Manual

Example

BANK
Specify RAM bank

Syntax
BANK expression
Description

The BANK pseudoinstruction supplies the bank number for symbols defined by DS pseudoinstructions for
RAM after a DSEG pseudoinstruction.

Example

CHANGE
Jump between flash memory and ROM

Syntax
CHANGE symbol
Description

For the LC86800 series, this is a special jump instruction for switching between code in flash memory and
code in ROM (system BIOS). The operand symbol must have been declared with the pseudoinstruction
OTHER_SIDE_SYMBONote that this pseudoinstruction is special to the LC86800 series, and in other cases
an error results.

Note: For Visual Memory, use this instruction to call an operating system function.

Reference: For details of operating system function calls, refer to the "System BIOS" section of the Visual Memory
Hardware Manual.

Example

RADIX
Specify default radix

Syntax

RADIX expression

VMC-254

Assembler Pseudoinstructions

Description

The RADIX pseudoinstruction specifies the radix, or base, of a numeric constant with no explicit radix
indication. The value of expression must be a constant value from the set 2, 8, 10, and 16. This specification
takes effect from this statement until a subsequent RADIX pseudoinstruction. If this pseudoinstruction is
not present, the default radix is 10.

Example
XXX SET 10 __interpreted by default as 10 decimal.
RADIX 16
XXX SET 10 _interpreted as 16 decimal, because of the radix value 16.
RADIX 2
XXX SET 10 _interpreted as 2 decimal, because of the radix value 2.
JMPO

Optimized JMP instruction
Syntax

JMPO expression
Description

The JMPO pseudoinstruction compares expression with the current location, and if this is a jump within
the same block (only the bottom 12 bits of the addresses are different) generates a JMP instruction.
Otherwise, that is, if the address is in a different block, or if the address cannot be determined because for
example it is an external symbol, then this generates a JMPF instruction.

Example

BRO
Optimized BR instruction

Syntax
BRO expression
Description

BRO pseudoinstruction compares expression with the current location, and if the branch address is
within the range -128 to +127 generates a BR instruction; when outside the range -128 to +127 generates
a BRF instruction.

VMC-255

Visual Memory Unit (VMU) Programing Manual

Example

CALLO

Optimized CALL instruction
Syntax

CALLO expression
Description

The CALLO pseudoinstruction compares expression with the current location, and if this is a call within the
same block (only the bottom 12 bits of the addresses are different) generates a CALL instruction. Otherwise,
that is, if the address is in a different block, or if the address cannot be determined because for example it is
an external symbol, then this generates a CALLF instruction.

Example

BzO

BZ instruction guaranteeing no address error
Syntax

BZO expression

Description

The BZO macro generates code equivalent to the BZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BZO macro uses a BNZ instruction, which is the logical inverse of the BZ instruction, and a BRO
instruction. Enter the branch destination for expression.

Code generation macro

; ** Branch near relative address if accumulator is zero **

bzo macro r8
local _next_
bnz _hext_
bro r8
next:
endm

VMC-256

Assembler Pseudoinstructions

BNZO

BNZ instruction guaranteeing no address error

Syntax
BNZO expression

Description

The BNZO macro generates code equivalent to the BNZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNZO macro uses a BZ instruction, which is the logical inverse of the BNZ instruction, and a BRO

instruction. Enter the branch destination for expression.

Code generation macro

; ** Branch near relative address if accumulator is not zero ***

bnzo macro
local
bz
bro
next:
endm
BPO

BP instruction guaranteeing no address error
Syntax
BPO expression

Description

r8
next
next
8

The BPO macro generates code equivalent to the BP instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BPO macro uses a BP instruction, and BR and BRO instructions. Enter the branch destination for

expression.

Code generation macro

; ** Branch near relative address if direct bit is one **

bpo macro
local
local
bp
br
true: bro
next:
endm

do,b3,r8
next
true
do,b3,_true
next
8

VMC-257

Visual Memory Unit (VMU) Programing Manual

BPCO
BPC instruction guaranteeing no address error

Syntax
BPCO expression
Description

The BPCO macro generates code equivalent to the BPC instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BPCO macro uses a BPC instruction, and BR and BRO instructions. Enter the branch destination for
expression.

Code generation macro

; ** Branch near relative address if direct bit is one,

; and clear **
bpco macro do,b3,r8
local _next_
local _true_
bpc do,b3,_true_
br _next_
true: bro r8
_next :
endm
BNO

BN instruction guaranteeing no address error
Syntax

BNO expression

Description

The BNO macro generates code equivalent to the BN instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNO macro uses a BN instruction, and BR and BRO instructions. Enter the branch destination

for expression.

VMC-258

Assembler Pseudoinstructions

Code generation macro

; ** Branch near relative address if direct bit is zero ***

bno macro
local
local
bn
br
true: bro
next:
endm
DBNZO

DBNZ instruction guaranteeing no address error
Syntax
DBNZOexpression

Description

do,b3,r8
next
true
do,b3,_true
next
8

The DBNZO macro generates code equivalent to the DBNZ instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The DBNZO macro uses a DBNZ instruction, and BR and BRO instructions. The function of expression is

the same as in the DBNZ instruction.

Code generation macro

; ** Decrement direct byte and branch near relative address

dbnzo macro
local
local
dbnz
br
true: bro
next:
endm
BEO

BE instruction guaranteeing no address error

Syntax

if direct byte is not zero **

do,r8
next
true
do, true
next
8

VMC-259

Visual Memory Unit (VMU) Programing Manual

BEO expression
Description

The BEO macro generates code equivalent to the BE instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BEO macro uses a BNE instruction and BRO instruction. The function of expression is the same as in
the BE instruction.

Code generation macro

; ¥* Compare immediate data or accumulator and branch
near relative address if equal ***

beo macro arg0,argl,arg2
local _next_
local _txen_
ifb <<arg2>>
bne arg0,_next_
bro argl
next:
else
bne arg0,argl, txen_
bro arg2
txen:
endif
endm
BNEO

BNE instruction guaranteeing no address error
Syntax

BNEO expression

Description

The BNEO macro generates code equivalent to the BNE instruction, with no restrictions on the distance
between the branch destination in the same segment of the same source and the location of this instruction.
The BNEO macro uses a BE instruction and BRO instruction. The function of expression is the same as in
the BNE instruction.

VMC-260

Assembler Pseudoinstructions

Code generation macro

; ¥* Compare immediate data or accumulator and branch
near relative address if equal **

bneo macro arg0,argl,arg2
local _next_
local _txen_
ifb <<arg2>>
be arg0,_next_
bro argl
next:
else
be arg0,argl, txen_
bro arg2
_txen :
endif
endm

VMC-261

Visual Memory Unit (VMU) Programing Manual

VMC-262

Sega®@'Dreamcast

Visual Memory Unit (VMU)
VMU-BIOS Specifications

Sega®@'Dreamcast

Table of Contents

VMU-BIOS Specifications ...t VME-3
OULINE vttt ettt ettt et e et et e s et e s et e s e st ese st e st s e st b e st e b en s e s en s e s et ene s ene b en e seneebentebentenesenesens VME-3
VMU OULINE ettt ettt ettt st b e et b btttk e et e b b et e b b et e b ke et sa st ese et ebeben et et ebenene VME—-4
System-BIOS OULHNEoouoiiiii e VME—+4
MEIMNOTY SPACE ...ttt bbb VME-5
System BIOS FUNCHONSc.ouiiiiiiiicecte ettt VME-7
System BIOS Data and Memory ALIOCAtIONcccciiiiiiiiiiiiiiccccrreceeeeeee e esens VME-8
Program LayOul ... VME-8
SUDTOULINE CAll FIOW ..ottt ettt s bbbttt st ae s ens VME-9
Returning From User Program to Mode Selection SCreenccccccceeueueurieiecreninieeieeeeeeeneeeeeenes VME-11
VMU INIHAHZAION «.cuvvieveiiirieieiiirieicctnertenei ittt se et bbb esessebe st ssenestaesaesesesesessenenenens VME-12
Subroutine DeSCIIPIONc.oviiiiiieicct et VME-14
Flash Memory Access FUNCHONSc.cucuiiiiiiiiiiiiiiciicicicicici st VME-14
CIOCK FUNCHOMN ettt ettt sttt sttt et b et bt b et ebe st et s et st eae st et ebe e ebens VME-21
Automatic low battery detection fUNCHONcccccuiiiiiiiiicccee e VME-22

Automatic low battery detection flag

Sega®@'Dreamcast

VMU-BIOS Specifications

Outline

This document describes the System BIOS functions of the backup memory system “VMU” designed for the
new-generation game machine (preliminary).

VME-1

VMU-BIOS Specifications

VMU Outline

“VMU” stands for “Visual Memory Unit”. The VMU is a backup memory cartridge equipped with a liquid-crystal
display and operation buttons.

When connected to a dedicated controller in the new-generation game machine (preliminary), the VMU serves as
a file backup memory and it can also display game sub screens on its LCD.

When not connected to the new-generation game machine, the VMU can function as a stand alone unit that allows
displaying and deleting stored files. Two VMU units can be connected to allow file transfer.

Another application of the VMU is as a highly portable miniature game machine, using simple application
programs downloaded from the new-generation game machine to the VMU. (Such application programs are called
“user programs”.)

System-BIOS Outline

The functions described above are implemented by several programs that are contained in an internal ROM on the
VMU. These programs are called “OS programs”. OS programs consist of subroutines which can be called by user
programs. Two program types (system program and header) are used to call up subroutines. The entire system
consisting of OS programs, system programs, and headers is called the “System-BIOS”.

OS program subroutines are divided into subroutines that serve mainly for accessing the flash memory and
subroutines for calculating time data. Application developers can use the System-BIOS to call these subroutines in
user programs. This makes it easy for application developers to use VMU functions without having to deal with
detailed VMU specifications.

VME-2

Visual Memory Unit (VMU) VMU-BIOS Specifications

Memory Space

VMU uses two types of memory space: internal memory space and external memory space.

Internal memory space consists of the internal program area and internal RAM. The external memory space is made
up of flash memory.

The internal program area is 64 kilobytes and contains the OS programs and system programs. User programs can
reference this area as needed. The internal program area is allocated as shown in the memory map in Figure 1.4,
VMU memory map,” (For information on OS programs and system programs, please refer to Section , ”System
BIOS Data and Memory Allocation”.)

The flash memory space is 128 kilobytes, divided into two banks of 64 kilobytes each. Bank-0 is the program area
and bank-1 the data area. User programs are stored in the program area. A memory map of the flash memory is
shown in Figure 1.2, “Flash memory space,” (For information on the internal and external program area and BIOS
usage, please see “System BIOS Functions” on page 5, and the following sections.)

The internal RAM has a memory space of 1222 bytes, divided into the following four sections: main RAM, special
register area, LCD video RAM (XRAM), work RAM (VTRBF).

The main RAM is 512 bytes, divided into two banks of 256 bytes each. Because bank-0 is reserved for the System
BIOS, user programs are generally prohibited from writing to bank-0 (except for certain cases listed in appendix 1).

The special register area is allocated to VMU specific registers (timer register, LCD control register, etc.). For
information on registers and corresponding addresses, please refer to the VMU user's manual.

The LCD video RAM (XRAM) consists of three banks which serve for storing LCD image data. (For information on
RAM usage, please refer to the VMU user's manual.)

The work RAM is 512 bytes and serves as a buffer when VMU carries out data transfer according to the Maple Bus
protocol. When the VMU is operating as a standalone unit and data transfer according to the Maple Bus protocol is
therefore not being carried out, user programs can use this area.

A memory map of the internal RAM is shown in Figure 1.3, “Internal RAM space,”(The access procedure for the
work RAM differs from normal RAM access. For information, please refer to the VMU user's manual.)

VME-3

VMU-BIOS Specifications

000h

OFFh
100h

17Fh
180h

1FFh

00000000h

3FFFh

System programs
16K byte

Reserved area

E000h

EFFFh

0S programs
4K byte

FFFFh

Reserved area

Figure 1.1 Internal program space

FFFFH
Bank 1
64K

0000H

FFFFH
Bank 0
64K

0000H

Figure 1.2 Flash memory space
Main RAM Main RAM
Bank 0 Bank 1
Special register area
SFR
LCD video RAM LCD video RAM LCD video RAM
XRAM-0 XRAM-1 XRAM-2

Figure 1.3 Internal RAM space

000h

1FFh

*Only Bank 0 can be used as external program memory.

Work RAM

VTRBF

*Bank 0 of the main RAM is reserved for system programs. Except for special cases, user programs cannot use this area.

VME-4

Visual Memory Unit (VMU) VMU-BIOS Specifications

System BIOS Functions

This section explains the System BIOS functions provided for VMU.

User programs running on the VMU can access System BIOS functions by calling special subroutines. However,
there are certain limitations on which System BIOS functions (subroutines) can be called by user programs.

The following functions are provided by the System BIOS.

e System initialization

— VMU initialization function

¢ VMU execution mode selection

VMU comes with the following three execution modes:

1) Game data and user program management and editing
2) User program startup and return

3) Time display and adjustment
For details on execution mode selection, please refer to appendix 2.

* Subroutines
— Flash Memory Access Functions

1) Flash Memory Page Data Readout
2) Writing to Flash Memory
3) Flash Memory Verify

— Clock Function

1) Clock Countup Timer

For details on VMU initialization, please refer to Section , ”VMU Initialization”. For details on subroutines, please
refer to Section , “Subroutine Description”.

VME-5

VMU-BIOS Specifications

System BIOS Data and Memory Allocation

VMU comes with certain programs for using the System BIOS functions. These programs can be classified into the
following three types:

1) OS programs
2) System programs
3) Header

Program Layout

The actual programs are arranged in memory as follows.

Internal memory space External memory space
0000h
System programs Header
0100h
(preliminary)
Bank 0 Bank 1

Reserved area

Program/Data area Data area

0S programs

Reserved area

FFFFh

Figure 1.4 VMU memory map
Details are explained below.

System programs

System programs are required for using the VMU as a memory device. Major system programs are the file
management system, clock functions, and programs for data transfer according to the Maple standard. A
program for calling subroutines from the external memory space (user programs) is also located here.

(A flow diagram showing the call-up process of specified subroutines is shown in Section , ”Subroutine Call
Flow”.)

The VMU initialization program is located in this area. For details on the initialization program, please refer
to Section , “VMU Initialization”.

VME-6

Visual Memory Unit (VMU) VMU-BIOS Specifications

OS programs

The VMU program subroutines are located here. For information on subroutines that can be called by user
programs, please refer to Section , ”Subroutine Description”.

The method of accessing to this area is also shown in Section , ”Subroutine Call Flow”.

Header

Contains information about internal memory space processing routines and return procedures from the
internal memory space. Because this area also contains interrupt vectors for internal use by user programs,
its source code is being made available to application developers. It also contains information about return
from user programs to the mode selection screen. User programs must use this information to return to the
file management system. (For details on mode selection screen, please refer to Appendix 2.) Within the
given specifications, the area content may be modified by developers.

Subroutine Call Flow

This section explains the operation flow that occurs when a user programs calls OS program subroutines and then
returns to the user program. An actual flow diagram is shown in Figure 1.5, “OS program call flow,”.

External memory space Internal memory space
(header, user program) (system program, 0S program)
LABEL MNEMONIC LABEL MNEMONIC
WORLD EXTERNAL 2 WORLD INTERNAL
OTHER SIDE SYSBOL os_call OTHER SIDE SYSBOL os_ret
PUBLIC os_ret PUBLIC os_call
jmp main os_call: 3
)y os_int: i ycallf os_main
change os_call /// change os_ret ¢——
:p _head_ret:
6 1 RET return to main / os_main:
os_ret: Il (actual OS program) 4« 4
—— br_hrad_ret 5 //
main: ret
callf os int start call flow

Figure 1.5 OS program call flow

VME-7

VMU-BIOS Specifications

Label processing description

¢ external memory space
main: Main program in user program
os_int: This subroutine shifts processing to internal memory space.
In the example, processing passes to the internal memory space when the

subroutine is called, and the main program resumes upon return from the internal
memory space. This subroutine is included in the header.

os_ret: Subroutine for returning to external memory space.

The “change” command serves to return to this label from the internal memory

space. After returning, processing moves to the interrupt return routine in
the header.

¢ internal memory space
os_call: Serves to call an OS program and return to the external memory space.

After the OS program subroutine has executed, processing returns to the external
memory space.

os_main: Main OS program which executes the various subroutines.

The sample flow shown in Figure 1.5, ”OS program call flow,”assumes that a user program is executing in the
external memory space.

1) When wishing to use an OS program during execution of an external program, call the “os_int”
subroutine. Interrupt processing routines which need to jump to an OS program contain an
“o0s_int” subroutine.

2) The “change” command in the os_int subroutine jumps to the OS program call routine (os_call) placed
in the internal program area.

3) The OS program call routine calls the actual OS program subroutine (os_main). From this point on, the
OS program starts to execute.

4) When the OS program execution is finished, the RET command jumps to the next address of the call
command in the OS program call routine. In the OS program call routine, the call command is always
followed by a change command which moves processing to the external program area.

5) After returning from the OS program subroutine, the change command passes processing over to the
external program. This program contains a subroutine (os_ret) that is called when returning from an
internal program. The subroutine position is fixed. These programs are distributed to application
developers as a library. Such programs are called headers. (The sample program contains the headers
“os_int” and “os_ret”.)

6) From the above described external program return routine, processing returns to the “os_int” subroutine
and then by the RET command to the main program (main).

Note: Label names in the sample program are all preliminary. Label names will be different in the actual
System-BIOS.

L7

change” command

The “change” command serves to move processing from the external memory space to the internal
memory space, or from the internal memory space to external memory. By executing this command, a
program that is currently executing in internal memory space (or external memory space) moves to
external memory space (or internal memory space). The program counter is reset to the specified label
(or address).

VME-8

Visual Memory Unit (VMU) VMU-BIOS Specifications

Returning From User Program to Mode Selection Screen

When a user program is executing, if the user presses the MODE button on VMU, the user program will terminate
immediately and processing will return to the mode selection screen.

This section explains the operation flow from user program to the mode selection screen when the MODE button is
pressed while a user program is executing.

External memory space Internal memory space
(header, user program) (system program, OS program)
LABEL MNEMONIC LABEL MNEMONIC
WORLD EXTERNAL WORLD INTERNAL
OTHER SIDE SYSBOL int_ret PUBLIC int_ret
jmp main int_ret:

/jmp mode_main —— |

:p user_end) >3
) (Saving _of data by user program) mode_main: /
.change int_ret I (mode selection screen program)
main:
I~ interrupt generated ret
when MODE button pressed
jmp main

Figure 1.6 Operation flow of returning to mode selection

Label processing description

* external memory space

main: Main program in a user program.

Auser program must contain description to allow for pressing of the MODE button to jump
to the OS program return subroutine.
user_end: Subroutine to terminate a user program in execution and move processing to the OS
program. If data in the executing user program needs to be saved, then be sure to include this
information in the user program so that the subroutine will save it before returning to the OS program.
(The OS program does not keep data.)

* internal memory space

int_ret: Return routine to serve as entry to returning to the internal memory space when a user
program terminates. When processing returns to the internal memory area, the mode selection program
will start.
mode_main: Mode selection program.

For details on mode selection specification, please refer to Appendix 2.

VME-9

VMU-BIOS Specifications

The sample program flow in Figure 1.6, ”Operation flow of returning to mode selection,”assumes the user program
is executing in the external memory space.

1) While an external program is executing, pressing the MODE button will jump to the user_end
subroutine. In the user_end subroutine, the “change” command will shift processing to the internal
memory space. Therefore, if data in the executing user program needs to be saved, then be sure to save
it before executing the “change” command.

2) When program control jumps from the user program to the user_end subroutine, the “change”
command inside the user_end subroutine will shift processing to the mode_ret subroutine in the
internal memory space.

3) When processing moves from the external memory space to the mode_ret subroutine, the mode
selection program will start.

* 4

change” command

The “change” command serves to move processing from the external memory space to the internal
memory space, or from the internal memory space to external memory. By executing this command, a
program that is currently executing in the internal memory space (or external memory space) moves to the
external memory space (or internal memory space). The program counter is reset to the specified label
(or address).

VMU Initialization

This section explains the initialization that is performed at VMU startup.

The VMU is automatically initialized in the following cases.

1. VMU is connected to new-generation game machine, and power to new-generation game machine is
turned ON

2. Reset switch on VMU is pressed

3. Battery is inserted in VMU

Initialization comprises the following steps.

1) Clear main RAM
e Write ‘00h” to entire main RAM area (bank 0, bank 1).

* Initialization does not change XRAM values.

All registers are initialized by a hardware reset first, and then again by software. For information on the
register values after a hardware reset, please refer to the VMU user's manual.

2) Set system clock and cycle time
e Switch system clock to sub-clock (crystal quartz oscillator).

* Set cycle time to 1/6 system clock.
(The cycle time is used as reference for command execution. For details, please refer to the VMU
user's manual.)

3) Set base timer
¢ Select 14-bit base timer mode.
e Switch base timer clock to sub-clock (crystal quartz oscillator).

¢ Enable base timer 0 interrupt and start counting.

VME-10

VMU-BIOS Specifications

For details regarding base timer 0 operation, please refer to the VMU user's manual.

The base timer 0 is used by the clock function. For details regarding the clock function, please refer to Section,
”Clock Function”.

4) Set master interrupt
* Enable master interrupt.

(The master interrupt flag controls enabling / disabling of all interrupts with “High level” and “Low
level” priority.)

5) Set LCD driver

® Activate LCD controller.

e Set LCD clock to 1/2 of LCD driver input clock.
e Set LCD start address to’000h” of XRAM.

* Set character register.

e Set time allocation register.

* Set LCD to ON.

6) Setport1

e Set port 1 to all-bit input.

e Set bit 7 of port 1 to audio output pin.

* After initialization, bit 7 of port 1 is set to input mode. Therefore a user program will need to again select
the output mode.

* Set bit 5 — bit 0 of port 1 (serial interface for VMU) to synchronous operation. For details regarding the
synchronous serial interface, please refer to the VMU user's manual.

7) Setport3

e Pull up all bits of port 3.

¢ Set port 3 to all-bit input.

* Enable interrupt triggering and HOLD mode cancel by port 3.
¢ Enable interrupt trigger request by port 3.

8) Initialize Maple Bus interface circuit

e Initialize Maple Bus interface circuit.

9) Set work RAM

¢ Enable use of work RAM.

VME-11

Visual Memory Unit (VMU) VMU-BIOS Specifications

Subroutine Description

This section describes the subroutines available in the System BIOS.

Flash

Memory Access Functions

The following subroutines are available for flash memory access.

1) Flash Memory Page Data Readout
Read 128 bytes of data from the flash memory space.

2) Write to Flash Memory
Write 128 bytes of data to the flash memory space.

3) Flash Memory Verify
Verify data written to the flash memory.

* When accessing the flash memory, the main clock in use must be switched to 600 kHz. For details, please
refer to the next section.

Precautions for Using Flash Memory Access Subroutines

When accessing the flash memory space, the following points must be observed.
VMU uses three types of system clock as reference for command execution
(see Figure 1.7, "System clock table,”).

When VMU is operating as a standalone unit, the quartz oscillator clock (32 kHz) will normally be used.
However, for accessing the flash memory, the clock must be switched to the internal (RC) oscillator (600
kHz) before calling a flash memory access subroutine. After subroutine execution is completed, switch back
to the previously used clock.

For information on the timing for clock switching, see Figure 1.7, ”System clock table,”.

System clock source Oscillation frequency | Command cycle time
Ceramic (CF) oscillator 6 MHz 1.0 us
Internal (RC) oscillator 600 kHz 10.0 us

Quartz (X'TAL) oscillator 32 kHz 183.0 us

Figure 1.7 System clock table

VME-12

VMU-BIOS Specifications

C External memory)

‘ User program ’

C Internal memory space

)

0S program

Call OS call routine

N\

Call OS routine starts

Change clock to 600 kHz

Call 0S program

N

Return from 0S program |(

Change clock to 32 Khz

Return to user program

Call OS Routine ends

/

\I Subroutine execution starts

/ Subroutine execution completed

Figure 1.8 Flow diagram for clock switching during flash memory access

32 kHz clock
600 kHz clock

VME-13

Visual Memory Unit (VMU) VMU-BIOS Specifications

Flash Memory Page Data Readout

Subroutine name: fm_prd_ex (org 0120h)

Arguments: High-order start address for flash memory read: fmadd_h (RAM bank-1 07Eh)
Low-order start address for flash memory read: fmadd_1 (RAM bank-1 07Fh)
Bank address for flash memory read: fmbank (RAM bank-1 07Dh)

Return value: Read data (128 bytes): 080h - OFFh of RAM bank-1

Function: Read one continuous page of data (128 bytes) from specified address

Description: By calling this subroutine, a program can read one page of data (128 bytes) from

flash memory.
Before using this subroutine, the following settings must be made.
* Select RAM bank to use
(1) Select RAM bank-1 (Set bit 1 of PSW to “1”)
For information on the PSW register, please refer to the VMU user's manual.
e Set start address for flash memory read
(2) High-order address (8 bit): set to fmadd_h (07Eh of RAM bank-1)
(3) Low-order address (8 bit): set to fmadd_1 (07Fh of RAM bank-1)
e Select flash memory bank to read
(4) Select flash memory bank-0
(Set 07Dh of RAM bank 1 to’00h’)

* If another value is set, normal operation is not assured.
The read data are written to 080h - OFFh of RAM bank-1.

When making read settings, observe the following points.

* Data extending to 2 pages cannot be read. The read start address must therefore
always be set to the beginning of each page.

The start address of each page can be calculated according to the following equation:
start address value (2 byte) = 080h x page number (0 - 511)

(Because readout is performed in single-page units, bit 0 — bit 6 of the lower-level
address must always be set to “0”. If an address other than the start address of a page
is set, normal operation is not assured.)

* The read-out data overwrite any previous content of the RAM.

* Register values after subroutine completion

VME-14

VMU-BIOS Specifications

*fmadd_h=AOh
When fmadd_l is set to 80h (page no. 321)

000h

FFFh
000h

080h

OFFh

Note that the following (memory) registers will have different values before the
subroutine is called and after the subroutine has completed:

¢ ACC (accumulator)

e TRL (table lookup register lower byte)

* TRH (table lookup register higher byte)

e r0 (RAM indirect address register)
*About pages

Beginning at the top, the flash memory space is subdivided into 128-byte units called
pages. Flash memory is managed in page units. Because 1 bank of the flash memory

space is 64 kilobytes, it has 512 pages.

“fm_prd_ex” execution is shown in Figure 1.9, “Execution of fm_prd_ex,”.

Flash memory space

MainRAM

Bank 0

A080h

128 byte DATA Bank 0
A100h e

-

e

FFFh

128 byte DATA i

0000h
Bank 1

Figure 1.9 Execution of fm_prd_ex

VME-15

Visual Memory Unit (VMU) VMU-BIOS Specifications

Writing to Flash Memory

Subroutine name:

Arguments:

Return value:

Function:

Description:
continuous

fm_wrt_ex (org 0100h)
High-order start address for flash memory write: fmadd_h (RAM bank-1 07Eh)
Low-order start address for flash memory write: fmadd_l (RAM bank-1 07Fh)
Bank address for flash memory write: fmbank (RAM bank-1 07Dh)
Flash memory write data (128 bytes): RAM bank-1 080h - OFFh
Data write end detection algorithm:

Bit 0 of RAM bank-1 07Ch

(toggle bit method (0)/data polling method (1))
result of write: ACC (accumulator)

(Normal termination: 00h. Abnormal termination: FFh)

Write one continuous page of data (128 bytes) to the flash memory, starting at the
specified address

By calling this subroutine, a program can write a page of data (128 bytes) to a

area in the flash memory, starting at the specified address.

Before using this subroutine, the following settings must be made.

® Select RAM bank to use
(1) Select RAM bank 1 (Set bit 1 of PSW to “1”)
e Prepare data to be written to flash memory
(2) Store data to be written to flash memory in RAM bank 1, 080h - 0FFh
* Select flash memory bank to read
(3) Select flash memory bank 0
(Set 07Dh of RAM bank 1 to’00h’)
*If another value is set, normal operation is not assured.
e Set address for accessing flash memory
(4) High-order address (8 bit): set to 07Eh of RAM bank-1
(5) Low-order address (8 bit): set to 07Fh of RAM bank-1
* Specify data write end detection algorithm
(6) Set data write end detection algorithm in 07Ch of RAM bank-1, as follows.
(6-1) Use toggle bit method: set 07Ch to 00h
(6-2) Use data polling method: set 07Ch to 01h
* If another value is set, normal operation is not assured.
When making write settings, observe the following points.

e fm_wrt_ex is a subroutine specifically for user programs. This subroutine can
write only to the area where the user program is located. For this reason, be sure
to secure an area within the user program before performing the data write.

¢ Data extending to 2 pages cannot be written. The write start address must
therefore always be set to the beginning of each page.

The start address of each page can be calculated according to the following equation:
start address value (2 byte) = 080h x page number (0 - 511)

VME-16

VMU-BIOS Specifications

subroutine

(Because writing is performed in single-page units, bit 0 - 6 of the lower-level address must
always be set to “0”. If an address other than the start address of a page is set, normal
operation is not assured.)

For information on pages, please refer to Section , “Flash Memory Page Data Readout”.

* Register values after subroutine completion

Note that the following (memory) registers will have different values before the

is called and after the subroutine has completed:

¢ ACC (accumulator)

* B (B register)
* C (C register)

e TRL (table lookup register lower byte)
* TRH (table lookup register higher byte)

* 10 (RAM indirect access register)

fm_wrt_ex execution is shown in Figure 1.10, “Execution of fm_wrt_ex,”.

*fmadd_h=A0h

When fmadd_l is set to 80h (page no. 321)

MainRAM

000h

FFFh

Bank 0

A080h

000h

A100h
Bank 1

080h

OFFh

128 byte DATA

7

FFFh

0000h

e

Flash memory space

128 byte DATA

S

Figure 1.10 Execution of fm_wrt_ex

Bank 0

Bank 1

VME-17

Visual Memory Unit (VMU) VMU-BIOS Specifications

Flash Memory Verify

Subroutine name:
Arguments:

Return value:
Function:

fm_vrf_ex (org 0110h)

High-order address flash memory address for verify start: fmadd_h (RAM bank 1 07Eh)
Low-order address flash memory address for verify start: fmadd_l (RAM bank 1 07Fh)
Flash memory bank address for verify operation: fmbank (RAM bank 1 07Dh)
Data (128 bytes) for verify operation: RAM bank 1 080h - OFFh
Verify result: accumulator (ACC) (normal end: 00h?error end: other than 00h)

Serves to verify whether data were written correctly to flash memory. For use after writing

data to flash memory with fm_wrt_ex (see section 7.1.4).

Description:

*fmadd_h=A0
fmadd_I=80 ¢ (page no. 321)
Fmbank= 01

FFFh
000h

080h

OFFh

This subroutine compares the 128 byte data sfpeciﬁed when calling fm_wrt_ex with the
data actually written to flash memory. Therefore the subroutine can only be used
immediately after the fm_wrt_ex subroutine was called.

When calling this subroutine, the same arguments as used for the preceding fm_wrt_ex
must be specified. If different arguments are specified, data verify will not be carried
out properly.

After calling this subroutine, if all 128 btytes of data were found to match, 00h will be set

t
in ACC, and the routine returns. If a dafa mismatch was detected, a value other then 00h
will be set in ACC, and the routine returns.

* Register values after subroutine completion

Note that the following (memory) registers will have different values before the
subroutine is called and after the subroutine has completed.

¢ TRL (table lookup register lower byte)
 TRH (table lookup register higher byte)
* 10 (RAM indirect access register)

fm_vrf_ex execution is shown in Figure 1.11, ”Execution of fm_vrf_ex,”.

Flash memory space

MainRAM

Bank 0

A080h

128 byte DATA Bank 0
A100h y

Bank 1

128 byte DATA
\ FFFh

0000h
Bank 1

Comparedata contents
p N

Data match / \ Data do not match

ACC ACC

00h Not 00h

00h setin ACC Value other than 00h set in ACC
Figure 1.11 Execution of fm_vrf_ex

VME-18

VMU-BIOS Specifications

Clock Function

The clock functions implemented in VMU are as follows.

Time data automatic update

Clock Countup Timer

Subroutine name:
Arguments:

Return value:

Function:

Description:

timer_ex

None

Year: year_h (RAM bank 0 017h, 18h)
Month: mon_h (RAM bank 0 019h)
Day: day_h (RAM bank 0 01Ah)
Hour: hour_h (RAM bank 0 01Bh)
Minute: min_h (RAM bank 0 01Ch)
Second: sec_h (RAM bank 0 01Dh)

* The year data are configured as 2 bytes, with the higher-level in byte in 17h and the
lower level byte in 18h. Because “year_h" is assigned to RAM bank, 017h, address 018h
can be accessed by specifying “year_h+1".

When the subroutine is called, it obtains the time data and places them in the specified
location in RAM bank 0. (For information on the specified location, please refer to
Appendix 1.)

This subroutine is a time counter using the base timer interrupt. To enable use of the
subroutine, the following settings for the base timer interrupt must be made.

¢ Base timer interrupt settings

This subroutine uses only the base timer 0 interrupt. The base timer interrupt is to be
set as shown below.

(1) Base timer count stop (BTCR 6 bit ='0")
(2) 14 bit base timer mode selected (BTCR 7 bit ='0)
(3) Sub clock used as base timer clock (ISL 4 bit ='0")

(4) Base timer interrupt 0 enabled (BTCR 0 bit ="1")
(5) Base timer count start (BTCR 6 bit ='1")

Because the base timer 0 interrupt is used by the timer_ex subroutine, user programs
may not access this interrupt. Otherwise, normal operation is not assured.

This subroutine should be called after jumping to the interrupt vector of the base timer
interrupt 0 source. Also, be sure to clear the base timer 0 interrupt source (BTCR 1

bit ="0").

(If this is not performed, the clock function will not operate properly.)

All time data obtained by this subroutine are in hex format. Conversion into decimal
format must be performed by the user program.

VME-19

Visual Memory Unit (VMU) VMU-BIOS Specifications

Automatic low battery detection function

Visual Memory comes with the ability to automatically detect low battery.

The following explains how this function works.

Automatic low battery detection flag

flag to enable ordisable this function.

Visual Memory can automatically check the battery's power consumption and when necessary display a
low battery warning message on the screen. Gamedevelopers can use the automatic low battery detection

The following describes how to use this function.

Register to use:

Register values:

How it work:

Explanation:

06Eh (Bank-0)
00h (enable the automatic low battery detection function)
FFh (disable the automatic low battery detection function)

(If any value other than the above ones is used, then normal operation
cannot be guaranteed.)

The automatic low battery detection function constantly monitors the
battery's voltage and if the voltage falls below a certain level it will
stop the current program, wait for 3 seconds, then display the battery
warning message on the screen.

The automatic low battery detection function consists of tasks from
detecting low voltage to displaying the low battery warning message.

When the automatic low battery detection flag is set to 00h,the
automatic low battery detection function is enabled and when the
battery is low it will display the low battery warning message,
regardless of the current task of Visual Memory. If the flag is set to FFh,
then the automatic low battery detection function is disabled.

When the user program is performing the following tasks, be sure to turn off the automatic low battery

detection function:

1. Communicating with another Visual Memory via the serial interface

2. Writing to the flash memory space

VME-20

VMU-BIOS Specifications

VME-21

Visual Memory Unit (VMU) VMU-BIOS Specifications

VME-22

Sega®@'Dreamcast

Visual Memory Unit (VMU)
Sound Development
Specifications

Sega®@'Dreamcast

Table of Contents

VMU Sound Development Specificationst VMA-1
VMU Sound Output Hardware OULHNE ... s VMA-1
Sound Output PrinCIPLec.oviiiieiiici et VMA-2
TIMeEr T OULHNE ..o VMA-2
8-Bit COUNET MOAE ... VMA-5
Table of Available Output FTeqUeNCIESccoviiiiiiiiiiciic e VMA-8

Sample Program

Sega®@'Dreamcast

VMU Sound
Development Specifications

VMU Sound Output Hardware Outline

VMU can use an internal timer (timer 1) to produce sound output.

The following two output methods are possible.

* 8-bit pulse generator output

* Variable bit length pulse generator output (9 - 16bits)

Both methods use the timer 1 circuit. Normally, the 8-bit pulse generator output method is used.

VMA-1

VMU Sound Development Specifications

Sound Output Principle

This section describes the VMU sound output method.

VMU sound output uses timer 1.

Timer 1 Outline

This section describes timer 1 that is used for VMU sound output.
Timer 1 incorporated in the VMU is a 16-bit timer with the following four functions.

Mode 0: 8-bit reload timer x 2 channels

Mode 1: 8-bit reload timer + 8-bit pulse generator
Mode 2: 16-bit reload timer

Mode 3: Variable bit length pulse generator (9 - 16bits)

Among these modes, VMU uses mode 1 for sound output.

For information on using the other modes, please refer to the VMU Hardware manual.

Timer 1 Block Configuration

This section describes the block configuration of timer 1.

A configuration diagram of timer 1 is shown in Figure 1.1, ”"VMU Timer 1 Block Diagram,”.
e Timer 1 lower level (T1L) - 1

This is an 8-bit reload timer using the cycle clock or cycle clock 1/2 signal as clock signal.

At the overflow of T1L, the T1IR data are reloaded. When TILRUN (T1CNT, bit6) is set to “0”, the TILR
data are transferred to T1L.

e Timer 1 lower level comparator (T1LC) - 2

This circuit consists of the 8-bit timer 1 lower level comparison data register (T1LC) and an 8-bit data
comparator circuit. The circuit compares the T1L and T1LC data.

e Timer 1 higher level (T1H) - 3

This is an 8-bit reload timer using the cycle clock or the T1L overflow as clock signal.

At the overflow of T1H, the THR data are reloaded. Reload also occurs when TIHRUN (T1CNT, bit7)
is reset.

e Timer 1 higher level comparator (T1THC) - 4

This circuit consists of the 8-bit timer 1 higher level comparison data register (T1HC) and an 8-bit data
comparator circuit. The circuit compares the TIH and TIHC data.

e Timer 1 control register (TICNT) -+ 5

Serves for T1 mode setting and interrupt control.

VMA-2

Visual Memory Unit (VMU) Sound Development Specifications

1/2cycle clock

Comparison data ,

register (T1LC)

Comparator

Selector

Cycle clock ¢

£

8-bit counter (TIL)

Reload register (T1LR) [«

v v

TILOVF

Comparison data

register (TTHC)

®
Comparator
®
ESeIector >\ 8-bit counter (TIL) [
Reload register (TLR) [«
TILONG

Pulse generator >

control circuit

Piezo beep

Port 1 circuit

r S

T1HOVF

r S -~

i

TILOVF |

®,
[fsfs]e]a]z]r]o]

[[sfs]e]s]z]r]o]

-
[[s]s]e]a]z]1]o]

Related Registers

*T1L (11Bh)
*T1LR (11Bh)
«T1LC (11Ah)
¢T1CNT (118h)
*P1 (114h)
«P1DDR (145h)
*P1FCR (146h)
*OCR (10Eh)

T1CNT(118h)

Figure 1.1 VMU Timer 1 Block Diagram

The following registers are required for controlling timer 1.

P1DDR

Timer 1 lower level counter register

Timer 1 lower level reload register

Timer 1 lower level comparison data register

Timer 1 control register

Port 1 latch register

Port 1 data direction register

Port 1 control register

Resonance control register

For details on the above timer, please refer to the timer section of the VMU Hardware manual.

[
/&

VMA-3

VMU Sound Development Specifications

Table 1.1

Mode Setting

This section describes how to set timer 1 to the mode for VMU sound output (mode 1).

The following four registers are required for setting the mode.

T1ICNT (bit5: TILONG)
P1 (bit7: P17)

P1IDDR (bit7: P17DDR)
P1FCR (bit7: P17DDR)

The register values for the modes are listed in the table below, along with the cycle clock used for
each mode.

Clock cycle TILONG P17FCR P17DDR

1 Teye 0 1 1 0

Time 1 Mode Setting

Tcyc in the table is the cycle clock.
To use the sound output capability of VMU, be sure to set the system clock to the sub-clock (32 KHz).
At other system clock settings, correct sound output may not be obtained.

The cycle clock is defined as follows.
System clock 32 KHz (Tcyc = 183.0 us)

For information on setting the system clock, please refer to the VMU Hardware manual.

* Problems when using other system clock settings

Besides the 32 KHz clock, the VMU can use a 600 KHz and 6 MHz system clock, but when the latter two
are selected, the following problems occur.

* 600KHz When the 600 KHz clock is selected, the output frequency tolerance will be -50%, +100%,
which will cause a wide fluctuation in the actual output sound.

* 6MHz When the 6 MHz clock is selected, power consumption will increase considerably,
resulting in a shorter battery life.

VMA-4

Visual Memory Unit (VMU) Sound Development Specifications

8-Bit Counter Mode

This section describes VMU sound output when using 8-bit counter mode. For information on basic operation,
please refer to the VMU Hardware manual.

Output Waveform and Parameter Settings

This section describes the signal waveform that can be output in 8-bit counter mode, and lists the
parameters that determine the waveform.

The output waveform is shown in Figure 1.2, “Output waveform,”.
8-bitcounter value (T1L)

A

255 -~

[T1LC] setting value

[T1LR] setting value

P Time (t)

Output sound signal " ; ; '_

—>» TICTILR [€— E
' I:I Beeper output
| 256-TILR———p!

Figure 1.2 Ouiput waveform

VMA-5

VMU Sound Development Specifications

8-Bit Counter Mode Setting

This section describes the sound signal output procedure in 8-bit counter mode.

To output a sound signal in 8-bit counter mode, make the settings as described below.

1. Set the parameters (T1LR, T1LC) according to the desired output waveform.

Use equations (1) and (2) given below to define the waveform.
Sound output signal L level pulse width (decimal)
= (T1LC setting value - T1LR setting value) X Tcyc----Equation (1)
Sound output signal cycle (decimal)
= (256 - T1LR setting value) X Tay: sssssssssssssssssseeeeee Equation (2)
Teyc: cycle clock

2. Select the mode for timer 1.

The following four registers are required for setting the mode.

T1ICNT (bit5: TILONG)
P1 (bit7: P17)
PIDDR (bit7: P17DDR)
PIFCR (bit7: P17FCR)

The register values for the modes are listed in the table below, along with the cycle clock used for
each mode.

Table 1.2 Time 1 Mode Setting

TILONG P17FCR P17DDR

VMA-6

VMU Sound Development Specifications

3. Start the count for timer 1 (lower 8bits)

To start/stop the timer, make the following settings.

Waveform parameter update Set TICNT bit4 (ELDT1C) to “1”. Note that the waveform
parameters set in step 1 do not become effective until this setting
is made.

If the parameters were changed while TICNT bit4 was “1”, the
parameter setting value becomes effective immediately after
the change.

Timer 1 count start Set TICNT bit6 (TILRUN) to “1”.

To stop audio output in the 8-bit counter made, make the Following setting.

4. Set the timer1(T1L) count stop flag (TICNT bit6)to “0”.

While timer 1 (lower 8bits) is operating, the waveform parameters can be changed. To output sound of a
different frequency without interruption, change the waveform output parameters without stopping timer

1. (Leave TICNT bit4 [ELDT 1C]) set to “1”.)

Frequency Response Characteristics

The frequency response of the beeper in the VMU is shown below.
The T1LR value indicates the frequency range that can be output by the VMU.

For details, please refer to the explanation of the relationship between T1LR value and output frequency in
section on “Table of Available Output Frequencies” on page 8.

Visual Memory frequent responce

. /

. /N
. /A
. TN

} ///\/

60

Volume(db) ¢j

58

Y A [[[) [) [) e

TILR

VMA-7

Visual Memory Unit (VMU) Sound Development Specifications

Table of Available Output Frequencies

The output frequencies (theoretical values) available with a system clock of 32 KHz are listed below.

Due to limitations of the beeper, not all frequencies can actually be output. You should use the recommended
frequencies indicated in the table.

The L level pulse width of the output signal is set to 1/2 of the output signal cycle (duty factor = 50%).

Table 1.3 Waveform Parameters and Output Frequencies

Frequency Frequency Frequency Frequency
TiLR(hex) | TILC(hex) (Hz) TiLR(hex) | TILC(hex) (Hz) TiLR(hex) | TILC(hex) (Hz) TiLR(hex) | TILC(hex) (Hz)

00 80 21.346 40 94 28.461 80 A8 42.691 Co E0 85.383
01 80 21.429 41 A0 28.610 81 Co 43.027 C1 EO 86.738
02 81 21514 42 Al 28.760 82 C1 43.369 C2 E1 88.137
03 81 21.599 43 Al 28913 83 C1 43716 C3 E1 89.582
04 82 21.684 44 A2 29.066 84 C2 44.068 C4 E2 91.075
05 82 2177 45 A2 29.222 85 C2 44.427 C5 E2 92.618
06 83 21.858 46 A3 29.379 86 C3 44791 C6 E3 94.215
07 83 21.946 47 A3 29.538 87 C3 45.161 C7 E3 95.868
08 84 22.034 48 A4 29.698 88 C4 45537 C8 E4 97.580
09 84 22123 49 Ad 29.861 89 C4 45.920 C9 E4 99.354
0A 85 22.213 4A A5 30.025 8A C5 46.309 CA E5 101.194
0B 85 22.304 4B A5 30191 8B C5 46.705 CB E5 103.103
0c 86 22.395 4c A6 30.358 8C C6 47.108 cC E6 105.086
oD 86 22.488 4D A6 30.528 8D C6 47.517 CD E6 107.147
OE 87 22.580 4F A7 30.699 8E C7 47.934 CE E7 109.290
OF 87 22674 4F A7 30.873 8F C7 48.358 CF E7 111.520
10 88 22.769 50 A8 31.048 90 C8 48.790 i) E8 113.843
1 88 22.864 51 A8 31.226 91 C8 49.230 D1 E8 116.266
12 89 22.960 52 A9 31.405 92 C9 49.677 D2 E9 118.793
13 89 23.057 53 A9 31.587 93 C9 50.133 D3 E9 121.433
14 8A 23.155 54 AA 31.770 94 CA 50.597 D4 EA 124.193
15 8A 23.253 55 AA 31.956 95 CA 51.070 D5 EA 127.081
16 8B 23.352 56 AB 32.144 96 CB 51.552 D6 EB 130.107

VMA-8

VMU Sound Development Specifications

Frequency Frequency Frequency Frequency
TiLR(hex) = TILC(hex) | (Hz) TILR(hex) = TILC(hex) | (Hz) TILR(hex) = TILC(hex) | (Hz) TiLR(hex) = TILC(hex) | (Hz)
17 8B 23.453 57 AB 32.334 97 CB 52.043 D7 EB 133.280
18 8C 23.554 58 AC 32.527 98 cC 52.543 D8 EC 136.612
19 8C 23.656 59 AC 32.721 99 CC 53.053 D9 EC 140.115
1A 8D 23.759 5A AD 32919 9A CD 53.573 DA ED 143.802
1B 8D 23.862 5B AD 33.118 9B CD 54.104 DB ED 147.689
1C 8E 23.967 5C AE 33.320 9C CE 54.645 DC EE 151.791
1D 8E 24.073 50 AE 33.524 PD CE 55.197 DD EE 156.128
1E 8F 24179 5E AF 33.731 9E CF 55.760 DE EF 160.720
1F 8F 24.287 5F AF 33.941 9F CF 56.335 DF EF 165.590
20 90 24.395 60 BO 34.153 AD Do 56.922 E0 FO 170.765
21 90 24.504 61 BO 34.368 Al i) 57.521 E1 FO 176.274
22 91 24615 62 B1 34.585 A2 D1 58.133 E2 F1 182.149
23 91 24.726 63 B1 34.806 A3 D1 58.758 E3 F1 188.430
24 92 24.839 64 B2 35.029 A4 D2 59.397 E4 F2 195.160
25 92 24.952 65 B2 35.255 A5 D2 60.049 E5 F2 202.388
26 93 25.066 66 B3 35.484 AB D3 60.716 E6 F3 210.172
27 93 25.182 67 B3 35.716 A7 D3 61.399 E7 F3 218.579
28 94 25.299 68 B4 35.951 A8 D4 62.096 E8 F4 227.687
29 94 25.416 69 B4 36.189 A9 D4 62.810 E9 F4 237.586
2A 95 25.535 B6A B5 36.430 AA D5 63.540 EA F5 248.385
2B 95 25.655 6B B5 36.674 AB D5 64.288 EB F5 260.213
2C 96 25.776 6C B6 36.922 AC D6 65.053 EC F6 273.224
2D 96 25.898 6D B6 37.173 AD D6 65.837 ED F6 287.604
2k 97 26.021 6E B7 37.428 AE D7 66.640 EE F7 303.582
2F 97 26.146 6F B7 37.686 AF D7 67.463 EF F7 321.440
30 98 26.272 70 B8 37.948 BO D8 68.306 FO F8 341.530
31 98 26.398 Al B8 38.213 B1 D8 69.171 F1 F8 364.299
32 99 26.527 72 B9 38.482 B2 D9 70.057 F2 F9 390.320
33 99 26.656 73 B9 38.755 B3 D9 70.967 F3 F9 420.345

VMA-9

Visual Memory Unit (VMU) Sound Development Specifications

Frequency Frequency Frequency Frequency
TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz)

34 9A 26.787 74 BA 39.032 B4 DA 71.901 F4 FA 455.373
35 9A 26.919 75 BA 39.313 B5 DA 72.860 F5 FA 496.771
36 9B 27.052 76 BB 39.598 B6 DB 73.844 F6 FB 546.448
37 9B 27.186 77 BB 39.887 B7 DB 74.856 F7 FB 607.165
38 9C 21.322 78 BC 40.180 B8 DC 75.896 F8 FC 683.060
39 9C 27.460 79 BC 40.478 B9 DC 76.965 F9 FC 780.640
3A D 27.598 7A BD 40.780 BA DD 78.064 FA FD 910.747
3B 9D 27.738 7B BD 41.086 BB DD 79.195 FB FD 1092.896
3C 9k 27.880 7C BE 41.398 BC DE 80.360 FC FE 1366.120
3D 9k 28.023 7D BE 4714 BD DE 81.559 FD FE 1821.494
3k 9F 28.167 7E BF 42.034 BE DF 82.795 FE FF 2732.240
3F 9F 28.313 7F BF 42.360 BF DF 84.069 FF FF 5464.481
00 80 21.346 40 94 28.461 80 A8 42.691 Co E0 85.383
01 80 21.429 41 AD 28.610 81 Co 43.027 C1 E0 86.738
02 81 21.514 42 Al 28.760 82 C1 43.369 C2 E1 88.137
03 81 21.599 43 Al 28913 83 C1 43716 C3 E1 89.582
04 82 21.684 44 A2 29.066 84 C2 44.068 C4 E2 91.075
05 82 21771 45 A2 29.222 85 C2 44.427 C5 E2 92.618
06 83 21.858 46 A3 29.379 86 C3 44791 C6 E3 94.215
07 83 21.946 47 A3 29.538 87 C3 45.161 C7 E3 95.868
08 84 22.034 48 Ad 29.698 88 C4 45,537 C8 E4 97.580
09 84 22123 49 A4 29.861 89 C4 45.920 C9 E4 99.354
0A 85 22.213 4A A5 30.025 8A C5 46.309 CA E5 101.194
0B 85 22.304 4B A5 30191 8B C5 46.705 CB E5 103.103
0C 86 22.395 4C A6 30.358 8C C6 47.108 CC E6 105.086
0D 86 22.488 4D Ab 30.528 8D C6 47517 CD E6 107.147
U= 87 22.580 4F A7 30.699 8E C7 47.934 CE E7 109.290
OF 87 22674 4F A7 30.873 8F C7 48.358 CF E7 111.520
10 88 22.769 50 A8 31.048 90 C8 48.790 DO E8 113.843

VMA-10

VMU Sound Development Specifications

Frequency Frequency Frequency Frequency
TiLR(hex) = TILC(hex) | (Hz) TILR(hex) = TILC(hex) | (Hz) TILR(hex) = TILC(hex) | (Hz) TiLR(hex) = TILC(hex) | (Hz)

1 88 22.864 51 A8 31.226 91 C8 49.230 D1 E8 116.266
12 89 22.960 52 A9 31.405 92 C9 49.677 D2 E9 118.793
13 89 23.057 53 A9 31.587 93 C9 50.133 D3 E9 121.433
14 8A 23.155 54 AA 31.770 94 CA 50.597 D4 EA 124.193
15 8A 23.253 55 AA 31.956 95 CA 51.070 D5 EA 127.081
16 8B 23.352 56 AB 32.144 96 CB 51.552 D6 EB 130.107
17 8B 23.453 57 AB 32.334 97 CB 52.043 D7 EB 133.280
18 8C 23.554 58 AC 32.527 98 cC 52.543 D8 EC 136.612
19 8C 23.656 59 AC 32.721 99 CC 53.053 D9 EC 140.115
1A 8D 23.759 5A AD 32919 9A CD 53.573 DA ED 143.802
1B 8D 23.862 5B AD 33.118 9B CD 54.104 DB ED 147.689
1C 8E 23.967 5C AE 33.320 9C CE 54.645 DC EE 151.791
1D 8E 24.073 50 AE 33.524 PD CE 55.197 DD EE 156.128
1E 8F 24179 5E AF 33.731 9E CF 55.760 DE EF 160.720
1F 8F 24.287 5F AF 33.941 9F CF 56.335 DF EF 165.590
20 90 24.395 60 BO 34.153 AD Do 56.922 EO0 FO 170.765
21 90 24.504 61 BO 34.368 Al i) 57.521 E1 FO 176.274
22 91 24.615 62 B1 34.585 A2 D1 58.133 E2 F1 182.149
23 91 24.726 63 B1 34.806 A3 D1 58.758 E3 F1 188.430
24 92 24.839 64 B2 35.029 A4 D2 59.397 E4 F2 195.160
25 92 24.952 65 B2 35.255 A5 D2 60.049 E5 F2 202.388
26 93 25.066 66 B3 35.484 Ab D3 60.716 E6 F3 210.172
27 93 25.182 67 B3 35.716 A7 D3 61.399 E7 F3 218.579
28 94 25299 68 B4 35.951 A8 D4 62.096 E8 F4 227.687
29 94 25.416 69 B4 36.189 A9 D4 62.810 E9 F4 237.586
2A 95 25.535 6A B5 36.430 AA D5 63.540 EA F5 248.385
2B 95 25.655 6B B5 36.674 AB D5 64.288 EB F5 260.213
2C 96 25.776 6C B6 36.922 AC D6 65.053 EC F6 273.224
2D 96 25.898 6D B6 37.173 AD D6 65.837 ED F6 287.604

VMA-11

Visual Memory Unit (VMU) Sound Development Specifications

Frequency Frequency Frequency Frequency
TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz)

2k 97 26.021 6E B7 37.428 AE D7 66.640 EE F7 303.582
2F 97 26.146 6F B7 37.686 AF D7 67.463 EF F7 321.440
30 98 26.272 70 B8 37.948 BO D8 68.306 FO F8 341.530
31 98 26.398 71 B8 38.213 B1 D8 69.171 F1 F8 364.299
32 99 26.527 72 B9 38.482 B2 D9 70.057 F2 F9 390.320
33 99 26.656 73 B9 38.755 B3 D9 70.967 F3 F9 420.345
34 9A 26.787 74 BA 39.032 B4 DA 71.901 F4 FA 455.373
35 9A 26.919 75 BA 39.313 B5 DA 72.860 F5 FA 496.771
36 9B 27.052 76 BB 39.598 B6 DB 73.844 F6 FB 546.448
37 9B 27.186 77 BB 39.887 B7 DB 74.856 F7 FB 607.165
38 9C 21.322 78 BC 40.180 B8 DC 75.896 F8 FC 683.060
39 9C 27.460 79 BC 40.478 B9 DC 76.965 F9 FC 780.640
3A D 27.598 7A BD 40.780 BA DD 78.064 FA FD 910.747
3B 9D 27.738 7B BD 41.086 BB 0D 79.195 FB FD 1092.896
3C 9k 27.880 7C BE 41.398 BC DE 80.360 FC FE 1366.120
3D 9k 28.023 7D BE 4714 BD DE 81.559 FD FE 1821.494
3k 9F 28.167 7E BF 42.034 BE DF 82.795 FE FF 2732.240
3F 9F 28.313 7F BF 42.360 BF DF 84.069 FF FF 5464.481

VMA-12

VMU Sound Development Specifications

Sample Program

Timer 1 initial setting

Sound output signal setting

Signal frequency setting

Timer 1 setting

Timer 1 start

Sound output signal setting

change

(L level pulse width change)

‘ Sound output stop ’

nmov #A3h, ocr

nov #000h, TI1LR
nov #080h, TI1LC
nov #080h, P1FCR
clrl P1, 7
nov #80h, P1DDR
nmov #0D4h, TI1CNT
Output waveform —
nmov #040h, TI1LC
Output waveform —
nmov #000h, TI1CNT

;set systemclock to 32 kHz
:set clock division ratioto 1/6

; TILR=0 - 256-0=256

; TILC=128 - 256-128=128

;L level pulse width 128 Tcyc
;sound signal cycle 256 Tcyc

;set P17 to sound output npde
;set sound out put port
; set output of P17

; updat e wavef orm par anet er
;start counter (sound output start)

128 x Teyc
[256 x Teye

; TILC=64 - 256-64=192
;L level pulse width 192 Tcyc
;sound signal cycle 256 Tcyc

192 x Tcyc —

256 x Teye

; stop updating wavef orm paranet er
;stop counter (sound output stop)

VMA-13

Visual Memory Unit (VMU) Sound Development Specifications

VMA-14

Sega®@'Dreamcast

Visual Memory Unit (VMU)
Simulator Manual

Sega®@'Dreamcast

Table of Contents

OVBIVIBW ... e VMB-1
FRALUTES ...ttt bbbt VMB-1
Visual Memory Simulator Operating ENVironmentcccooioiiiiiciiccc s VMB-2
Checking Operation on Actual Visual Memory Hardwarec.cccveuienicinicinicinieinneeeneeseeeesesesesesseeenneees VMB-3
Notes Concerning Startup for the First TIMEccccoviiiiniiiiniiccc e VMB—+4
Implemented Deviceso e VMB-5
VITtUAL CPU .o VMB-5
IMIEIMIOTTY oottt b ettt b bbb bbb bbbttt a ettt et VMB-6

LCD CONtroller (LCIDIEC) ...ttt ettt ettt e asete s ete s ev et et esese et eseeseseesessesensesensesensesenseseanas VMB-6

Serial INtETTACE (SIO)oviceeeeieeeeeeeeeteeetee ettt ettt ettt et ettt ettt et et et et et et ese et ese et eseetessesensesensesensesenseseanas VMB-7

THINET e VMB-7

INterTupt CONEIOLLEToviiiiiiiiiic s VMB-7

I/ O POTES oottt VMB-7
External INPUt DEVICESc.cciuimiuiiiicccccc e s VMB-8
Basic Operationoiiiiiiiiii i i i VMB-9
Starting Up the Visual MemOry SIMULALOLcccoiiiiiiiiiiiiicieiiciciicicciceciieci st VMB-9
Loading the SYStEm BIOScovcuiiuiiiicieciecieiciet ettt ettt enseaens VMB-10
Loading and Executing APPLCAtioNSccceiiiiiiiiiiiiceie e VMB-11
IMAP FIIE .o VMB-12

MAIN WINAOW ... VMB-14
IMIEIIUS ..ottt VMB-14
TOOIDAT ... VMB-17
CPU Register Display FUNCHON ... VMB-18
EXecttion CONLIOL ... VMB-19
Disassembly FUNCHONc.cciiiiiiiiiiiiiiccc e VMB-20
Visual MemoTy IMAZEccueviuiiiiiiiiiiiiiicc e VMB-21
StatUus LamP oo VMB-21
Changing the Size of the Main WINAOWcccoucuriiiiiiriniiriieieieeetieee e sesaesenae VMB-22
SYSEEM COMNSOLE ...t VMB-22

Memory Control WINAOW ... VMB-23
RAMAOD, RAMEAT ..ot s s VMB-24
FLASHAHD oo bbb VMB-25
XRAM Lo bbb VMB-26
SER .o VMB-27
VTRBE o bbb VMB-28

Break Control WINAOWc.coiiiiiiiiii e VMB-29
Break by Breakpoint Address COMPAriSOMNccccccuiuiuiuimiiiiiiiiiiiceceeeeeee s VMB-29
Display When an Interrupt Is RECEIVEAcouueuiueiiiciiiciiciiciiciicisicieiceeieteeeeenese e ssesenaenenae VMB-32
Access Reference MOMILOTcccciuiuiiiiiiiiiiiiccc e VMB-33

Special Function Register Control WINAOWcciiiiiiiiiiiiiiisss e VMB-34
CPU CONETOL ... e e VMB-35
LCD bbb VMB-35
INT CONIOL . VMB-36
TIMET O oo VMB-36
TIMET T oo VMB-37
STO bbb s VMB-37
PORTT o bbb bbb s VMB-38
PORT3/7 ottt VMB-38
EXternal INT ... VMB-39
VMU SPECIAL ...ttt VMB-40
Base TIMETcoiviiiiiiiii s VMB—40

LCD SNapshOot WINAOWc.coiiiiciiciiciiciiciece ettt et VMB-41
Description of Tool Bar BULONSccccciiiiiiiiiiiiiicccce s VMB-41
Display DY STAD CRECKDOXvucuiuiiciiiieiiieieieieieieieeseiei ettt sesaesenans VMB-42
IMIEIIUS ..ottt a s VMB-42

INEetWOTrk MONItOT WINAOW ..ottt ettt ettt et e a e bt e et e be e bt e bt ebe b e s beseebebeneenean VMB-43

TTACE PANEL ... VMB-45

Hexadecimal INPUt Pad ... VMB-47

Environment Settings WINAOWcccciiiiiiiiiiii e VMB-49
SEEEINGS .ovviiicict e VMB-49
WOTK SEEHNGS ...t VMB-51

Networking...........ooi i i i i i ettt ittt nnas VMB-55

Related Files..............oo i VMB-57

SYSTEIM FILES ...ttt e VMB-58

APPLHCAION FIIES ... VMB-59

Warning MesSSagesottt i e VMB-61

Sega@'Dreamcast

Overview

The Visual Memory Simulator is a virtual machine system that simulates the Visual Memory hardware. This system
can execute, without any special additional processing, programs that were developed for Visual Memory.

Features

e The Visual Memory Simulator implements almost all of the hardware in the Visual Memory System
through software.

* The status of CPU registers and memory can be displayed during execution.
¢ Program execution can be traced.
e The status of the Special Function Registers can be displayed.

* The Visual Memory Simulator supports debugging functions such as breakpoints and memory
fetch breaks.

* Two Visual Memory Simulators can be connected through a network.

The Visual Memory Simulator is composed of several virtual devices, the central one being a virtual CPU.

The virtual CPU is designed as an interpreter. Execution files are fetched and executed one instruction at a
time. Because peripheral devices are also implemented in the Virtual Memory Simulator, roughly 100% of
a program can be checked. Furthermore, no special programs or hardware are needed in order to load
execution files into the Visual Memory Simulator.

Because the Visual Memory Simulator is almost entirely software based, there are differences in the
operating speed of the Visual Memory Simulator versus actual Visual Memory. Checks that require the
actual speed, such as checks of operation timing and sound, should be performed on the actual hardware.
The purpose of the Visual Memory Simulator is to verify the program logic; the use of the Visual Memory
Simulator in the development cycle should be differentiated from that of the actual hardware.

VMB-1

Overview

Visual Memory Simulator Operating Environment

Table 2.1
CPU Pentium 150MHz or higher recommended
RAM At least 32ZMB recommended
0S Windows 95
HDD free space At least 5MB
Colors At least 256 colors
Resolution At least 1280 x 1024 recommended

Note: Because the Visual Memory Simulator is a Windows application, it can basically run on any CPU
on which Windows 95 is running. However, the virtual CPU is a type of interpreter, and when the
operation of other virtual devices is also included, the Visual Memory Simulator can run slowly. In order
to run at a reasonable speed, a PC with a fairly fast clock speed is required.

VMB-2

Overview

Checking Operation on Actual Visual Memory Hardware

The Memory Card Utility, which is provided with the Visual Memory SDK, is used to transfer an application that
has been developed into Visual Memory. The Memory Card Utility is a utility thatis used to transfer Visual Memory
applications between a PC and the Dev.Box, and between the Dev.Box and Visual Memory.

The Memory Card Utility is located in the "Utility" folder in the folder where the Visual Memory SDK was installed,
as an ELF file that runs on the Dev.Box. For details on how to use the Memory Card Utility, refer to the “Visual
Memory Tutorial.” After the logic in an application has been checked by using the Visual Memory Simulator, be
certain to check the timing and operating speed of the application on the actual hardware.

The following environment is needed in order to run the Memory Card Utility:

Items provided by Sega:

® Dreamcast SDK

* CodeScape (including DA Checker)
e GD WorkShop

* Dev.Box (Set 5.2X or later)

e Dreamcast controller

¢ Visual Memory

Items That Must Be Obtained Separately

e RS-232C cross cable

¢ Communications program that runs under Windows

VMB-3

Visual Memory Unit (VMU) Simulator Manual

Notes Concerning Startup for the First Time

When the Visual Memory Simulator is started up for the first time, the contents of flash memory bank 1 are
undefined, so the Visual Memory Simulator may indicate that “Visual Memory has not been formatted.”

The operation described below must be performed the first time that the Visual Memory Simulator is started up.

Caution: Be certain to perform the procedure described below when starting up the Visual Memory Simulator
for the first time after installing the Visual Memory SDK.

@ Execute the Visual Memory Simulator.

@ From the [File] menu, select [Open FLASH#1 Memory].

The following screen appears:

From the "Files" folder, select "GAME.BIN" and then click the [Open] button.

Caution: "GAME.BIN" contains the memory image for flash memory bank 1 in Visual Memory. Because this file
includes the FAT information and the system management information, if this information is not found
in flash memory bank 1, Visual Memory will be recognized as not having yet been formatted.

@ Once "GAME.BIN" is loaded, the following screen appears:
& From the [Option] menu, select [Environment Variables]; the following screen appears:

% Make the settings described below in the dialog box that appears. All of these items are displayed under the
[Settings] tab.

In the [Start Up] group, click the [Load System File] checkbox so that the box is checked.
In the [System File] group, select the [Quick Start BIOS] option.

After you have made all of the settings, click the [OK] button.

@ The display returns to the Visual Memory Simulator screen.

From the [File] menu, select [Exit] to quit the Visual Memory Simulator.

Caution: Be certain to quit the Visual Memory Simulator.

When you have completed the above procedure, the Simulator will recognize Visual Memory as having
been formatted.

VMB-4

Sega@'Dreamcast

Implemented Devices

The following devices are implemented in the Visual Memory Simulator:

e Virtual CPU

* Memory

¢ LCD controller

* Serial interface

® Timer

e Interrupt controller
e I/O ports

¢ External input devices

Virtual CPU

A CPU interpreter, called the "virtual CPU," and which executes the Sanyo Electric LC86 Series instruction set, is
implemented in the Visual Memory Simulator. This virtual CPU executes binary code that is stored in the memory
area in the same manner as the actual CPU. There is no need to add special programs for the Simulator.

The Windows system idle is used as the operating clock for the virtual CPU. "n" instructions are executed per idle.
The number of instructions that are executed per idle can be set in the Environment Settings Window. Adjust this
value according to the clock speed of the PC that you will be using. for a detailed description of how to make this
setting, refer to [Settings] - [CPU Loop Count] in section, “Environment Settings Window.” However, if this value
is increased, the timing by which Windows messages are acquired becomes skewed, with the result that the
response of buttons, etc., becomes sluggish.

VMB-5

Implemented Devices

Memory
The Visual Memory Simulator simulates all memory areas in the Visual Memory System.
RAM Area
Bank 0 00H to FFH (256 bytes) System work area
Bank 1 00H to FFH (256 bytes) User work area
ROM Area

This area stores the OS program and the system application. This area cannot be manipulated by the user.

Flash Memory

Bank 0 0000H to FFFFH (64K bytes) User program area
Bank 1 0000H to FFFFH (64K bytes) Backup memory area
Work RAM

This is a buffer for communications with Dreamcast that can be accessed through the Special Function
Registers.

If there are no communications with Dreamcast, this area can be used as RAM by an application.
VTRBF 0000H to 01FFH (512 bytes)

XRAM

This is the LCD display memory. This memory is equivalent to video memory in a typical PC.
This memory consists of three banks. Two banks are allocated to bitmap display, and one bank is allocated

for icons.

Bank 0 0180H to 01FBH (96 bytes) Includes unused areas.
Bank 1 0180H to 01FBH (96 bytes) Includes unused areas.
Bank 2 0180H to 0185H (6 bytes)

In addition to direct access by the virtual CPU, these memory areas can be edited through the Memory
Control Window.

LCD Controller (LCDC)

The LCDC is designed to operate in an equivalent manner to the actual hardware from the standpoint of the CPU.
The LCDC is accessed through the LCD-related Special Function Registers.

If data is written to XRAM while the LCD is ready for display, the data appears in the drawing area.

VMB-6

Implemented Devices

Serial Interface (SI0)

The serial interface is used to connect two Visual Memory units. A Visual Memory unit has two SIOs. SIOO is
allocated for sending, and SIO1 is allocated for receiving. Together, full-duplex communication is implemented
through these two interfaces.

In the Simulator, Visual Memory units are connected by using TCP communication for communications
between SIOs.

Only the Special Function Registers for the SIOs are visible from the standpoint of the virtual CPU; the network is
hidden. Connection control is implemented through the [Network Monitor] command on the [Panels] menu.

Timer

Visual Memory has three timers. The Simulator supports timer 0, timer 1, and the base timer.

The Simulator supports all interrupts that are generated by the timers.

Timer Restrictions

The counter function based on external input to timer 0 is not supported in the Simulator. Although pulses
can be generated through timer 1 PWM output, no sound is actually output.

Operating Clock for Timers

As is the case for the virtual CPU, the Windows system idle is used for the clock that is supplied to the
timers. As a result, the actual speed at which the timers operate is different from that of the actual hardware.

Interrupt Controller

The LC86 Series supports interrupts with variable priority levels and nested interrupts. The Visual Memory
Simulator simulates interrupt operations in the same manner. There are no restrictions concerning interrupts. Both
internal and external interrupts are supported.

1/0 Ports
There are three I/O ports: port 1, port 3, and port 7.
Port 1 Assigned to SIO and PWM output ports.
Port 3 The Visual Memory buttons are connected to this port.
Port 7 The voltage detection and other VMU detection signals are connected to this port.

VMB-7

Visual Memory Unit (VMU) Simulator Manual

External Input Devices

Buttons Connected to Port 3

Visual Memory has eight buttons that serve as input devices. These buttons are connected to port 3. The
current status (pressed /not pressed) of each button can be detected by reading this port. When a button is
not being pressed, the corresponding signal is high; when a button is being pressed, the corresponding
signal is low. Port 3 interrupts are also supported, so it is possible to simulate interrupts that are generated
when a button status changes.

Starting from the most significant bit, the buttons assigned to the bits are: SLEEP button, MODE button, B
button, A button, right button, Left button, Down button, Up button.

Control Signals Connected to Port 7

Bits 0 to 3 of port 7 are input signal ports for external interrupts. Interrupt control for external interrupts is
specified through the IO1CR register and the I23CR register.

Four input signals are connected to port 7.

+5V Supply Signal as External Power Supply Connected to P70

When no external power supply is connected, this signal is low; when external power is supplied, this
signal is high. This is simulated through the "+5V Test" checkbox connected to P70 on the SFR panel. When
"ON," external power is being supplied.

Internal Battery Voltage Drop Signal Connected to P71

This signal is generated when the voltage of the internal battery drops. When this signal is high, the battery
voltage is normal. When this signal is low, the battery voltage drops. This is simulated through the "Low
Voltage Test" checkbox connected to P71 in the SFR panel. When "ON," the voltage is low.

Input Signals ID0, Connected to P72, and ID1, Connected to P73

These signals are normally low; they are high when an input is connected. This is simulated through the
"IDO Test" and "ID1 Test" checkboxes connected to P72 and P73 in the SFR panel.

VMB-8

Sega@'Dreamcast

Basic Operation

This chapter explains the procedure for loading and executing application programs in the Visual
Memory Simulator.

Starting Up the Visual Memory Simulator

Startup the Visual Memory Simulator either from the Windows [Start] menu, or directly from the folder where it
was installed. Once the Simulator is started up, the Main Window is displayed and the Simulator begins waiting
for input.

VMB-9

Basic Operation

Loading the System BIOS

Right after the Visual Memory Simulator has been started up, the system ROM area is initialized. Because
applications developed by users are called from the system BIOS, it is necessary to load the system BIOS first.

1) From the Visual Memory Simulator's [File] menu, select [Open System File].
2) Select the system BIOS file (SBF) to be loaded.
3) Click the [Open] button. The system BIOS is loaded into the internal system ROM.

"FBIOS.SBF" is the full-size BIOS; this program manages the system when Visual Memory is started up.
"QBIOS.SBF" is the quick start BIOS; this BIOS can skip the clock setting that is requested when Visual
Memory is reset.

Applications are called from BIOS and started up. A setting can be made in the Environment Settings
window that automatically loads the system BIOS when the Visual Memory Simulator is started up. For
details on making these settings, refer to [Startup Settings] - [Load System File] in section, “Environment
Settings Window.”

Caution: Quick start BIOS supports exactly the same functions as full-size BIOS, except that the clock setting can
be skipped at startup.

VMB-10

Basic Operation

Loading and Executing Applications

The application execution files that can be loaded into the Visual Memory Simulator are HEX files. The extension
for such files is ".HEX" or ".H??".

Caution:

The Visual Memory Simulator cannot load binary files (".BIN") created by H2BIN.

1) From the [File] menu, select [Open Application].
2) Select the application execution file (" HEX" or ".H??") to be loaded.

3) Click the [Open] button. The file is loaded into flash memory bank 0. The memory area where such files
are loaded is fixed to "bank 0."

After the file has been loaded, click the Reset button; the Simulator virtual machine is reset and the CPU
begins operating. As soon as the CPU begins operating, the system BIOS is executed.

Although the operations performed in the CPU's internal registers while the system BIOS is running can
be checked, displaying the registers consumes CPU time, so the Simulator will run more slowly as a result.
The display of these registers can be stopped in order to speed up processing.

To stop an application that is running, click the [Break] button. The values in the registers as of the moment
when execution was stopped are displayed on the console, and operation stops. Furthermore, the program
counter value for the next instruction to be executed is set in the text box where the execution address

is stored.

To resume program execution, click the [Run] button. Click the [Step] button to step through the
instructions one at a time.

VMB-11

Visual Memory Unit (VMU) Simulator Manual

MAP File

When a MAP file is in the same folder as the application, this file is loaded after the application. The extension for
symbol files is ".MAP", and this type of file can be output by the Linker. Although this file is not required, it allows
symbol names to be displayed during disassembly.

The symbols that are loaded are stored in list format in the hexadecimal input pad.

Caution: The extension for files output by the Linker is ".EVA". This type of file is converted to a HEX file by
E2H86K.EXE. Because the Visual Memory Simulator cannot load EVA files, these files must be
converted to HEX files.

Drag & Drop

The drag & drop technique can be used with the text boxes where addresses are input. In order to begin dragging
from a given text box, hold down Shift key and press the left mouse button. The mouse cursor changes to a drag
cursor, confirming that dragging is enabled.

The address labels and the hexadecimal input pad text boxes that are displayed on the Special Function Register
Panel can be dragged without using Shift key. When the mouse is moved to one of these areas, it changes to a

drag cursor.

VMB-12

Sega@'Dreamcast

Descriptions of
Windows and Panels

When the Visual Memory Simulator is started up, the Main Window is displayed first. If all that is necessary is to
load and execute an application program that has been created, the functions in the Main Window are all that are
needed. Debugging requires the use of functions on a number of other windows.

Main Window

This is the main window for the Visual Memory Simulator. Applications can be loaded and execution can
be controlled through this window.

Memory Control Window

This window disg)lays the contents of memory implemented in Visual Memory. The contents of memory
can also be edited on this screen.

Break Control Window

This window is used to set execution stop triggers for breakpoints.
Special Function Register Control Window

This window displays the status of the Special Function Registers.

LCD Snapshot Window

This window gets and enlarges images that are displayed on the LCD.

Network Monitor Window

This control window is used to connect two Visual Memory Simulators.
Trace Panel

This panel is used to perform program traces.

Hexadecimal Input Pad

This window is used to easily input hexadecimal numbers. A symbol table is also stored here.
Environment Settings Window

This window is used to make the basic settings for Visual Memory Simulator operation.

VMB-13

Descriptions of Windows and Panels

Main Window

The following functions are implemented in the main window:

¢ Loading applications and system files

e Calling up control windows and panels

¢ Displaying CPU registers

¢ Executing, stopping, and step-executing applications
* Outputting disassembled listings

e Simulating the Visual Memory LCD and buttons

e Switching the Main Window between reduced and normal size display

The following Main Window functions are described in this section:

* Menus

® Speed button

® CPU register display function

¢ Execution control

¢ Disassembly function

¢ Visual Memory image

e Status lamps

¢ Changing the Main Window size

¢ System console

Menus
File Menu

[Open Application] Command

This command loads an application in HEX file format. The application is loaded into flash memory bank
0. Flash memory bank 0 is used as memory for Visual Memory applications.

[Re-open Application] Command

This command reloads the application that is currently open. This command cannot be selected initially; it
can only be used after an application has been loaded. The name of the file that was loaded is displayed in
the title bar on the Main Window.

[Open System File] Command

This command loads the system BIOS into the internal ROM area. A setting can be made in the
Environment Settings Window that will load the system BIOS automatically when the Visual Memory
Simulator is started up.

VMB-14

Descriptions of Windows and Panels

[Open RAM File] Command

This command loads a RAM file that was saved. A RAM file contains the contents of RAM that were saved.
RAM banks 0 and 1, work RAM, and XRAM are included in a RAM file.

The file format is binary. The memory map is as shown below.

0OOOH - 00OFFH RAM bank #0

0100H - 017FH SFR (reserved for system)
0180H - 01FFH XRAM bank #0

0200H - 027FH Reserved for system
0280H - 02FFH XRAM bank #1

0300H - 037FH Reserved for system
0380H - 03FFH XRAM bank #2

0400H - 04FFH RAM bank #1

0500H - 06FFH VTRBF

0700H - FFFFH Reserved for system

[Save RAM File] Command

This command saves the current contents of RAM provided for the virtual CPU. The file format is binary.
This type of file can be loaded by using the [Open RAM File] command.

[Open FLASH#1] Command

This command loads a file into flash memory bank 1. The file format is binary. The size of flash memory
bank 1 is 64K. Writing to flash memory is accomplished by writing directly to the memory area, ignoring
the flash write simulation facility.

Flash memory bank 1 is a system area that is used to manage Visual Memory files, and an area for saving
Dreamcast game data. Visual Memory applications are loaded into flash memory bank 0.

Caution:

If "GAME.BIN" is not loaded through this menu before starting up an application, an error message
stating that Visual Memory has not been initialized will be displayed. Before starting up an application,
be certain to first load "GAME.BIN" through this menu.

[Save FLASH#1] Command

This command saves the current contents of flash memory bank #1 in a file. The file format is binary. This
type of file can be loaded by using the [Open FLASH#1] command.

[Print] Command

This command prints the character string that is displayed in the text box (system console) at the bottom of
the Main Window.

[Save Console to File] Command

This command saves the character strings displayed in the system console in a text file.

VMB-15

Visual Memory Unit (VMU) Simulator Manual

[Exit] Command

This command quits the Visual Memory Simulator.
[Execute] Menu

[Break] Command

This command halts application execution. The effect of this command is identical to that of the
Break button.

[Reset] Command

This command resets the virtual Visual Memory, and starts Visual Memory operation.

[Run/Continue] Command

This command executes the program, starting from the instruction following the instruction at which
program execution was stopped.

[Step Execution] Command

This command executes one instruction according to the current program counter.

[Disassemble] Command

This command displays a disassembled listing.
[Panel]l Menu

[Break Control] Command

This command displays the Break Control Window.

[Memory Control] Command

This command displays the Memory Control Window.

[SFR Display] Command

This command displays the Special Function Register Window.
[LCD Snapshot] Command

This command displays the LCD Snapshot Window.

[Network Monitor] Command

This command displays the Network Monitor Window.

VMB-16

Descriptions of Windows and Panels

[Trace Panell Command

This command displays the Trace Panel.

[Hexadecimal Input Pad] Command

This command displays the Hexadecimal Input Pad.

[Reduce Main Window] Command

This command changes the size of the Main Window to the size of the Visual Memory image.
[Normal Main Window] Command

This command restores the Main Window to its normal size.

[Options] Menu
[Environment Settings] Command

This command displays the Environment Settings Window.
[Clear Console] Command

This command clears the system console.

[Help]l Menu
[Reference Guide] Command

This command displays help.

[Version Information] Command

This command displays the version information for the Visual Memory Simulator.

Toolbar

The toolbar is located at the top of the panel. The toolbar buttons all correspond to menu items or buttons on panels.

Break Run

Reset

Normal Panel Size [_‘_} Open Application

Reduce Panel Size

Memory Control Window Break Control Window E SFR Window

LCD Snapshot Window Network Monitor Window ﬁl Trace Panel

2% & | |2

Hexidecimal Input Pad =4~ Clear System Console

& B @ | |

Visual Memory Unit (VMU) Simulator Manual

CPU Register Display Function

This function displays the values of the virtual CPU's registers in the Main Window.

T T T I T T T T
v CPU Registers (C)

sce| B c|ro|[ran]zr [peu] 2o |

00 oo 00 00 |00 |00 |0000
Psw [CyAc| BB/ Ov/Rb [P
R-Bank#0 R-Bank#| (no|r1[re[es]
[R-Banki#2| R-Bank#

[uful 00 00 |00

i '] e—]

Figure 1.3

The registers are Acc, B, C, TRH, TRL, SP, PSW, and PC. Each value is expressed in hexadecimal notation.

Each register may be edited. After selecting the register to be edited by clicking on the register, click on the
register again to begin editing it. In the case of the PSW (Program Status Word), the status of each bit
is displayed.

Meanings of the Bits in the PSW

Cy Carry flag

Ac Auxiliary carry flag

B1 Indirect register bank specification bit
BO Indirect register bank specification bit
Ov Overflow flag

Rb RAM bank switching bit

P Parity bit

Each bit of the PSW, except for the parity bit, can be inverted by clicking on the bit with the mouse. The
results of the change are reflected in the value of the PSW.

The selected bank and the current indirect register values are displayed in the indirect registers.

The contents of the register scan be edited. It is also possible to change the current bank for the indirect
registers by clicking on the label that indicates the bank. If B1 and B0 in the PSW are changed, the bank label
is also updated.

Because the CPU registers can be displayed while an application is in progress, so the changes in register
values can be observed. However, because it takes time to update the value of each register, the operating
speed of an application will slow down if the register values are displayed. To suppress the register display,
uncheck the [CPU Registers] checkbox. When this checkbox is in the checked state, the contents of the
registers are displayed.

VMB-18

Descriptions of Windows and Panels

Execution Control

There are four buttons that are used for execution control.

L Reset| [Run [[o000 [Sys usr|

[[[[Ereak | [} Step

e

Figure 1.4

Execution Control Buttons
Reset Button

If the [Reset] button is clicked, all Visual Memory devices are reset.

All of the CPU registers are initialized with "00H," RAM bank 0 is the current RAM bank, and the internal
ROM is selected as the program ROM. "0000H" is loaded into the program counter, and then the CPU
begins running.

Run Button

If the [Run] button is clicked, execution begins, starting from the address that is shown in the execution
start address text box (program counter). In this case, the devices are not reset. The [Sys]/[Usr] button
indicates whether the program that is currently executing is located in ROM or in flash memory. The [Sys]
button indicates ROM, and the [Usr] button indicates flash memory.

Break Button

If the [Break] button is clicked while an application is executing, Visual Memory displays the current
register values on the console and halts execution. At this point, the value of the program counter, which is
the address of the instruction that is to be executed next, is substituted into the execution start address text
box. Execution can be resumed if the [Run] button is pressed right after the [Break] button.

Step Button

If the [Step] button is clicked while program execution is halted, the next instruction in the program is
executed and then execution halts again. This button can be used to execute a program one instruction at a
time in a deliberate fashion.

VMB-19

Visual Memory Unit (VMU) Simulator Manual

Register Dump Display Format

The format of the register dump that is displayed on the console is shown below.
A=10 B=01 C=03 TRH=05 TRL=ED SP=45 PSW=01 PC=1:027D
RBANK=0:0 R0=00 R1=00 R2=A6 R3=A7

1:027D 02 77 LD 0077H

The values from "A" to "PSW" show the current values in each of the registers.
"PC" indicates the program counter value, consisting of the bank and the address, separated by a colon.

Bank 0 indicates ROM, and bank 1 indicates flash memory. In the above example, "PC" indicates address
027DH in flash memory. The digits that are used to represent the bank are "0" and "1".

The next line shows the indirect registers. "RBANK" indicates the indirect register bank that is currently
selected. The left side of the colon indicates the RAM bank. The value is either "0" or "1". The right side of
the colon indicates the indirect register bank. The value can range from "0" to "3". The values from "R0" to
"R3" indicate the indirect register values in the selected bank. A disassembled list is displayed only if the
dump was executed while a flash memory program was running.

Disassembly Function

Clicking on the [DisAsm] button displays a disassembled list on the console.

I | DisAsm NDDDD I[n:n:u:l v LengthiL)
| Al |

Figure 1.5

Text boxes are provided for the starting and ending addresses. The [Length] box is used to switch between
either performing disassembly according to the number of lines, or performing disassembly according to the
ending address specification. When the [Length] box is checked, disassembly is performed according to the
specified number of lines. Under the default setting, 32 lines are displayed. The number of lines can be

specified by specifying any number of lines in the environment settings window. For details on how to make
this setting, refer to [Work Settings] - [Disassemble Lines] See “Environment Settings Window” on page 49.

The results of execution are shown below.

METERR

[StEp

0148 |0000 [V Length(L}
[

T M

‘-

1:011F 23 02 40
1:0122 14
1:0123 B2 00
1:0125 14
1:0126 B2 00
1:0128 14
1:0129 B2 00
1:012B 14
1:012C B2 00
1:012E 53 02 F1

B,0122H
1:0131 22 00 00
1:0134 F3 01
1:0136 53 03 E3
1:0139 D3 01
1:013B 0B 7D
1:013D 0B 8B
1:013F 23 20 19
1:0142 25 23 05
1:0145 25 24 20

i

PEW, 1

{f20H, TOR

Figure 1.6

VMB-20

Descriptions of Windows and Panels

Visual Memory Image

The Visual Memory image is a virtual target machine that is patterned on Visual Memory.

Figure 1.7

The Visual Memory image includes an area that is equivalent to the LCD, icons, and eight buttons.

The buttons can be clicked through either the mouse or the keyboard. When the Visual Memory image is
active, the image is framed in blue. To make the Visual Memory image active, click on any portion of the
Visual Memory image other than a button.

The keys that correspond to the Visual Memory buttons can be changed through the environment setting
window. For details on how to make this setting, refer to [Work Settings] - [VMU Button Configuration] See
“Environment Settings Window” on page 49.

Status Lamp

There are lamps that indicate the status of Visual Memory located on the right side of the Visual Memory image.

Run
Halt
Hold
RAM#0
RAM#1
S-ROM
U-ROM
PWM
NET

—1 1

Run
Halt
Hold

RAMZ0
RAMM

S-ROM

U-ROM
[Py | 7
| Het |

Figure 1.8

Lights when the CPU is running. Turns off when the CPU is stopped.

Lights when the CPU is in the HALT state.

Lights when the CPU is in the HOLD state.

Lights when RAM bank 0 is selected.

Lights when RAM bank 1 is selected.

Lights when ROM is selected.

Lights when flash memory is selected.

Lights when PWM is output by an application.

Lights when the Visual Memory unit is connected to another Visual Memory unit.

VMB-21

Visual Memory Unit (VMU) Simulator Manual

Changing the Size of the Main Window

The Main Window can be reduced to a size that displays only the Visual Memory image and the [Reset], [Break],
and [Run] buttons on the toolbar, and the panel size change button. In addition, it is possible to make a setting in

the Envi

ronment Settings Window that sets this reduced size for the Main Window when the Visual Memory

Simulator is started up. For details on how to make this setting, refer to [Settings] - [Minimum Size] See
“Environment Settings Window” on page 49.

FrIEY TR
IR
A0 ALTTH)

o i

Figure 1.9

System Console

The system console outputs a variety of information from the Visual Memory Simulator. Text information that is
output on the console can be printed or saved in a file.

rkdrdbEn-r LE L, = |
Co¥WM_SDR¥WMSSIMULATORYF i | es¥FBI0S. sbt

FLASH# 1 7740&n-+ L E LTz,
Co¥WM_SDK¥VmsSimulator¥Files¥zame.bin

YMS SIMULATOR ¥1.02

YMS> Ready

il 47
Figure 1.10

Under the default setting, the console has buffer space for 300 lines. The number of lines can be adjusted in
the Environment Settings window. For details on how to make this setting, refer to [Work Settings] -
[Console] See “Environment Settings Window” on page 49.

If the text output is longer than the number of lines set for the system console, the text is deleted, starting
from the beginning.

Caution:

When the console bulffer is set to a default of 300 lines or more, the operation of the Visual Memory
Simulator will slow down.

VMB-22

Descriptions of Windows and Panels

Memory Control Window

This window displays the contents of memory. Memory is divided into tab pages by category. The memory that is
displayed on each page can be the target of editing.

RAM! | FLASHE | XRAM | SFR | VTREF |

RAM BAHNK #0 / System Work Area Indirect Registers
ol 1] 2] a[a[s[e[7] el ol alelc[o]=]r]| RI] Rri[rz R3]
0000 00 8z 83 00 00|00 |00 00 00 00 00 00 00 00 00 00 82 83

I

=
o

00 |00 00 00 00 00 00 00 00 00 00 00 00 o1 00 00 [#1]|oo 0o oo oo
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [#2|00 00 00 00
00 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [#3|o0 00 00 00
7B |01 06 01 01 08 06|00 00 00 00 00 00 00 00 00
00 |00 00 00 00 00 00|00 00 00 00 00 00 00 00 00 |V lllewml(_)
00 |00 00 00 00 00 00|00 00 00 00 00 00 00 00 00
05 |08 FC 05 01 2z 05|00 00 F& 07 00 00 00 00 00
00 |00 00 00 00 00 00|00 00 00 00 00 00 00 00 00
00 |00 00 00 00 00 00|00 00 00 00 00 00 00 00 00
00 |00 00 00 00 00 00|00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00|00 00 00 00 00 00 00 00 00
00 |00 00 00 00 00 00|00 00 00 00 00 00 00 00 00
00 00 00 00 00 00|00 00 00|00 00 00 00 00 00 00 Wtesl'sele

00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 00
Clear Flags (C)
00 00 00 00 00 00 0O 0O 00 OO0 00 00 00 00 00 00

[~ Synchronous Update (S) Update (U} | Transfer to Console (T} ‘| Exit (X) |

Memory Occupied

EEEREEREERRERRE
olo|efe|alelola|a|a|o|e|e|e

Figure 1.11

Synchronous Display Function

There is a "Synchronous Update" checkbox in the Memory Control Window. If a check is placed in this
checkbox, the displayed contents are updated whenever the virtual CPU writes to memory. however,
because it takes time to update the screen, the Visual Memory Simulator will run more slowly if this
function is used.

Dump Function

The current contents of the Memory Control Window can be transferred to the system console by clicking
the [Transfer to Console] button. The 256 bytes of Flash Memory #0 and work RAM that are currently
displayed are transferred to the console.

Update Button

Clicking the [Update] button causes the Memory Control Window to be updated with the current, most
recent data. Normally, this button is used to update the data if the synchronous display function checkbox
is not checked.

RAM#0 System work area for system BIOS, etc. Size: 256 bytes
RAMH#1 Application area. Size: 256 bytes

FLASH#0 Flash memory area that is used to store user applications.
XRAM LCD display memory.

SFR Special Function Registers.

VTRBF Work RAM. Size: 512 bytes

VMB-23

Visual Memory Unit (VMU) Simulator Manual

RAM#0, RAM#1

RAM is divided into bank 0 and bank 1. Bank 0 is a system work area that is used by the system BIOS. Bank 1 is a
work area that is open to user applications.

The Memory Control Window display format is the same for both of these banks. The size of each bank is 256 bytes.

In the LC86 Series CPU, the first 16 bytes of RAM are allocated as the indirect register area. The indirect register area
is displayed separately in an easy-to-read format on the panel.

#l | FLASHz0 | XRam | sFR | vTREF |

RAM BAHK #0 / System Work Area Indirect Registers

o] 1] 2] a] «[s[el 7] s] e[al] c[ol &][[rolri|rz[rs]
00:00 8z 83 00 00 00 00 00 00 00 00 00 00 00 oo |#o0jfloo sz 83
00|00 00 |00 00 |00 |00 00 00 00 00 00 00 o1 oo oo [#1]oo oo/oo oo
01|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [#2|o0 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3|00 00 00 00
7B |01 06 01 01 08 06 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | W View All ()
00|00 00 00 00 00 00 00 00 0o 00 00 0o 00 0o 00
05|08 FC 05 01 cz 05 00 00 Fg 07 00 00 00 00 00
00|00 00 00 00 00 00 00 00 00 00 00 0O 00 00 00
00|00 00 00 00 00 00 00 00 00 00 00 00 00 0000
00|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00|00 |00 00 00 00 00 00 00 00 00 00 0o || BytesUsed |26

00 00 00 00 OO0 00 00 00 00 00 00 OO0 00 OO0 00 00
Clear Flags (C)
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

[~ Synchronous Update (5} Update (U) | Transfer to Console (T) | Exit (X) |

Memory Occupied

EIEEREERARRREEREE
G EE SRS EE SRR S E

Figure 1.12

Because RAM bank 0 is allocated for the system BIOS work area and the stack area, it should not be accessed
by applications.

RAM bank 1 has 256 bytes that are open to applications.

Calculation of Memory Usage Rate

RAM contains internal flags that indicate whether a location was accessed by the CPU. When the CPU
writes to a given location in memory, the corresponding flag is set. These flags are counted and then used
to calculate the memory usage rate. These flags are cleared when the CPU is reset. Specific flags can also be
deleted by clicking the [Clear Flags] button.

If the [View All] checkbox is checked, the flags are ignored and all 256 bytes are displayed. If this checkbox
is not checked, only memory for which flags have been set is displayed. In other words, the memory that
the virtual CPU has written to is displayed.

VMB-24

Descriptions of Windows and Panels

RAM#0 IRAM#I | FLASHz0 | xRam | sFR | vTReF |

ro

RAM BAHNK #0 / System Work Area

Indirect Registers

=HE
o |2

EEEEEEEEEE]s][E]2]5]
B EEEEEEREEEEE

M

ol

1[2[a[a[e[e[[e[e[a[elclol =[xl

8z 83

00 00

7B 01 06 01 01 08 06

05 02 FC 05 01 Cz 05 00 00 Fg 07

0l 00

Memory Occupied

Bytes Used [26

Clear Flags (C)

I~ Synchronous Update (S) Update (U} | Transfer to Console (T} "

Exit (%) |

FLASH#0

Flash memory is divided into bank 0 and bank 1. The size of each bank is 64 kilobytes each.

Figure 1.13

Flash memory bank 0 is used for application programs. User-created programs are loaded into this area. Flash

memory bank 1 is a data area, so programs cannot be loaded into flash memory bank 1.

Caution:

The contents of flash memory bank 1 cannot be changed.

FLASH ROM BAHK #0 View Address |0000
ol 1] z[a[als[el2]els]a[elc]o] =[x 0000 —

0000 00 00 00 00 00|00 00 00 00 /00 00 00 00 00 00 1000
0010{00 |00 00 00 /00 00 00 00 00 00 00 00 00 00 00 00 A 2000
|oozaloo 00 00 00 00 00|00 00|00 00 00 00 00 00 00 00 2000
00z0]/00 00 00 00 00 00 00 00 00 00 00|00 00 00 00 00 || 4000
0040{00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 5000
0050|0000 00 00 00 00 00 00 00 0o 00|00 oo 0o oo oo | ¥|| eooe
0060|0000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7000
10670]00 00 |00 |00 |00 |00 |00 |00 |00 |00 |00 |00 |00 |00 |00 |00 | VR 000
|0080{00 00 00 00 00 00|00 00|00 00 00 00 0000 00 00 9000
|00g0{00 00 00 00 00 00|00 00|00 00 00 00 0000 00 00 nooo
|0o0Aa(oo 00 00 00 00 00|00 00|00 00 00 00 00 00 00 00 B000
00BO|{00 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 cooo
00CO{00 |00 00 00 /00 00 00 00 00 00 00 00 00 00 00 00 b T
00D0{00 |00 00 00 /00 00 00 00 00 00 00 00 00 00 00 00 E000
00E0|00 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 F000
|00F0{00 00 00 00 00 00|00 00|00 00 00 00 00 00 00 00 ||| FEEE
I~ Synchronous Update (S) Update (U) | Transfer to Console (T} Exit (X)

Figure 1.14

The memory panel displays 256 bytes at one time.

VMB-25

Visual Memory Unit (VMU) Simulator Manual

Scroll Buttons

The up and down scroll buttons can be used to scroll through the display 256 bytes at a time.

Slider

The slider box can be dragged with the mouse in order to move the display to any desired position in
memory. The display can also be moved to a certain position by clicking on the label in which that address
is displayed.

Dial

The dial can be moved up and down to change the displayed address accordingly. The unit of movement
is 16 bytes.

Display Start Address

If an address is input in the text box, the 256 bytes that start from that address are displayed. The lower four
bits are discarded so that the display starts from "0".

XRAM

XRAM is video memory for the LCD.

XRAM is divided into three banks. Banks 0 and 1 are matrix memory, and bank 2 is icon memory. Banks 0
and 1 are displayed in the Memory Control Window.

EEf0| 0 1| 2| 3| 4] 5| 6| 7| BI 9] A| BI
0180 00 |00 |00 |00 00 00 00 00 00 00 00

[01s0j00 00 00 00 00 00 00 00 00 00 00 00
|01a0]00 00 00 00 00 00 00 00 00 00 00 00
01B0[00 00 |00 |00 00 00 00 00 00 00 00 00 XRAM Bit Image
0icofoo 00|00 00 00 00 00 00 00 00 00 00
01p0joo 00 |00 |00 00 00 00 00 00 00 00 00
01E0[00 00 |00 |00 00 00 00 00 00 00 00 00
01F0joo 00 |00 00 00 00 00 00 00 00 00 00

ergi| of 1] 2] 2] 4] 5] e 7] s o] a] &] Refresh (8]
olgofi) 0o 00 00 |00 |00 |00 |00 00 00 00 00 il
0190[00 00 00 00 00 |00 00 00 00 00 00 00 e —— I
0120[00 00 00 00 00 00 00 00 00 00 00 00

01B0|00 00 00 00 00 00 00 00 00 00 00 00 [~ Display by STAD (D)
Q0lCOo|00 00 00 00 00 00 00 00 00 00 00 00
01p0ojo0 00 00 00 00 00 00 00 00 00 00 00

01EOQ(00 00 00 00 00 00 00 00 00 00 00 00
O1F0{00 00 00 00 00|00 00 00 00 00 00 00

I~ Synchronous Update (S) Update (U) l Transfer to Console (T} Exit (X)

Figure 1.15

VMB-26

Descriptions of Windows and Panels

LCD Bit Image Display

The current status of XRAM can be displayed as a bit image. This display area can be displayed even when
the LCD is off. Although the bit image is synchronized with user writes, it is not synchronized with writes
by the virtual CPU. Clicking the [Refresh] button causes the latest contents of XRAM to be displayed.

The XRAM display start address can be changed. This specification is made through the Special Function
Register STAD. When the [Display By STAD] checkbox is checked, the value in STAD is used as the display
start address. If the [Display By STAD] checkbox is not checked, the display starts at the start of XRAM.

This is the same as if STAD = 0.

Note: The LCD resolution is 48 dots (H) x 32 dots (V), and one line of the LCD corresponds to 6 bytes.
The MSB of data that is written corresponds to the left-side dot.
XRAM bank 0 is displayed in the top half of the LCD, and bank 1 is displayed in the bottom half. Bank

2 is icon memory.

Caution:

Because bank 2 is used for the icon that displays the Visual Memory mode, do not change the contents
of bank 2 from within an application.

SFR

Although the Special Function Registers are displayed, areas that are not actually implemented are also displayed.
Normally, locations for which no device is connected are indicated as "OFFH". The data that is displayed can
be edited.

RAMZ0 | RAME | FLASHZ0 | XRAM

Special Function Registers

ol 2] z[s[4l s e[7] el sl a[s[clo] =] ¢

06 FF 00 80 CO FC FF 00 FF FF FF FF FF FF FF FF
20 00 00 FF A0 00 FF FF FF FF FF FF FF FF FF FF
00 8C FF FF 00 00 00 FF 00 OO FF FF FF 00 F8 FF
FS FF FF FF 00 00 FF FF FF FF FF FF Fz 00 00 CO
EB 80 7F EC 00 00 00 00 00 FF 00 FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00

View SFR Panel (S)

I~ Synchronous Update (S) Update (U) | Transfer to Console (T) ‘|

Exit (X)

Figure 1.16

Caution:

If data is edited in an address that does not exist in any storage that is connected to the device, the data

is not actually written.

VMB-27

Visual Memory Unit (VMU) Simulator Manual

VTRBF

VTRBF is allocated as buffer memory for communications between Visual Memory and Dreamcast. If
communications with Dreamcast are not being performed, however, this area is open to the user as work RAM. This
memory is accessed through the SFRs, and is not decoded in the CPU memory space. The size of this area is 512
bytes, and the addresses range from 0000H to 01FFH.

RAMD | RA#I | FLASHz0 | xRAM | sFR

Communication Buffer Area

ol 1] 2[a] a[s[6] 7[a[o] a[8] e[o] &[F]
0000 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00

001000 00 00 00 00 00 00 00 00 00 00|00 00 00 00 00
00z0|00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00

o
o
@
=}
o
=]
o
=]
o
=3
o
=3
o
o
o
=]
o
=]
o
=3
o
=3
o
o
o
=1
o
=]
o
=3
o
=3
o
=]
o
=3

O00EO|00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00
DOF0|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

o
S
g
o
=
S
-
g
=
s
=
g
=
g
S
g
-
3
=
s
-
g
=
[=]
-
5
-
3
=
o
o
g
=
o
=
5
|« T LT

I~ Synchronous Update (S) Update (U) | Transfer to Console (T) ‘| Exit (X)

Figure 1.17 fig. 4-15

VMB-28

Descriptions of Windows and Panels

Break Control Window

There are three execution control functions that are implemented in the break control window.

Break by Breakpoint Address Comparison

Aside from breakpoints, program execution can be stopped by memory fetches.

Display When an Interrupt Is Received

This indicates that the virtual CPU has received an interrupt and that an interrupt routine has been called.

Access Reference Monitor

This function displays the position in a program where the specified memory is being accessed.

To enable the address set in the Break Control Window, click the [Apply] button.

Break hMonitor

Break Control
I~ Preak Point (B}|[~ TRR Break (T} | Memory Fetch Break (M)

EME |2DDR [ERK | |EMB |apDR |BIK | |ENE |2pDE |MEMORY|MODE |BIR
OFF OFF | [OFF OFF | [OFF RAMEO |R/W | OFF
OFF |0000 |0FF | |OFF |0000 |OFF | |OFF |0000 |RAM#0 R/W |OFF
OFF |0000 |0FF | |OFF |0000 |OFF | |OFF |0000 |RAM#0 R/W |OFF
OFF |0000 |OFF | |OFF |0000 |OFF | |OFF |0000 |RAMED R/W |OFF

I~ Memory Break for Specified Area (5) ~Interrupt Report

[ewe[Lomer [srantem [menorvlwops [eme] T WTO T
0FF |Beyond 0000 |mamgo |nyw |oFr | | HT1 I~ sion
FF 00 [00oo [zango [mew orr || T INT200L [T sio1
FF 00 |000o [zango |mew |orr || T WT3BT T P3
OFF o0 |oooo [namngo |naw ore || T TOH

Access Refrence

TransferTuCunsule(Dl Clear (C) |

RU[ADDR | CODE [LABEL INSTRUCTION |

|
J -]
ooyt | Eniten

Figure 1.18

Break by Breakpoint Address Comparison

Break Control

Break control specifies monitoring of application execution. There are four monitoring groups: breakpoint
specification, TRR fetch breaks, memory fetch breaks, and memory fetch breaks with a range specification.
Four compare addresses can be set for each group. The common items for all of the groups are

explained below.

Group ON/OFF

This item turns individual groups on and off. The switches for the individual groups are provided in order
to minimize address comparison overhead in the Visual Memory Simulator. If a group is turned on, it is
displayed on a white background and its settings are enabled.

VMB-29

Visual Memory Unit (VMU) Simulator Manual

Address ON/OFF

Each compare address in a group has its own ON/OFF switch. If set to ON, that compare address is
enabled. Addresses can be turned on and off by clicking in the first column.

Break Mode

The break mode specifies whether to stop or continue execution when a compare address matches. When
a compare address matches, the current register values are dumped. If "Break” is ON, the virtual CPU stops
executing the program after the register dump. If "Break" is OFF, the register dump is still performed, but
the virtual CPU continues executing.

Breakpoints

Execution is halted when the program counter matches the specified address. Four addresses can be
specified as compare addresses.

[Break Point (B}
ENE |ADDE |ERE

OFF OFF
OFF (0000 |[OFF
OFF (0000 |[OFF
OFF 0000 |[OFF

—

Figure 1.19
TRR Fetch Break

Execution halts when the program counter matches the memory address that is referenced by the TRH and
TRL (indirect address) registers.

Essentially, the program counter is compared with the address that is referenced when the LDC instruction
was executed.

Therefore, when the LDC instruction is executed, the address indicated by TRH and TRL is the object of
comparison, with no distinction made for flash memory.

)~ TRR Break (T)

ENE |ADDE |[ERE
OFF OFF

OFF 0000 |OFF
OFF 0000 |OFF
OFF 0000 |OFF

Ffnr Snacifiad raa i

Figure 1.20

VMB-30

Descriptions of Windows and Panels

Memory Fetch Break

A memory fetch break halts execution when the CPU accesses the specified address in memory. This group
permits specification of the target memory and the access mode.

The target memory can be RAM#0, RAM#1, SFR, XRAM#0, XRAM#1, or VTRBE. To select the target
memory, click on the column that is to be set, and then make the selection in the popup menu that appears.

Select the access mode from among READ, WRITE, and R/W.

If the access mode is READ, execution is halted when a read is executed in the target memory; if the access
mode is WRITE, execution is halted when a write is executed in the target memory. If the access mode is
R/W, execution is halted when a read or a write is executed in the target memory.

[
[Memory Fetch Break (M)

ENE |ADDE |MEMORY|MODE |ERE
OFF BAM#O0 |RSW | OFF
OFF 0000 |BAMEOD RYW |OFF
OFF 0000 PaMg0 ESW OFF
OFF 0000 PaMgd RBSW OFF

Figure 1.21

Memory Fetch Break With Range Specification

A memory fetch break with range specification halts execution when an access is made inside or outside of
the specified memory address range.

The compare range is specified with a [Start] address and an [End] address. The compare condition can be
selected as either "inside the range" or "outside the range." If "outside the range" is specified, then execution
stops when memory is accessed outside of the specified address range. This condition does not include the
specified addresses. If "inside the range" is specified, then execution stops when memory is accessed inside
of the specified address range. This condition does include the specified addresses.

Just as in the case of a memory fetch break, this group permits specification of the target memory and the
access mode.

The target memory can be RAM#0, RAM#1, SFR, XRAM#0, XRAM#1, or VTRBE.

To select the target memory, click on the column that is to be set, and then make the selection in the popup
menu that appears.

Select the access mode from among READ, WRITE, and R/W.

If the access mode is READ, execution is halted when a read is executed in the target memory.

If the access mode is WRITE, execution is halted when a write is executed in the target memory.

If the access mode is R/ W, execution is halted when a read or a write is executed in the target memory.

[~ Memory Break for Specified Area (S)

ENE |LIMIT |START|END |MEMORY|MODE |BRE|
OFF Eevond 0000 RAMEOD E/W OFF
OFF Eeyond 0000 0000 RAM§O0 L/ OFF
OFF Eeyond 0000 0000 RAM§O0 LW OFF
OFF Eeyond 0000 0000 RAM§O0 LW OFF

Figure 1.22

VMB-31

Visual Memory Unit (VMU) Simulator Manual

Display When an Interrupt Is Received

Interrupt Report

When the virtual CPU accepts an interrupt, it outputs an acceptance message on the system console.

This message is output after the virtual CPU has gotten the interrupt vector.

This is valid when the interrupt source checkbox has been checked.

— Interrupt Report
[~ IHNTO ™
[~ IHT1 [SO0
[~ INT2TOL [5101
[INT3BT [P3
[TOH

EER R R TR

Figure 1.23

These checkboxes will function correctly even if their settings are changed while the CPU is running. The
interrupt sources are described below:

INTO
INT1
INT2/TOL
INT3/BT

TOH
T1
SI100
SI01
P3

External interrupt. This interrupt is generated when +5V is supplied to the Visual
Memory unit.

External interrupt. This interrupt is generated when the Visual Memory unit's internal
battery voltage drops.

The external interrupt is generated by ID0, and the internal interrupt is generated by the
lower timer 0 register.

The external interrupt is generated by ID1, and the internal interrupt is generated by the
base timer.

This interrupt is generated by the upper timer 0 register.
This interrupt is generated by timer 1.

This interrupt is generated by SIOO.

This interrupt is generated by SIO1.

This interrupt is generated by port 3.

VMB-32

Descriptions of Windows and Panels

Access Reference Monitor

The access reference displays the position in a program that is accessing the specified memory. Usually, this
function is used to pinpoint a position in a program that is destroying memory.

The access reference monitor function permits selection of the access mode.
The access mode may be specified as either READ, WRITE, or R/W.

The displayed contents are the mode in which the access was made (R or W), and a disassembly of the program
position. This information is output on a special console.

Because program positions are checked twice when output, they are not listed for each access. If you wish to know
the access sequence over time, use the memory fetch break function. If you use the access reference monitor, the
information will be output on the system console each time an access occurs.

Access Refrence

Transfer To Console (Dl Clear (C) |
OFF [uulujuly PAMHO RS

RW|ADDR | CODE |LABEL | INSTRUCTION |

[~

||

= e mew—

Figure 1.24

VMB-33

Visual Memory Unit (VMU) Simulator Manual

Special Function Register Control Window

This window displays the Special Function Registers that Visual Memory leaves open to users.

The display in this window is divided into several groups.

Special Function Registers

PORT1 | PORT3/7 | ExternallNT | VMS Special | Base Timer |
cPuControl | LcD | INT Control | Timero | Timert | si0 |
|

Figure 1.25

Each group is a tabbed page; click on the tab for the group that you want to display.

1

[~ Synchronous Update (S) Update (U) | Exit (X) !

Figure 1.26

Click the [UPDATE] button in order to display the most recent information. Checking the [Synchronous
Update] box causes the contents of registers to be updated as soon as the virtual CPU performs a write.

Each register can be edited at the bit level. Clicking on one of the displayed bits causes the value of that bit
to be inverted. Bits can also be inverted by clicking on the label connected to that bit.

The Special Function Register groups displayed in this window are listed below.

e CPU Control
e LCD

e INT Control
¢ Timer0

e Timerl

e SIO

e PORT1

e PORT3/7

e External INT
* VMU Special

¢ Base Timer

VMB-34

Descriptions of Windows and Panels

CPU Control

This group includes the CPU power control, system clock oscillation source control, and external memory control
registers. The target registers are PCON, OCR, and EXT.

PCON is the power control register, OCR is the oscillation control register, and EXT is the external memory register.

al Function Registers

PORT1 | PORT3/7 | ExternalINT | VMS Special | Base Timer
CPUControl | LD | INT Control || Timero | Timert | 510

Power Control Register (PCON)

0107 [rc. Illlllll

——— MaLTMode
Control

owE fir ZEENFZA0
L— MainClock Oscillation
ISTOP START
On-chip RC Oscillation
JSTOP START
Select System Clock

01 MainClock(CF 05C)
10 SubClock(Xtal 0SC)
11 MainClock(CF 05C)

System Clock Divider

i 12

L \eromme innom rer.

r ¥ (EXT)
oD [re 65 EER2 N0 |

{BanicAddr] o Port
v Synchronous Updats (5§ Update (W) ity |
Figure 1.27

LCD

This group displays the LCD control registers. The target registers are MCR, STAD, CNR, RDR, XBNK, and VCCR.

STAD, CNR, TDR, and VCCR cannot be written while the liquid crystal display controller is stopped. This also
applies to accesses from an application.

XBNK is unrelated to the operation of the LCD controller, and can be accessed at any time. Although it may appear
that it is possible to set this to an unused bank, such a setting is corrected to bank 0.

Special Function Registers

PORT4 | PORT3/7 | ExternallNT | WMS Special | Base Timer
GPUGontrol LCD | T Control | Timero | Timer1 | sio

Mode Control Register (MCR)

0120 [oe llllllll

T e

Freq. Divide Ratio 1:1

0122 [00 LCDStart Address Control Register(STAD)
0123 [0 Character Humber Register(CHR)
0124 [T Time Division Register(TOR)

[~ Bank Address

o5 o EESEERA0
01 BANK1
10 BANK2
11 Hot Used
~ LC Contrast Control

0127 [77 [@l6lslE 2ol
By

¥ Synchrenous Update (8) |1 |

Figure 1.28

VMB-35

Visual Memory Unit (VMU) Simulator Manual

INT Control

This group displays the interrupt-related registers. The target registers are IE and IP.

Figure 1.29

Timer 0

This group displays the registers that are related to timer 0. The target registers are TOCNT, TOPRR, TOL, TOLR, TOH,
and TOHR.

Figure 1.30

VMB-36

Descriptions of Windows and Panels

Timer 1

This group displays the registers that are related to timer 1. The target registers are TICNT, TILC, T1L, TIHC,
and T1H.

The roles of registers T1L and T1H differ, depending on whether they are being read or written. When read, they
return the counter value; when written, the value becomes the reload value. Each status can be checked on the
SFR panel.

External INT | VMS Special | Base Timer
cPUControl | LCD | INTControl | Timero Timeri | sio

- Timerd Control Register(TICHT)

o118 [oo 7i6l15 482 A ol

===

Select Bit Length
8Bits
TAL Count Control
Stop
T1H Count Control

011a IE;- Timer1 Lower Comparison Data Register(T1LC)
0118 [00 Timerd Lower Register(T1L)

lﬁ Timer1 Lower Reload Register(T1LR)
011C F Timer1 Upper Comparison Data Register(T1HC)
011D "D—D' Timer1 Upper Register(T1H)

I; Timer1 Upper Reload Register(T1HR)

[v Bynchronous Update (S}l Update (U) I Exit (X)

Figure 1.31

SIO

This group displays the registers for the serial communications-related circuits for two channels. The target
registers are SCONO, SCON1, SBUFQ, SBR, and SBUF1.

tars
7 | ExternallNT | VMS Special | Base Timer
CPUControl | LCD | INT Control | Timerd | Timer1 SIO

- 510 0 Control Register (SCOND)

0130 [zo 615 @ 82 Aol

= Trang
— LS8 Head
“nawpen
Sirip Transi| obit Trans.
———————— OwemunFlag
[NSCKOSORS _ scko-1

[~ SI0 1 Control Register (SCON1)
0134 [0 65 WE 2 a0
-
DiransEnd Trans
[MSBHEad LSB Head

LTSt Tastopped
SHriplEans,| obit Trans.

0131 [0 | Serisl Buffes0 (SBUFD)
0132 [0 BsudRate Generator Register (SBR)
0135 [o0 | Seriol Buffer1 (SBUF1)

i &mmmmﬂ Update (S) Update (U) Exit (%)

Figure 1.32

VMB-37

Visual Memory Unit (VMU) Simulator Manual

PORT1

This group displays the registers related to port 1. The target registers are P1, PIDDR, and P1FCR.

Because port 1 is used for serial communications and PWM (buzzer) output control, it cannot be used as a general
I/0 port.

gisters

Timerd | Timeri | Sio

CPU Control] LCp | INT Control
¥MS Special | Base Timer

PORT1 | PORT3/7 | External T

- PortdRatch (P1)

o1aa oo @5 @S2 A0

—Port1 Data Direction Register (P1DDR)
ous oo EEE@SZAD
e
| oot input
Ouput] ot
O] ioput
ulpit] input
Outpit] input
Oupu] npot
utpit] input

[~ Port1 Function Control Register (P1FCR)

0146 oo 7161514151214 0]

=

SORGHHIT] Dota Out
SBWOupUL) Data Out
SCKBOutput. | vata oue
S04 0utpt | nata out
SEHInOwpUY Data Out
SCKT Output | Dot Out
[Buzz8r Ot | nata out
IFMMOUPUL bata out

date () “”"Hl_l)l Exit (X) |

Figure 1.33

PORT3/7

This group displays the registers related to port 3 and to port 7. The target registers are P3, P3DDR, P3INT, and P7.

Eight buttons of the Visual Memory unit are connected to port 3. The signals corresponding to each button are
normally high, but if a button is pressed the signal goes low. Port 3 interrupts can be generated through P3INT. Note
that P3 interrupts are level interrupts.

Port 7 is a four bit input port, with special input signals connected. Each bit of port 7 is an external interrupt input
port. Interrupt control is handled through the I0O1CR and I23CR registers.

* P70 is connected to the +5V supply test checkbox. Normally, this signal is low, but when +5V is supplied
this signal goes high. This signal can generate interrupts as external interrupt INTO.

* P71 is connected to the low voltage detection test checkbox. Normally, this signal is high, but when low
voltage is detected this signal goes low. This signal can generate interrupts as external interrupt INT1. The
signal goes low when the checkbox is checked.

e P72 is connected to the special signal ID0 checkbox. Normally, this signal is low. This signal can generate
interrupts as external interrupt INT2.

* P73 is connected to the special signal ID1 checkbox. Normally, this signal is low. This signal can generate
interrupts as external interrupt INT3.

* The [VMU Connect] checkbox simulates another Visual Memory unit being connected. When this
checkbox is checked, the port values for the connected state are simulated.

VMB-38

Descriptions of Windows and Panels

Figure 1.34

External INT

This group displays the external interrupt control-related registers. The target registers are I[01CR and I123CR.

INTO is the +5V supply test, and INT1 is the low voltage detection test. In addition, INT2 is connected to IDO, and
INT3 is connected to ID1.

1 —
00 Hegative Detected
01 L level Detected
10 Positive Detected
11 H level Detected

00 Hegative Detected |
01 L level Detected
10 Positive Detected

11 H level Detected

Figure 1.35

VMB-39

Visual Memory Unit (VMU) Simulator Manual

VMU Special

This group displays related registers among the registers that are related to the Visual Memory special serial
circuitry. The target registers are VCFLG2, VSEL, VRMAD1, VRMAD?2, and VTRBE

VTRBF has [Read] and [Write] buttons. VTRBF can also be listed in the Memory Control Window.

The Visual Memory Simulator only supports registers for access to VTRBE.

Base Timer

This group displays the registers related to the base timer. The target registers are BTCR and ISL.

Spacial Function Registers
cPUControl | LCD | INTControl | Timero | Timert | sio
PORT1 | PORT3/7 | EsternalliT VMS Special | Base Timer

Control Flag2 (YCFLG2)

o162 77 [@6/5452 40
e

Control Register (VSEL)

063 [ic B EEERA0
| L—aseL [OFAMA! cPu
SIOVSEL [Maple! S10
| VRMAD Enable Auto increment |

0164 |00 Address Register 1 for System (VRMAD1)
0165 [00 Address Register 2 for System (VRMAD2)

(UTREF)

o166 [oo | | wite || Read

Exit (X)

Figure 1.36

[Spacial Function Registers
CPUControl | LCD | INT Control
PORT1 | PORT3/7 | ExternalINT

[Base Timer Control Register (BTCR)

017F [oo 7161520

Timerd | Timeri | sio
VMS Special ~ Base Timer

==

001 128 /fBST
010 512 /1BST
011 2048 /1BST

100 32/fBST

101 128 /1BST
110 2/fBST
111 8/fBST
| eanBST | T

~ Input Signal Select Register (ISL)
otsF [co @Bl S @ s 20

L— DPmiNTaY P72 /T2
01 64Tcye
Noise Reduction Filter 19 1Teye
11 16Tcye
IUFBSRESN rBSR/ 16
00 Subclock (Xtal 05C)
01 Cycle Clock

10 Subclock(Xtal 0SC}
11 Timer T0 Prescaler

update @) | ety |

Figure 1.37

VMB-40

Descriptions of Windows and Panels

LCD Snapshot Window

This window displays an enlarged version of the bit image that is currently displayed on the LCD. The bit image is
fetched either when this window is called or when the [Get Screen] button is clicked. If this window is displayed,
the bit image shown is not synchronized with writes by the virtual CPU.

Figure 1.38

Description of Tool Bar Buttons

o

Get Screen Button

This button gets the current LCD bit image. The contents that are gotten are the contents of XRAM. The dot
size is determined by the current magnification.

=

Save Button

This button saves the current bitimage in a file with the displayed magnification. The file is saved in ".BMP"
format. The grid is not saved.

#]

Grid Button

This button displays a grid in the display area. This button functions as a toggle switch; each time the
button is clicked, it turns the grid on or off.

sz‘xﬁ‘xd‘xﬁ‘

Zoom Button

This button can be used to select a magnification from 1x to 5x.

VMB-41

Visual Memory Unit (VMU) Simulator Manual

Display by STAD Checkbox

The [Display by STAD] checkbox is a switch that enables the display start address register STAD. When this
checkbox is checked, drawing is based on addresses converted according to the STAD register. In other words, the
same image as that which is displayed on the virtual LCD is displayed on the screen.

If this checkbox is not checked, the STAD register value is ignored when drawing the image. In other words, the
contents of XRAM are drawn as is, starting from the beginning of XRAM.

Menus
[File] Menu
[Save Bit Image] command Same function as the [Save] button.
[Exit] command Closes the LCD Snapshot Window.
[Display] Menu
[Get Image] command Same function as the [Get Screen] button.
[Display Grid] command Same function as the [Grid] button.

VMB-42

Descriptions of Windows and Panels

Network Monitor Window

The Visual Memory Simulator simulates data transfers between Visual Memory units via TCP.
The Network Monitor Window supports TCP communications between two Visual Memory Simulators.

This panel consists of several buttons related to connection control, a console for outputting the status, a data
monitor for displaying the transferred data, and a status bar for displaying the current status.

VMS Connection
" Client(C) Link (L OFf{0)

@« Server($) Wait (W) Abort (A),

Remote Host

Remote Port |10 Local Port [1 024 T I rest |

ooloa0z[oz2[0s[os|oe[07]oz|osonlor o on[opor|ro]1a

=

z[13[14[15[16[17 1815

S 1 I
‘ 0]
Monitor On (M) | Monitor Off (B | Trans Buffer To Console (I) | Buffer Clear (¥} | Exit (X) |
eSS FbEAEIE P-n -1 EEELTLET, V7

Figure 1.39
Connection Control

To perform communications, each unit must select either client mode or server mode. If one is set to server
mode, the other must be set to client mode.

Setting the Unit as the Server

1) The option buttons permit selection of either [Client] or [Server]; select [Server].
2) In order to set the unit as the server, the local port number must be set. The default setting is 1024.

3) If this number is OK, click the [Wait] button. The Visual Memory Simulator is now in server mode in the
standby state.

The server performs connection processing when there is a connection request from the client. When the
connection is completed, the "Net" lamp in the Main Window lights.

Stopping Server Operation

Click the [Abort] button to release the server standby state, or to disconnect.

When in the standby state, clicking the [Abort] button puts the unit into the stopped state. If the unit is
connected when the [Abort] button is clicked, it performs disconnect processing and then enters the
stopped state.

Setting the Unit as the Client

1) Select [Client] with the option buttons.

2) Input the machine name or IP address that was set for the server in the [Remote Host] text box.
3) Input the port number that was set for the server in the [Remote Port] text box.

4) Click the [Link] button.

5) Once the connection is made properly with the server, a confirmation message is displayed.

VMB-43

Visual Memory Unit (VMU) Simulator Manual

When the connection is made with the server, the "Net" lamp in the Main Window lights.

Stopping Client operation

To release the connection with the server, click the [Off] button. When this button is clicked, the client issues
a disconnection request to the server and then enters the unconnected state.

At this point, the server is in standby state. Reconnection is possible by clicking the [Link] button.

Console

The console displays statuses related to connection/disconnection.

The contents displayed in this console can be transferred to the system console by clicking the [Trans To
Console] button.

The [Clear] button clears the contents displayed on the console.

Clicking the [Test] button while a connection is established sends a test message to the other side.

Data Monitor

The data monitor monitors the data that is sent between the two Visual Memory Simulators. This data is
the data that is transferred from the virtual SIO.

Data that is sent is displayed on the Tx grid, and data that is received is displayed on the Rx grid.

The data monitor function begins operating when the [Monitor On] button is clicked, and stops when the
[Monitor Off] button is clicked. When the buffer becomes full, the oldest displayed contents are
overwritten first.

The [Trans Buffer to Console] button transfers the currently displayed contents of the data monitor buffer
to the system console. The [Buffer Clear] button clears all of the current contents of the buffer.

Status Bar

Starting from the left, the status bar consists of:

¢ Client/server mode indication
¢ Data monitor operating mode indication

¢ Client, server connection status

VMB-44

Descriptions of Windows and Panels

Trace Panel

The Trace Panel traces the execution of an application.

The trace results are output on the trace console.

Trace Area Trace Level

¥ Main Program [Trace Level (L} 0

" Interrupt Handler

¢ Both [~ Trigger (G} Begin |0000 End |0000
1:0122 14 ST R0 B
1:0125 62 00 ING 0000H
1:0125 14 ST BRI
1:0126 62 00 INC 0000H
1:0128 14 ST BRO
1:0129 62 00 INC 0000H
1:012B 14 ST BR0
1:012C 62 00 INC 0000H
1:012E 53 02 F1 DBNZ B.0122H
1:0122 14 ST BR0
1:0123 62 00 INC 0000H
1:0125 14 8T 2R
1:0126 62 00 INC 0000H
1:0128 14 ST BR0
1:0128 82 00 INC 0000
1:0128 14 8T BRD

-

il »

Clear(C) Apply (&) Exit (X)

Figure 1.40

Trace Mode Checkbox

Tracing starts when the [Trace Mode] checkbox is checked. The setting of this checkbox can be changed
even while an application is running.

Trace Area
This specifies the area to be traced.

Main Program

This limits tracing to the main program. Here, "main program" indicates areas other than the interrupt
processing routine.

Interrupt Handler

This traces only the interrupt processing routine (interrupt handler). Tracing starts when an interrupt is
received, and continues until the RETI instruction is executed.

Both

This traces both the main program and the interrupt processing routine.

VMB-45

Visual Memory Unit (VMU) Simulator Manual

Trace Level

The trace level refers to the subroutine nesting level. At level 0, no subroutines are traced. If the level
number increases, subroutines to the corresponding nesting level are traced. This setting can be used to
avoid unnecessary tracing.

To enable the trace level, check the [Trace Level] checkbox.
Trigger

This is a switch that enables a trace start address and a trace end address.

When the program counter matches the start address, tracing starts and continues until the program
counter matches the end address. These addresses are valid only for flash memory.

Trace Console

The trace results are displayed on the trace console. The trace results are the disassembled code that the
virtual CPU executed.

To clear the contents of the trace console, click the [Clear] button.

Apply Button

Clicking the [Apply] button places the trace level value, trace start address, and trace end address
into effect.

VMB-46

Descriptions of Windows and Panels

Hexadecimal Input Pad

Hexadecimal Input Pad

The Hexadecimal Input Pad is an auxiliary panel that is used to input hexadecimal numbers. Symbols are
displayed on the right side of the panel.

Hex Input Pad

| 0 +1 | [[” Full Compare (F} [~ Case Sensitive (C)
el | Find Hext(H) |

D E F C 0:0107 DSEG PCON -
alelc 0:0108 DEEC IE —
0:0109 DEEG IF |
7,8 |9 0:0100 DSEG EXT
+ [|o-010E DsEG och
4 5 6 0:0110 DSEG TOCHT
1 2] 3 0:0111 DEEG TOPRR
_ | |o-o11z psEG TOL
0 0:0113 DEEG TOLE
0

:0114 DEEG TOH ;I

Ok (%)

Figure 1.41
Description of Input Buttons
Numeric Buttons

These buttons are used to input hexadecimal digits. The digits that are input are inserted from the right
edge, and are then shifted left. Overflow digits are ignored; only the four digits that are displayed are valid.

C Button

This button clears the displayed digits and returns the display to "0".

+ Button

This button is used for addition in the same manner as a calculator.
- Button
This button is used for subtraction in the same manner as a calculator.

= Button

This button displays the total in the same manner as a calculator.

+1 button

This button adds "1" to the current displayed value. If the current displayed value is "FFFF" and this button
is pressed, "0" is the result.

VMB-47

Visual Memory Unit (VMU) Simulator Manual

-1 button

This button subtracts "1" from the current displayed value. If the current displayed value is "0" and this
button is pressed, "FFFF" is the result.

How To Use the Displayed Number

The displayed number can be dragged. When the mouse cursor is moved to the display area, it becomes a
drag cursor. The number can be dragged and dropped in an address text box on any panel.

Keyboard Correspondence

The buttons for the digits also correspond to keys on the keyboard or numeric keypad.

The buttons for the digits "0" through "9", the letters "A" through "F", and the "+" symbol all correspond to
the same keys on the keyboard, but the "C" button corresponds to the "*" key and the "="button corresponds
to the "Enter" key. The "+1" button corresponds to the PageUp key, and the "-1" button corresponds to the
PageDown key.

In order to input from the keyboard, it is necessary to first make the numeric buttons on the Hexadecimal
Input Pad active. The numeric buttons can be made active by clicking either on or near the buttons with the
mouse.

Symbol List Box

The symbol information for an application is displayed in the list box. The Special Function Register
symbols are registered as the default.

If an appropriate symbol in the list box is selected, that address is transferred to the display box. An address
can also be dragged directly from this list box.

Symbol Search

A symbol search can be performed by inputting the search character in the text box. Each time a character
is input, a search is conducted for the symbol that matches that character (incremental search).

The [FindNext] button starts its search from the currently selected position. If the [Full Compare] checkbox
is checked, a search is conducted for a symbol that matches the entire character string that was input.

If the [CaseSensitive] checkbox is checked, the search distinguishes between upper and lower case letters.

Caution:

The symbol file is a map file that is output by the Linker. If this file resides in the same folder as the
application, it is loaded into the Simulator at the same time as the application. If there is no map file,
only the default symbols are available.

VMB-48

Descriptions of Windows and Panels

Environment Settings Window

The Environment Settings Window is used to make general settings and to make settings concerning the operation
of the Simulator.

The items that are set in the Environment Panel are saved in the "VMU.ENV" file in the "Files" folder where the
Visual Memory Simulator was installed. This file is loaded when the Visual Memory Simulator is started up, and
the environment settings contained in the file are restored.

Settings

The general settings include the settings upon startup, warning specifications, etc.

~StartUp | [Warnings
I~ Load Application I~ TRRInvalid Address.
[~ Run After Loading [V XRAM Invalid Access.
[~ Minimum Size [~ Stack Guard lﬁ - ,ﬁ
I~ Load System File [~ Break On Warnings Above.
System File I~ Break On SFR Invalid Access.
(¥ Quick Start BIOS
5 [Initial Panel Location
" Full Size BIOS
(s Center
—Others —— | Custom

[V Display Hints
I~ Save Settings On Exit

Apply (&) I OK (X) | Cancel (C)

Figure 1.42

Startup Settings

Load Application

This checkbox is used to automatically load, the next time that the Simulator is started up, the application
that is currently loaded. The name of the current application is displayed in the title bar on the
Main Window.

Run After Loading

This checkbox automatically performs the reset operation and initiates execution the next time that the
Simulator is started up. If this checkbox is used at the same time as [Load Application], that application is
loaded and then automatically executed.

Minimum Size

This displays the Main Window at its minimum size the next time that the Simulator is started up.

Load System File

This checkbox automatically loads the system BIOS the next time that the Simulator is started up. The
system BIOS file that is loaded is the file that is selected by the system file setting.

VMB-49

Visual Memory Unit (VMU) Simulator Manual

Caution:

This checkbox must be checked in order to execute an application automatically.

System File Setting

This item selects the system file that is loaded by the [Load System File] checkbox. There are two system
files: [Quick Start BIOS] and [Full Size BIOS]. Select one or the other by clicking the option buttons.

Caution:

Quick start BIOS supports exactly the same functions as full-size BIOS, except that the clock setting can
be skipped at startup.

Warning Specifications
TRR Invalid Address

This outputs a warning message when the address that is referenced during the execution of an LDC
instruction is outside the application area. "Outside the application area" is defined as an address that is
higher than the last address of the HEX file that was loaded.

XRAM Invalid Address

This outputs a warning message when an access is made using an XRAM address in a memory area that is
not implemented. A warning message is also output when bank 3, which does not exist in XRAM,
is specified.

Stack Guard

This switch monitors the value of the stack pointer (SP). The monitoring area is specified as a starting and
ending value in the text boxes. In the case of an application where the depth of the stack is important, this
item can be set in order to output warning messages.

Caution:

If the Visual Memory Simulator is reset, the system BIOS sets "7FH" in SP. Because the data is stored in
the stack after the SP is incremented, the actual data is processed starting from 80H, heading up
to OFFH.

Break On Warning Above

The virtual CPU does not stop program execution when the above warning messages are output. Check this
checkbox in order to stop program execution when a warning message is output.

Break On SFR Invalid Access

A warning message is always output in the event of an invalid access to the Special Function Registers.
Check this checkbox in order to stop program execution when an invalid access is made to the Special
Function Registers.

VMB-50

Descriptions of Windows and Panels

Initial Panel Location

This sets the panel display position. [Center] displays panels in the center of the screen. [Custom] stores the
position where the user has moved a panel.

Others
Display Hints

This displays hints that have been set up for each GUI control. If this box is checked, hints are displayed; if
this box is not checked, hints are not displayed.

Save Setting On Exit

This specifies whether or not to save application environment information when exiting the Visual
Memory Simulator.

CPU Loop Count

Work Settings
Environmen

Settings]

—Work — Console
CPULoop Count [20 [~ Sound Simulation LI
Timer Delay Count |10 Color...
Disassemble Lines (32

Scroll Bars

'~ VMS Button Configuration —————— | ™ vertical
~ up Up Key ;5:1::'3 - ((; :t:izontal
" Left Left Key Shift Hone
" Down Down Key Ctrl
" Right RightKey | << | |Back Console Lines
" Suspend S :;'SI;“
" Mode M P:gel‘jp 500
A z PageDown
” : rome " =] || oeteut |

apy@ | ok | cancero |
Figure 1.43
Work Settings

This value determines how many instructions the virtual CPU will execute during one system idle process
called from Windows. Increasing this value causes the virtual CPU to run faster. If the results of instruction
execution are being drawn at the Simulator level, etc., the graphics speed becomes a limiting factor, so that
setting a large value for the loop count will have little effect. On the other hand, a large value tends to slow
down message handling in windows, with the result that GUI control response becomes sluggish. The
operating speed is also affected by the clock speed of the computer on which the Simulator is running,
which is another factor that should be taken into account in order to set this value to a suitable level. The

default setting is "20."

VMB-51

Visual Memory Unit (VMU) Simulator Manual

Timer Delay Count

The timer delay count value is used to adjust the clock to the virtual Visual Memory timer.

The counter for the timer is started after "'n" instructions have been executed. "n" is the timer delay
count value.

In other words, this value represents the delay before the timer starts operating. If this value is large, the
timer slows down. The default setting is "10."

Disassemble Lines

This specifies the number of lines in the disassemble list. This setting is valid when the [Length] checkbox
for the Main Window is checked. The default setting is "32."

Sound Simulation

Because the actual hardware needed for PWM output is not available in the Virtual Memory Simulator, the
Simulator is not able to output an accurate frequency. When PWM output becomes possible at the Visual
Memory Simulator level, the "PWM.WAV"file will be played. This checkbox is used to enable the playback
of "WAV" files. When this box is checked, playback is enabled; when this box is not checked, playback is not
enabled.

VMU Button Configuration

The settings for the keys that are allocated as the Visual Memory Image buttons can be changed.

Starting from the left, this group consists of option buttons for selecting the Visual Memory buttons, the
name of the key that is currently selected, the setting button, and the setting candidate list box.

Select the Visual Memory button that you wish to set from among the option buttons.

Next, select the key to be set from the list box, and then press the setting button [<<]. You can also
double-click on the key in the list box. The key that was set is displayed in yellow.

Console
This group sets the font, color, scroll bar, and other options for the system console.

Font Button

This specifies the character font that is used on the system console. Clicking this button causes the font
dialog box to appear. Set whichever font is desired.

Caution:

Although vertical fonts are available in the font dialog box, do not specify any of those fonts.

VMB-52

Descriptions of Windows and Panels

Color Button

This specifies the background color of the system console. Clicking this button causes the color dialog box
to appear. Set whichever color is desired.

Scroll Bars

This provides options for the display of scroll bars on the system console.

Vertical Displays vertical only

Horizontal Displays horizontal only

V/H Displays both vertical and horizontal
None Does not display scroll bars

Console Lines

This specifies the number of lines that are buffered for the system console. The maximum value is 1000
lines. The default setting is 300 lines. Increasing the number of lines increases the load caused by scrolling.

Default Button

This button returns the system console settings to their default settings.

VMB-53

Visual Memory Unit (VMU) Simulator Manual

VMB-54

Sega@'Dreamcast

Networking

Two Visual Memory units can be connected to each other through their serial interfaces (SIO). With the
Visual Memory Simulator, an equivalent setup can be created by connecting two Simulators through
TCP communications.

Although only the various SIO registers are visible from the virtual CPU, data can be transferred to SIO of the other
Visual Memory Simulator through the network in response to a transfer request.

The network is controlled through the Network Monitor Window. One of the Visual Memory Simulators is
designated as the client, and the other as the server. Because the network connection is not established
automatically, it must be established beforehand by using the Network Monitor Window.

Both a client and a server are required for connection. It does not matter which Visual Memory Simulator is the client
and which is the server, but it is not possible to have a connection between two clients or two servers.

Start up two Visual Memory Simulators in one PC.

In the Network Monitor Window of the Simulator that will be the client, enter the name of the PC or the IP
address as the name of the remote host. Put the server Simulator into the standby state, and then make the
connection from the client side.

Start up separate Visual Memory Simulators in different PCs.

Set one of the PCs as the server, and put the Simulator into the standby state. On the client side, enter the
name of the server PC or the IP address as the name of the remote host, and then make the connection.

Disconnecting the Network

Although the client and the server can both request disconnection, the disconnection request is usually
issued by the client.

VMB-55

Networking

VMB-56

Sega®@'Dreamcast

Related Files

This section describes the files that the Visual Memory Simulator references.

VMB-57

Related Files

System Files

The system files that the Visual Memory Simulator references reside in the "Files" folder.

VMU.INI

This file contains the initial settings for the Visual Memory Simulator. Modifying this file could cause the
Visual Memory Simulator to operate incorrectly. The Visual Memory Simulator cannot start up without
this file.

VMU.ENV

This file contains the environment settings that have been made by the user. This file is updated when the
Visual Memory Simulator is exited.

DEFAULT.ENV

This file contains initial settings for applications to reference if they do not have their own environment file.

FBIOS.SBF

This file contains the ROM image of the system BIOS that is stored into the Visual Memory unit. The system
BIOS is started up whenever Visual Memory is reset. Applications are called from the system BIOS, and
when an application is exited, control returns to the system BIOS. The system BIOS includes various
subroutine packages that can be used by applications.

QBIOS.SBF

QBIOS skips the clock setting screen that is displayed when FBIOS starts up. Because the clock setting can
be skipped, program verification can be performed immediately during debugging. In all other respects,
QBIOS provides exactly the same functions as FBIOS.

PWM.WAV

Because the Visual Memory Simulator cannot guarantee complete real-time operation, PWM sound output
is not possible. When PWM output becomes possible at the Simulator level, the PWM.WAY file will
be played.

VMB-58

Related Files

Application Files

The files that are referenced by applications are described below.

APPFILENAME.H00

This is the application execution file. The files that the Visual Memory Simulator can load as applications
are HOO files. An HOO file is created by converting an EVA file that is output by the Linker.

E2H86K.EXE is used to convert EVA files to HOO files. Although E2H86K.EXE outputs both a HEX file and
an HOO file, only the HOO file is used by the Visual Memory Simulator.

APPFILENAME.MAP

The MAP file contains the symbols that are output by the Linker. The file format is that of a typical text file.
The Visual Memory Simulator loads this file and extracts the necessary symbols. Once symbols are loaded,
they can be displayed with labels when disassembled.

The MAP file is loaded automatically after the application is loaded. Therefore, the MAP file must reside
in the same folder as the application. However, the MAP file is not required by the Visual Memory
Simulator, so its absence has no effect on the Visual Memory Simulator.

APPFILENAME.ENV

Information such as panel positions and settings can be stored for each application in a file with the "ENV"
extension that resides in the same folder as the application. The next time that the application is loaded, this
file is referenced and the settings are restored. If this file does not reside in the same folder as the
application, the execution of the application is unaffected, except that the default settings will be used.

VMB-59

Visual Memory Unit (VMU) Simulator Manual

VMB-60

Sega@'Dreamcast

Warning Messages

This section describes the warning messages that are displayed when an application is executed.

Stack Guard> Stack overflow occurred.

If the Stack Guard function has been enabled in the Environment panel, this message appears when the
stack pointer has gone outside of the specified range.

SFR> Invalid write (read) of SFR was attempted.

This message appears when an invalid write (read) of a Special Function Register was attempted.

An "invalid access" means that a Special Function Register was accessed by a method that is not permitted
for users. For example, this message appears in cases where bit access is permitted but byte access is not, or
in cases where reading is permitted but writing is not.

TRR> An invalid address was accessed.

This message appears when an address referenced by an LDC instruction was outside the range of
addresses where the application is loaded.

XRAM> XRAM cannot be written in subclock mode.

This message appears when a memory area for which XRAM is not implemented was accessed. The XRAM
space exists from 180H to 1FFH, but that does not mean that memory is implemented for that entire area.
Addresses in which the lower four bits range from 0CH to OFH are not implemented.

However, the memory that is implemented in XRAM bank 2 is from 180H to 185H.

VMB-61

Warning Messages

LCD> Invalid XRAM bank was accessed.

The XRAM bank specification is made in the XBNK register. The bank number is specified by two binary
digits, but the value for bank 3 (which does not exist) can be written to this register. In this case, the
Simulator switches the bank to bank 0 and displays this message.

LCD> Invalid STAD value was specified.

This message appears when a value that cannot be set is written in the display address start register for
the LCD.

SI0#0> Warning: PORT#1 is not ready.
SI0#1> Warning: PORT#1 is not ready.

SIO uses port 1 for input/output. This message appears when none of the bits in port 1 are set for SIO.

SIO> SIO control register values do not match.

This message appears when the settings in the control registers (SCONO and SCONT1) for two Visual
Memory Simulators that are attempting SIO communications do not match, making simulation of SIO
communications impossible.

Correct the program so that the settings for the transfer bit length, the LSB/MSB first selection, etc., match
for both Visual Memory Simulators.

VMB-62

	Dreamcast (VMU) Visual�Memory Unit
	Table of Contents

	Visual Memory Unit (VMU) Tutorial Manual
	Table of Contents
	Application Development�Procedure
	Writing Source Code
	Correcting GHEAD.ASM
	Assembly Without Using MAKE
	Assembly
	Linking
	Converting an EVA File Into a HEX File
	Converting a HEX File to a Binary File
	Creating a MAKE File

	Creating the Information Fork
	Transferring the Program to Visual Memory

	Interfacing between Visual Memory and Dreamcast
	Names of Elements in the Startup Screen
	Memory Selection Screen
	File Management Screen

	Creating a Volume Icon
	Creating an Animated Icon
	Three File Structures
	Information Fork
	Visual Comment Data Structure
	Game Name Sorting Rules

	Memory Card Utility
	Memory Card Utility Preparation and Startup
	Requirements for Transfer
	Software Preparation
	Memory Card Utility Startup

	Memory Card Utility Operation
	Main Menu
	Memory Selection Menu
	Command Selection Menu
	File Operations Menu

	Initializing Visual Memory
	Transferring Files from a PC to Visual Memory
	LCD Pattern Display
	LCD Character Pattern Display
	Counter That Uses Base Timer Interrupts
	Button Press Detection
	Using the PWM Sound Source
	Interrupt Using Timer 0
	Serial Communications (Sending Side)
	Serial Communications (Receiving Side)
	General-purpose Serial Driver
	Reading and Writing Flash Memory
	Low Battery Detection and Saving Data

	Dreamcast VMU Specifications
	Table of Contents
	VMU Specifications
	Overview
	VMU Overview
	VMU Configuration
	VMU Functions

	Mode Settings
	File Management
	Management Area
	Data Area
	Reserved Area

	LCD Display
	XRAM
	Screen Mode
	Icons
	Screen Configuration
	LCD Characteristics
	Miscellaneous

	Executable File Initiation
	Downloading an Executable File
	File Size
	Subroutine
	Interrupts
	RAM
	Save Processing During Executable File Operations
	Auto Power Off

	Communications Function
	Maple Bus Protocol
	Synchronous Serial Communications

	Clock Function
	Settings

	Alarm Function
	SLEEP Function
	SLEEP Operation

	Buttons
	Batteries
	Battery Life
	Processing When Battery Power Is Exhausted
	Battery Replacement

	Postscript

	Visual Memory Unit (VMU) Hardware Manual
	Table of Contents
	Visual Memory Unit�Overview
	VMU Specifications
	VMU Functions
	File management
	Liquid-Crystal Display
	Starting VMU applications
	Data transfer
	Clock
	Buzzer
	Operation mode switching
	Integrated character font

	Mode Setting
	System mode
	Game mode
	File mode
	Clock mode

	File Management
	Flash memory management area
	Data area
	Reserved area

	LCD Display
	XRAM
	Image mode
	Icon
	Image configuration
	LCD characteristics
	Other important points

	Starting an Executable File
	Writing applications for the VMU
	Transferring an executable file
	Executable file size
	OS programs usable by applications
	RAM
	Saving application data
	Auto power-off

	Communication Functions
	Maple bus protocol
	Synchronous serial transfer

	Clock Function
	Alarm Function
	Sleep Function
	Buttons
	Batteries
	Battery life
	Battery status monitoring
	Battery replacement

	CPU Features
	Differences to Conventional CPUs
	Specifications
	System block diagram

	Internal System Configuration
	Memory Space
	Program Counter (PC)
	ROM Space
	RAM Space
	Indirect Address Registers
	Special function registers (SFR)

	Flash Memory
	Accumulator
	B Register, C Register

	Program Status Word (PSW)
	Stack Pointer
	Table Reference Register (TRR)
	CHANGE Instruction
	Format
	Operation
	Sample program

	Peripheral System Configuration
	I/O Ports
	Port 1
	Port 3
	Port 7

	Timer/Counter 0 (T0)
	Functions
	Circuit Configuration
	Related Registers
	Circuit Configuration and Operation Principles

	Timer 1 (T1)
	Functions
	Circuit Configuration
	Related Registers
	Circuit Configuration and Operation Principles

	Base Timer
	Functions
	Circuit Configuration
	Related Registers
	Using the Base Timer

	Serial Interface
	Functions and Features
	Circuit Configuration
	Related Registers
	Serial Interface Operation
	Operation Mode Settings
	Serial transfer clock
	Serial Transfer Timing
	LSB/MSB Switchable Start Sequence
	Overrun Detection
	Transfer Bit Length Control
	Sample Program

	Dot Matrix LCD Controller
	Functions
	Display RAM (XRAM)
	Display Control Registers

	External Interrupt Function
	Circuit Configuration
	Related Registers

	Port Interrupt Functions
	Function
	Circuit Configuration
	Related Registers
	Operation Description
	State Transition

	VMU Work RAM
	Work RAM Control Registers
	Accessing Work RAM
	Precautions for Using Work RAM Address Register

	Flash Memory
	Features and Functions
	Accessing Program/Data Area of Flash Memory

	Control Functions
	Interrupt Functions
	Interrupt Types
	Interrupt Function Operation
	Circuit Configuration
	Related Registers
	Interrupt Priority Ranking

	System Clock Generation
	Features and Functions
	Circuit Configuration
	Related Registers
	System Clock Operation Mode

	Sleep Function
	Related Registers
	Standby Operation Status
	HALT Mode

	Hardware Reset Function
	External Reset Pin Function
	Hardware Status During a Reset

	Programs in ROM
	System Programs
	OS Programs
	Headers

	Memory Space
	System BIOS Functions
	Subroutine Call Procedure
	Processing Contents of Labels
	Interaction Between System BIOS and Application

	Application Shutdown Procedure When MODE Button is Pressed
	Processing Contents of Labels
	Interaction Between System BIOS and Application

	VMU Initialization
	Subroutine Reference
	Flash Memory Access Functions
	Subroutine Use Precautions
	Flash memory routines
	fm_prd_ex(ORG 0120H) Flash memory page data read
	fm_wrt_ex(ORG 0100H) Flash memory data write
	fm_vrf_ex(ORG 0110H) Flash memory page data verify

	Clock Function
	timer_ex Clock count-up timer

	Low Battery Voltage Auto�Detection
	List of Defined Variables
	Sound Output Method
	Timer 1 Outline
	Timer 1 Block Configuration
	Related Registers
	Mode Setting

	8 Bit Counter Mode
	Output Waveform and Parameter Setting
	8 Bit Counter Mode Setting
	Frequency Characteristics
	Output Frequency Table

	Sample Program
	Variable Bit Length Pulse�Generator
	Symbol Table
	VMU Mode Selection
	Calculation of Battery Life
	Methods for Enhancing Battery Life
	Oscillator Circuit and Current Consumption
	Oscillation Control Register
	System Clock Division Ratio Setting
	Oscillator Circuit Selection
	Oscillator Circuit Start/Stop

	Calculating Battery Life
	Calculating Continuous Operating Time
	Calculating Battery Life in Days

	Serial Communication Precautions
	Serial Communication Timing Chart
	Measures to Ensure Problem-Free Serial Transfer
	Mask All Interrupts
	Set Maximum Send Wait Time

	Visual Memory Unit (VMU) Programing Manual
	Table of Contents
	Setup
	Executing the Setup Program
	Post-Installation Overview

	Setting Environment Variables
	Environment Variables for the Development Tools
	Environment Variable Settings

	Specifying Files for Assembly
	Specifying File Names
	Specifying Parameters on the Command Line
	Specifying Parameters at the Prompts

	Option Switches
	Environment Variables and Reserved Word File
	Environment Variables
	Reserved Word File

	Errors
	Warnings
	Non-Fatal Errors
	Fatal Errors

	Listing Format
	Specifying Files for�Linking
	Specifying File Names
	Specifying Parameters on the Command Line
	Specifying Parameters at the Prompts
	Files Referenced During Linking

	Option Switches
	Object Alignment
	-A option
	-A -F options
	-A -O options
	-A -R options

	Errors
	Fatal Errors
	Non-Fatal Errors

	Starting the Program
	Specifying File Names
	Specifying Parameters on the Command Line
	Option
	Examples of Command Line Execution

	Operation with the Prompts
	Prompt Line Extension
	Default Responses

	Error Messages
	Cross-Reference
	Starting the Program
	Specifying File Names
	Specifying Parameters
	Option Specification

	Error Messages
	Fatal Errors

	Starting the Program
	Specifying File Names
	Specifying Parameters

	Error Messages
	Fatal Errors

	Overview of MAKE
	Running MAKE
	Build Priority Sequence
	Command Line Options

	Makefile Syntax
	Generation Rules
	Macros
	Directives

	Implicit Rules
	Makerule file

	Assembler Syntax
	Statements
	Label and Symbol Names
	Comments
	Operators
	Numeric Constants
	Character Constants
	Character String Constants
	Special Symbols

	Assembler Pseudoinstructions
	LC86K Instruction Summary
	Instruction Summary
	Arithmetic Instructions
	Logical Instructions
	Data Transfer Instructions
	Jump Instruction
	Conditional Branch Instructions
	Subroutine Instruction
	Bit Manipulation Instructions
	Other Instructions
	Macro Instruction
	Addressing
	Program Memory Addressing
	RAM and Special Function Register (SFR) Addressing

	Instruction Set Reference
	Arithmetic Instructions
	Logical Instructions
	Data Transfer Instructions

	Jump Instructions
	Conditional Branch Instructions
	Subroutine Instructions
	Bit Manipulation Instructions
	Miscellaneous Instruction
	Macro Instruction

	LC86K Instruction Set�Summary
	Assembler Pseudoinstructions

	Visual Memory Unit (VMU) VMU-BIOS Specifications
	VMU-BIOS Specifications
	Outline
	VMU Outline
	System-BIOS Outline

	Memory Space
	System BIOS Functions
	System BIOS Data and Memory Allocation
	Program Layout
	Subroutine Call Flow
	Returning From User Program to Mode Selection Screen
	VMU Initialization

	Subroutine Description
	Flash Memory Access Functions
	Clock Function

	Automatic low battery detection function
	Automatic low battery detection flag

	Visual Memory Unit (VMU) Sound Development Specifications
	Table of Contents
	VMU Sound Development�Specifications
	VMU Sound Output Hardware Outline
	Sound Output Principle
	Timer 1 Outline
	8-Bit Counter Mode
	Table of Available Output Frequencies

	Sample Program

	Visual Memory Unit (VMU) Simulator Manual
	Table of Contents
	Overview
	Features
	Visual Memory Simulator Operating Environment
	Checking Operation on Actual Visual Memory Hardware
	Notes Concerning Startup for the First Time

	Implemented Devices
	Virtual CPU
	Memory
	LCD Controller (LCDC)
	Serial Interface (SIO)
	Timer
	Interrupt Controller
	I/O Ports

	External Input Devices

	Basic Operation
	Starting Up the Visual Memory Simulator
	Loading the System BIOS
	Loading and Executing Applications
	MAP File
	Drag & Drop

	Descriptions of Windows�and�Panels
	Main Window
	Menus
	Toolbar
	CPU Register Display Function
	Execution Control
	Disassembly Function
	Visual Memory Image
	Status Lamp
	Changing the Size of the Main Window
	System Console

	Memory Control Window
	RAM#0, RAM#1
	FLASH#0
	XRAM
	SFR
	VTRBF

	Break Control Window
	Break by Breakpoint Address Comparison
	Display When an Interrupt Is Received
	Access Reference Monitor

	Special Function Register Control Window
	CPU Control
	LCD
	INT Control
	Timer 0
	Timer 1
	SIO
	PORT1
	PORT3/7
	External INT
	VMU Special
	Base Timer

	LCD Snapshot Window
	Description of Tool Bar Buttons
	Display by STAD Checkbox
	Menus

	Network Monitor Window
	Trace Panel
	Hexadecimal Input Pad
	Environment Settings Window
	Settings
	Work Settings

	Networking
	Related Files
	System Files
	Application Files

	Warning Messages

